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Light interference on a screen

» Electric field strength (complex analytic signal):

y E(r,t) = |E(r, ]

2R

» In general E(r,t)is a wave packet:

E(r,t) = / dwE(w)e'* ==Y
The intensity distribution on the screen:

| = % (|E(r, 12+ |E(r,t + wol/c)|? + Re{E(r, )" E(r, t + woL/c)})

For plane waves (E = Eyetk"=«1)
I= /50(1 + cos(wL/c))

First order coherence .
o) = (E(r,t)"E(r,t+7))
(E(r,t)<E(r,t)) ~’

where (...) means manifold or time average (ergodicity). @Ener




Measuring the angular diamater of a star

% Spatial coherence of a wave front (astronomical Michelson in-

* terferometer):
([E(r1) + E(r2)]"[E(r1) + E(r2)])
((IEr)P) + (|E(r2) ) + 2Re{E(r1)" E(r2)})

= 2k (1 +g(”(r17r2))

N = N =

screen

For two wave fronts:
1 : |
I=3 <|Ek(r1) + Ew(r1) + Ex(ra) + Ek,(r2)|2> = 4l(1 + cos([k + k']d/2) cos(kd,/2)

where d = ry — r». The term cos(kd¢/2) depends on the angular diameter ¢ of the
star.

Drawback: the method has large uncertainty due to cos([k + k']d/2)
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The Hanbury Brown — Twiss effect (1956)
What is the intensity correlation between different points of the wavefront?
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/ PHOTOMULTIPLIER TUBE

N 5 =
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(AJ1(t)Ada(1))
t

) = a0 2 (Bb(D)) 2

What do we observe in the light intensity
correlation experiment?

Answer: correlation of photocurrents!
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Emission of photoelectrons
The Hamiltonian of the detector reads

H = £49)(g +Z€eq\e g)(e.q| - Z[u (eq).0/€; @) (9] + H.c](E(t) + E*(1))

The state vector is deflned as: [¢) = cglg) + 24 Ceqle Q)
The Schrédinger equation for the state vector in the interaction picture

E*
i%cg = _Z/ o eae= 1) (w) e wamle, g

Iz (@) i(wg—w
GiCea = / dw (e(’)g g'wa)e,

where h{JJq = Ee,q — €g» {Cg(to) = 1, Ceyq(to) = O}
Apply the time-dependent perturbation theory, and compute ce o(1), (t = fh + At)

i

The total transition probability per unit time to the excited state ((w — w’)At < 1)
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Emission of photoelectrons (cont.)

The probability of emitting a single photoelectron in the At interval (x Fermi g.r.)

where I(t) = [E(t)|2, E(t) = [ dwE(w)exp(—iwt), ko = wo/Co

If there are N effective emitters
N

P2, t,t+ At = Z( ’,\7’ )[n/(t)At]"[1 —nl()AgY " =1 —[1 —ni(t) A"
= Npl(t)At — W[nl(t)At]Z + ...

For nl(t)At < 1

The probability of emitting n photoelectrons in [t, f + T], assuming independent
emissions, follows the Poisson distribution
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with U(t, T) = [T dr I(r) the fluence



Properties of the P(n, t, t + T) distribution

Mean number of emitted photoelectrons:

0.40
0.35 00\ ° A=l T
0.30 e A= (ny = 17/ dr I(7)
so2sf | © A=10 t
%0,20 )J/ﬂ 1
21: f\ X | Mean photoelectron number from P(n, t,t + T)
0.05 ‘/J CK " 1 oo t+T
o0ttt () =Y Pt T) = UL T) - ,// dr I(7)
n=0

Calculating the variance of the photoelectron number

(r*) = i[”(”* 1)+ P(n,t,t+ T) = [nU(t, TP +nU(t, T)
n=0
(n— ()" = () = (m?=[U(t, T +qU(t, T) = [nU(t, T = UL T)
An = nU(t, T)
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Fluctuating classical fields
The quantity nU(t, T) is a random variable W — ensemble averaging is necessary

f(W) : probability distribution
/ (W)W = 1
0
WI‘I
P(nt,t+T) = <nl >
(ny = (W)
(n=(m))") = (W)+(aw))

For T > 7, 7¢ is the correlation time of /(¢)

i

w

n(l)T, ergodic process

P(n,t,t+T) = (71" exp(—n(l)T) :
n! \ T 7

For T « 7¢, I(t) is nearly constant in [t, t + T]

i

W = qi()T

P(n,t,t+T) = /Ad/f(/) [”’T] exp(—nIT) . __.aer



Fluctuating classical fields (cont.)

Example: classical thermal field

PEIPE = 5o exp(—|EF/()al-dic
PU) = 7 exp(—1/()

Boson statistics for the photoelectrons ...

