# Contribution of the Hanbury Brown – Twiss experiment to the development of quantum optics

#### Kis Zsolt

Kvantumoptikai és Kvantuminformatikai Osztály MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33

BME, 2013. május 15.

#### Table of contents

#### First- and second-order coherence of light

Classical interference of light

The Hanbury Brown – Twiss experiments

Roy J. Glauber: the quantum theory of optical coherence

#### **Applications**

Experimental test of the Bell's inequality Quantum state reconstruction of light Continuous variable quantum key distribution





#### Table of contents

#### First- and second-order coherence of light

Classical interference of light

The Hanbury Brown – Twiss experiments

Roy J. Glauber: the quantum theory of optical coherence

#### Applications

Experimental test of the Bell's inequality Quantum state reconstruction of light Continuous variable quantum key distributior





## Light interference on a screen

► Electric field strength (complex analytic signal):



$$E(\mathbf{r},t) = |E(\mathbf{r},t)|e^{i\phi(\mathbf{r},t)}$$

▶ In general  $E(\mathbf{r}, t)$  is a wave packet:

$$E(\mathbf{r},t) = \int \mathrm{d}\omega \widetilde{E}(\omega) \mathbf{e}^{i(\mathbf{k} \ \mathbf{r} - \omega t)}$$

The intensity distribution on the screen:

$$I = \frac{1}{2} \left( |E(\mathbf{r}, t)|^2 + |E(\mathbf{r}, t + \omega_0 L/c)|^2 + \text{Re} \{ E(\mathbf{r}, t)^* E(\mathbf{r}, t + \omega_0 L/c) \} \right)$$

For plane waves  $(E = E_0 e^{i(kr - \omega t)})$ 

$$I = \frac{I_0}{2}(1 + \cos(\omega L/c))$$

First order coherence

$$g^{(1)}(\tau) = \frac{\langle E(\mathbf{r},t)^* E(\mathbf{r},t+\tau) \rangle}{\langle E(\mathbf{r},t)^* E(\mathbf{r},t) \rangle},$$

where  $\langle ... \rangle$  means manifold or time average (ergodicity).





## Measuring the angular diamater of a star



Spatial coherence of a wave front (astronomical Michelson interferometer):



$$I = \frac{1}{2} \langle [E(\mathbf{r}_1) + E(\mathbf{r}_2)]^* [E(\mathbf{r}_1) + E(\mathbf{r}_2)] \rangle$$

$$= \frac{1}{2} (\langle |E(\mathbf{r}_1)|^2 \rangle + \langle |E(\mathbf{r}_2)|^2 \rangle + 2 \operatorname{Re} \{ E(\mathbf{r}_1)^* E(\mathbf{r}_2) \})$$

$$= 2I_0 (1 + g^{(1)}(\mathbf{r}_1, \mathbf{r}_2))$$

For two wave fronts:

$$I = \frac{1}{2} \left\langle \left| E_{\pmb{k}}(\pmb{r}_1) + E_{\pmb{k}'}(\pmb{r}_1) + E_{\pmb{k}}(\pmb{r}_2) + E_{\pmb{k}'}(\pmb{r}_2) \right|^2 \right\rangle = 4I_0(1 + \cos([\pmb{k} + \pmb{k}']\pmb{d}/2)\cos(kd\phi/2)$$

where  ${\it d}={\it r}_1-{\it r}_2$ . The term  $\cos(kd\phi/2)$  depends on the angular diameter  $\phi$  of the star.

Drawback: the method has large uncertainty due to  $cos([\mathbf{k} + \mathbf{k}']\mathbf{d}/2)$ 





## The Hanbury Brown – Twiss effect (1956)

What is the intensity correlation between different points of the wavefront?



$$C(d) = \frac{\langle \Delta J_1(t) \Delta J_2(t) \rangle}{\langle (\Delta J_1(t))^2 \rangle^{1/2} \langle (\Delta J_2(t))^2 \rangle^{1/2}}$$



What do we observe in the light intensity correlation experiment?

Answer: correlation of photocurrents!