Joint detection by two independent photodetectors:

I'I1(r1,t1)At1 = m /(r1,t1)At1
I'I1(r2,t2)At2 = ngl(rg,tg)Atg
P{1}(r1,t1;r2,t2)At1At2 = 771772/(r1,t1)l(r2,t2)At1At2

For fluctuating fields

P{1}(I'17 ty; ro, fg)At1At2 = T]1772<I(r1 1 )/(l’z, tg))AﬁAfz
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Photoelectric current fluctuation

Usually the current of the electrons of the detector is amplified — current pulses
The current pulses are not always resolved — a continuous current J(t) is studied

s

T —r t
TR
Let’'s assume that n photoelectrons are emitted in time T. In a stationary field the
average current is (emission prob. = dt,/T)

(dn 7(t n_Z/ t—t, TZ/s(t dtN—ZQ——

The average current

= nQ Q
= ;P(n, i+ ) =(n)+ =
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Photoelectric current correlation

Autocorrelation (Tg < T)
(AJOAI(E+T)) = nil) /Oo s(t)s(t + 7)d
+ 7 // )s(t" (Al AI(t+t —t" +7))dt'dt”
For slow response photodetector (. < Tg)
AJ()AJI(t + 7)) {1/«:/:» | zﬁq(A/)Q:rc} /j s(t')s(t’ + r)dt’
Cross-correlation
(A (HAL(t+ 7)) = mim2 //Oo s(t)s(t")(Ah(H)AL(t+t —t" + 7))dt'dt”
For slow response photodetector

» 00

(AJ (DAL(t+ 7)) = ,,H,E{A/WA/Q}TC/ s(t)s(t' 4 7)dt’

J —oc
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Explanation of the original HBT effect
the normalized intensity correlation between two points of the wavefront

Reacall :
_ (AJi (1) Ad(1))
OO = (a0 2 (B
Ul The autocorrelation is given by
o) (@IOF) = [t + mi(an] [~ S(e)ar
i For unpolarized thermal field ((A/)%) = 3(/)?

0 S
! Separation of cathodes, d (mm)

a(AJ/(t))Z] = ni(l) {1 + %//,\/,j/—c} / 32(1‘/)dl‘/
The cross cross correlation
(A () D (1)) = mima (AL AT / 2(t)dt

Using the relation (z{ z1z; zo) = (z{ z1)(z5 z2) + (Z5 z1)(Z{ Z2) (z; Gaussian)

, 1 ,
AJW(I‘)AJQ(I‘)’ 51]11/2‘/1 /2 lc‘ ri,ro, O 2/ C” @Ener



Measuring the diameter of a star

Let’s measure the normalized second order current correlation:

Adi(1)Ad> .
% CL9) = at A AT =l costido)

K 2

{(AJ/(i))Q} =ni{l) {‘l + 1//,(/,}%} / 82(1/)d1/

2 v O
n r
N =
1

(f)AJQ(f) = %//1 //2"\1A/1A/2;\>TC/ SZ(ZL/)C”/

oC

In case of two wave fronts:

(ALALL) E(ri)"E(r2)"E(r)E(r2)) — (E(r1)*E(r1))(E(r2)" E(r2))

(
= ([Ex + Ew]"(r1)[Ex + Ew]"(r2)[Ek + Ew](r2)[Ek + Ex/](r1))
= ({[Ex + E]"(r)[Ex + Ei](r))([Ex + Ew]"(r2)[Ex + Ei](r2))
2 (|E? B ) + { (i B By ) 6007 1 o0 )
= 2(l){l)[1 + cos(kd )]
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Second order correlation function of quantized fields

Electric field operator for 1D, polarized e.m. field

E(z) = EM _IZ|:1/2LU€0L ae™ + H.c.

where E) ~ E(t) classical
Intensity :

Second order correlation function:

where [: 3332 = 3'a" aa

Stellar interferometer: assume (fk) = () = (), furthermore (n2)

G® = 26" () — (A) + (W)* {1 + cosl(k — K')(r — r2)]})

light source | G® | min | max
thermal 2 +riP(1+x) | 2rP
laser P+r(1+x) | M
single photon 1+ x 0

where n = (n), x = cos[(k — k')(ri — r2)]
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Observation of correlations through photon counting

Counting rates

I T
N7(0,T)
(0, T) Rr(0, T)At ( 0 ) N
Ry Pa(r,T) = Ra(r, T)At= (M) At
Coincidence AT
E Counter
PTR(T7 T) = HTFI(T, T)At — M At
AT
Correlation between photo-counts (mode V is in vacuum)
@) () {rO)R(T) 9  @lalaras
gT,R(T) = A 7 = e ATa T
(Ir(0)){Ia()) (arar)(agan)
where L o
5 a +av -~ a— av
apR=—1—, ar— ————
e RV
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Some measurements (by Krisztidn Lengyel)
The probabilty distribution P(n, t, t + T) for laser light

200
180
tin=5 Ms
160 / =17.62 +0.06
140
120 y
g /
< 100
£
-4

80
60 /
40

0

0 1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21
Nphoton[db]

here T = 5us, detector pulse length ~ 18ns, detector dead time ~ 40ns,
sampling time bin = 400ps @EHET



Some measurements (cont.)