## Emission of photoelectrons

The Hamiltonian of the detector reads

$$H = arepsilon_g |g
angle \langle g| + \sum_q arepsilon_{e,q} |e,q
angle \langle e,q| - \sum_q [\mu_{(eq),g} |e,q
angle \langle g| + ext{H.c.}] (E(t) + E^*(t))$$

The state vector is defined as:  $|\psi
angle = c_g |g
angle + \sum_q c_{e,q} |e,q
angle$ 

The Schrödinger equation for the state vector in the interaction picture

$$i\frac{d}{dt}c_{g} = -\sum_{q} \int_{0}^{\infty} d\omega \frac{\mu_{(eq),g}^{*}E^{*}(\omega)}{\hbar} e^{-i(\omega_{q}-\omega)t} c_{e,q}$$
$$i\frac{d}{dt}c_{e,q} = -\int_{0}^{\infty} d\omega \frac{\mu_{(eq),g}\tilde{E}(\omega)}{\hbar} e^{i(\omega_{q}-\omega)t} c_{g}$$

where  $\hbar\omega_q=arepsilon_{e,q}-arepsilon_g,\,\{c_g(t_0)=1,\,c_{e,q}(t_0)=0\}$ 

Apply the time-dependent perturbation theory, and compute  $c_{e,q}(t)$ ,  $(t=t_0+\Delta t)$ 

$$c_{e,q}(t) = rac{i\Delta t}{\hbar} \int \mathrm{d}\omega \mu_{(eq),g} ilde{\mathcal{E}}(\omega) e^{i(\omega_q - \omega)(t_0 + \Delta t/2)} rac{\sin\left(rac{\omega_q - \omega}{2} \Delta t
ight)}{rac{\omega_q - \omega}{2} \Delta t}$$

The total transition probability per unit time to the excited state  $((\omega-\omega')\Delta t\ll 1)$ 

$$\Pi(t) = rac{1}{\Delta t} \sum_q |c_{e,q}(t)|^2 pprox rac{1}{\Delta t} \int_0^\infty \mathrm{d}\omega_q |c_{e,q}(t)|^2 arrho(\omega_q)$$





## Emission of photoelectrons (cont.)

The probability of emitting a single photoelectron in the  $\Delta t$  interval ( $\propto$  Fermi g.r.)

$$P(1, t, t + \Delta t) = 2\pi \frac{\varrho(\omega_0)}{\hbar^2} |\mu_{(ek_0),g}|^2 \cdot I(t) \cdot \Delta t \equiv \eta I(t) \Delta t$$

where 
$$I(t)=\overline{|E(t)|^2},\, E(t)=\int \mathrm{d}\omega \tilde{E}(\omega)\exp(-i\omega t),\, k_0=\omega_0/c_0$$

If there are N effective emitters

$$P(?,t,t+\Delta t) = \sum_{1}^{N} {N \choose n} [\eta I(t)\Delta t]^{n} [1-\eta I(t)\Delta t]^{N-n} = 1-[1-\eta I(t)\Delta t]^{N}$$
$$= N\eta I(t)\Delta t - \frac{N(N-1)}{2!} [\eta I(t)\Delta t]^{2} + \dots$$

For  $\eta I(t)\Delta t \ll 1$ 

$$P(1, t, t + \Delta t) = N\eta I(t)\Delta t \equiv \eta I(t)\Delta t$$

The probability of emitting n photoelectrons in [t, t+T], assuming independent emissions, follows the Poisson distribution

$$P(n,t,t+T) = \frac{[\eta U(t,T)]^n}{n!} \exp(-\eta U(t,T))$$



with  $U(t, T) = \int_t^{t+T} d\tau I(\tau)$  the fluence



## Properties of the P(n, t, t + T) distribution



Mean number of emitted photoelectrons:

$$\langle n \rangle = \eta \int_t^{t+T} \mathrm{d} \tau \, I(\tau)$$

Mean photoelectron number from P(n, t, t + T)

$$\int_{15}^{\infty} \frac{1}{20} \langle n \rangle = \sum_{n=0}^{\infty} n P(n, t, t+T) = \eta U(t, T) = \eta \int_{t}^{t+T} d\tau I(\tau)$$

Calculating the variance of the photoelectron number

$$\langle n^2 \rangle = \sum_{n=0}^{\infty} [n(n-1) + n] P(n, t, t+T) = [\eta U(t, T)]^2 + \eta U(t, T)$$

$$\langle (n - \langle n \rangle)^2 \rangle = \langle n^2 \rangle - \langle n \rangle^2 = [\eta U(t, T)]^2 + \eta U(t, T) - [\eta U(t, T)]^2 = \eta U(t, T)$$

$$\Delta n = \sqrt{\eta U(t, T)}$$





#### Fluctuating classical fields

The quantity  $\eta U(t,T)$  is a random variable  $W \longrightarrow$  ensemble averaging is necessary

$$f(W)$$
: probability distribution 
$$\int_0^\infty f(W) dW = 1$$
 
$$P(n, t, t + T) = \left\langle \frac{W^n}{n!} \exp(-W) \right\rangle = \int dW f(W) \frac{W^n}{n!} \exp(-W)$$
 
$$\langle n \rangle = \langle W \rangle$$
 
$$\langle (n - \langle n \rangle)^2 \rangle = \langle W \rangle + \langle (\Delta W)^2 \rangle$$

For  $T \gg \tau_c$ ,  $\tau_c$  is the correlation time of I(t)

$$W = \eta \langle I \rangle T$$
, ergodic process  
 $P(n, t, t + T) = \frac{[\eta \langle I \rangle T]^n}{n!} \exp(-\eta \langle I \rangle T)$ 

For  $T \ll \tau_c$ , I(t) is nearly constant in [t, t+T]





## Fluctuating classical fields (cont.)

Example: classical thermal field

$$p(E)d^{2}E = \frac{1}{2\pi\langle I\rangle} \exp(-|E|^{2}/\langle I\rangle) dI \cdot d\varphi$$

$$P(I) = \frac{1}{\langle I\rangle} \exp(-I/\langle I\rangle)$$

$$P(n, t, t + T) = \frac{(1 + \eta\langle I\rangle T)^{n}}{(1 + \eta\langle I\rangle T)^{n+1}}$$

Boson statistics for the photoelectrons ...

Joint detection by two independent photodetectors:

$$\begin{array}{rcl} \Pi_{1}(\boldsymbol{r}_{1},t_{1})\Delta t_{1} & = & \eta_{1}I(\boldsymbol{r}_{1},t_{1})\Delta t_{1} \\ \Pi_{1}(\boldsymbol{r}_{2},t_{2})\Delta t_{2} & = & \eta_{2}I(\boldsymbol{r}_{2},t_{2})\Delta t_{2} \\ P_{\{1\}}(\boldsymbol{r}_{1},t_{1};\boldsymbol{r}_{2},t_{2})\Delta t_{1}\Delta t_{2} & = & \eta_{1}\eta_{2}I(\boldsymbol{r}_{1},t_{1})I(\boldsymbol{r}_{2},t_{2})\Delta t_{1}\Delta t_{2} \end{array}$$

For fluctuating fields

$$P_{\{1\}}(\mathbf{r}_1, t_1; \mathbf{r}_2, t_2) \Delta t_1 \Delta t_2 = \eta_1 \eta_2 \langle I(\mathbf{r}_1, t_1) I(\mathbf{r}_2, t_2) \rangle \Delta t_1 \Delta t_2$$





#### Photoelectric current fluctuation

Usually the current of the electrons of the detector is amplified  $\longrightarrow$  current pulses The current pulses are not always resolved  $\longrightarrow$  a continuous current J(t) is studied



$$J(t) = \sum_{r} s(t - t_r)$$

Let's assume that n photoelectrons are emitted in time T. In a stationary field the average current is (emission prob. =  $dt_r/T$ )

$$\langle J_{n,T}(t)\rangle_n = \sum_{r=1}^n \int_0^T s(t-t_r) \frac{\mathrm{d}t_r}{T} = \frac{1}{T} \sum_{r=1}^n \int s(t-t_r) \mathrm{d}t \approx \frac{1}{T} \sum_{r=1}^n Q = \frac{nQ}{T}$$

The average current

$$\langle J(t) \rangle = \sum_{n=0}^{\infty} P(n, t, t+T) \frac{nQ}{T} = \langle n \rangle \frac{Q}{T} = \eta \langle n \rangle Q$$





#### Photoelectric current correlation

Autocorrelation ( $T_R \ll T$ )

$$\begin{split} \langle \Delta J(t) \Delta J(t+\tau) \rangle &= \eta \langle I \rangle \int_{-\infty}^{\infty} s(t') s(t'+\tau) \mathrm{d}t' \\ &+ \eta^2 \iint_{-\infty}^{\infty} s(t') s(t'') \langle \Delta I(t) \Delta I(t+t'-t''+\tau) \rangle \mathrm{d}t' \mathrm{d}t'' \end{split}$$