Hanbury Brown—Twiss effect from photon counting

Udet
-
e

tlus]
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Some measurements (cont.)

There are no quantum effects here

0.14

Laser —@—
012 | Spectral lamp —@&— i
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Roy J. Glauber: the quantum theory of optical coherence

Coherent states

5 o0 n 2 2 *
la) = e~ 1o /ZZ %|n>, (a|B) = e~ loI/2=1B1/2=e78 * non-orthogonal
n=0

Completeness: 1= % [ d®ala){a] — good to expand the quantum state of light

Glauber-Sudarshan P(«) representation: g = [ d?aP(a)|a){a]

source type P(a)

laser light 8 §(a—B)
Examples: .

thermal light [Tk ﬂﬁ;ks) —lal®/(fk,s)

number state |n)

! 2 d\2n
27rrr(72n)!er (_5) 6(r)

Higher order correlation function for electromagnetic fields

G

i pipn (X4 <+ - Xny Xng1 - . . Xon)

Hnd

= Tr{gE ) (x1) ... ES)(xa) ESY) (Xni1) .- ES) (%n) }
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The Hong-Ou-Mandel interferometer

Interference of single-photon wave packets
» Two photons impinge at the two
imputs of the beam splitter: |14, 1p)

» Passing the beam splitter
(R =T = 50%) the photons ,stick
together”:

[Yout) = —=(]24,08) + |04, 25))

7

The coincidence tends to zero if the two
photons arrive at the same time to the
beam splitter.

No. of coincidence counts in 10 min.

260 280 300 320 340 360
Position of beam splitter (.:m)
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Design of single photon wave packets

MM ]lﬂ

Correlations

Correlations

1 Julll | ‘ il R, > '
AL §5 03 o3 02 o1 0 01 02 03 03 0s
-150  -100 -50 0 50 100 150 Time Delay (us)
b Time Delay ( ps) = b)
)
r l B= L (i Delay  Pol.Comral | gs. f"/\

iﬂf 50 I

{ sosn |

% QWP H.W.P.

» Single photons source with an atom trapped inside a cavity: the atom is
periodically excited (T = 3 us), to get a stream of photons

» G® = (Pp(t)Pma(t — 7)) is measured in a HBT setup to prove the single
photon state

» A Hong-Ou-Mandel interferometer is used to test the overlap between the\/uﬁsner
photon wave packets.



Experimental test of the Bell’s inequality

Einstein’s locality: the outcome of a measurement cannot depend on parameters

controlled by faraway agents.

Two observers test the polarization of photons emitted in an S P S cascade.

Observer A measures «, v polarizations, the outcome +1.
Observer B measures 3, § polarizations, the outcome =+1.

¢ *
golfels o8 O
= | Coincidence

recorder

If local hidden variables exist (Clauser, Horne, Shimony, Holt)
ajb; + bjc; + ¢ja; — dia; = +£2

After averaging

|cos2(a— ) +cos2(8 —v)+cos2(y— ) —cos2(d —a)| <2 @Ener

QM says: |hs = 21/2, agrees with the measurement



Quantum state reconstruction of light

Quantum state reconstruction: find the density operator g . .. or something equivalent

Quasiprobability distributions:
» Glauber-Sudarshan P(«) representation : not good, it's an ugly distribution
» Wigner's function, W(q,p) = 2= [~_exp(ipx)(q — x/2|alq + x/2)dx
» The Q(«) function : Q(a) = (a|o]«)

How to reconstruct the phase space dis-
tributions ?

Measure the quadrature distributions:

Go = gcosf + psind

q

From the marginal distributions pr(q, #) a quasiprobability distribution between W
and Q can be reconstructed.
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Homodyne detection for measuring pr(qg, 6)

There are two fields: 1. signal; 2. the local
oscillator

detector

Very important: they are phase locked

Beam splitter mixing:

signal
R 3 = a—+aro
a T =
detector \/é
3 = a— aLo
local 2 -
oscillator \/é

(a10)

Measure the intensity at the output ports:

~ 1 . S P ~ 1 i
h = 5{(@'@+owol*+larol(@e " +a'e")} , & = 5{(@'8)+|orof~|arol (@6 +a'e"))
Record the difference

71 72 ‘(\]()‘(ée v } éri e/”) ~ Qo
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Continuous variable quantum key distribution

/ Alice

Photodiode
&

2 ps (500 kHz) - i
100 ns +== o 5

Variable
attenuator

1.55 pm pulsed
laser diode
99/1 Coupler

Polarizer

Bob /Channel N

Dynamic
polarization Lo
controller I_:@
—_—
400 ns
N /
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Thank you for your attention
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