For slow response photodetector ( $\tau_c \ll T_R$ )

$$\langle \Delta J(t)\Delta J(t+\tau)\rangle = \left[\eta\langle I\rangle + \eta^2\langle (\Delta I)^2\rangle \tau_c\right] \int_{-\infty}^{\infty} s(t')s(t'+\tau)dt'$$

Cross-correlation

$$\langle \Delta J_1(t) \Delta J_2(t+\tau) \rangle = \eta_1 \eta_2 \iint_{-\infty}^{\infty} \mathbf{s}(t') \mathbf{s}(t'') \langle \Delta I_1(t) \Delta I_2(t+t'-t''+\tau) \rangle dt' dt''$$

For slow response photodetector

$$\langle \Delta J_1(t) \Delta J_2(t+\tau) \rangle = \eta_1 \eta_2 \langle \Delta I_1 \Delta I_2 \rangle \tau_c \int_{-\infty}^{\infty} s(t') s(t'+\tau) dt'$$





#### Explanation of the original HBT effect

Reacall: the normalized intensity correlation between two points of the wavefront



$$C(d) = \frac{\langle \Delta J_1(t) \Delta J_2(t) \rangle}{\langle (\Delta J_1(t))^2 \rangle^{1/2} \langle (\Delta J_2(t))^2 \rangle^{1/2}}$$

The autocorrelation is given by

$$\langle (\Delta J_i(t))^2 \rangle = \eta_i \left[ \langle I_i \rangle + \eta_i \langle (\Delta I_i)^2 \rangle \tau_c \right] \int_{-\infty}^{\infty} \mathbf{s}^2(t') dt'$$

For unpolarized thermal field  $\langle (\Delta \emph{I})^2 \rangle = \frac{1}{2} \langle \emph{I} \rangle^2$ 

$$\langle (\Delta J_i(t))^2 \rangle = \eta_i \langle I_i \rangle \left[ 1 + \frac{1}{2} \eta_i \langle I_i \rangle \tau_c \right] \int_{-\infty}^{\infty} s^2(t') dt'$$

The cross cross correlation

$$\langle \Delta J_1(t) \Delta J_2(t) \rangle = \eta_1 \eta_2 \langle \Delta I_1 \Delta I_2 \rangle \tau_c \int_{-\infty}^{\infty} s^2(t') dt'$$

Using the relation  $\langle z_1^* z_1 z_2^* z_2 \rangle = \langle z_1^* z_1 \rangle \langle z_2^* z_2 \rangle + \langle z_2^* z_1 \rangle \langle z_1^* z_2 \rangle$  ( $z_i$  Gaussian)

$$\langle \Delta J_1(t)\Delta J_2(t)\rangle = \frac{1}{2}\eta_1\eta_2\langle I_1\rangle\langle I_2\rangle\tau_c|\gamma(\boldsymbol{r}_1,\boldsymbol{r}_2,0)|^2\int_{-\infty}^{\infty} s^2(t')dt'$$



## Measuring the diameter of a star



Let's measure the normalized second order current correlation:

$$C(d) = \frac{\langle \Delta J_1(t) \Delta J_2(t) \rangle}{\langle (\Delta J_1(t))^2 \rangle^{1/2} \langle (\Delta J_2(t))^2 \rangle^{1/2}} = \eta \langle I \rangle \tau_c [1 + \cos(k \, d \, \phi)]$$



$$\langle (\Delta J_i(t))^2 \rangle = \eta_i \langle I_i \rangle \left[ 1 + \frac{1}{2} \eta_i \langle I_i \rangle \tau_c \right] \int_{-\infty}^{\infty} s^2(t') dt'$$

$$\langle \Delta J_1(t) \Delta J_2(t) \rangle = \frac{1}{2} \eta_1 \eta_2 \langle \Delta I_1 \Delta I_2 \rangle \tau_c \int_{-\infty}^{\infty} s^2(t') dt'$$

In case of two wave fronts:

$$\begin{split} \langle \triangle I_{1} \triangle I_{2} \rangle &= \langle E(r_{1})^{*} E(r_{2})^{*} E(r_{1}) E(r_{2}) \rangle - \langle E(r_{1})^{*} E(r_{1}) \rangle \langle E(r_{2})^{*} E(r_{2}) \rangle \\ &= \langle [E_{k} + E_{k'}]^{*} (r_{1}) [E_{k} + E_{k'}]^{*} (r_{2}) [E_{k} + E_{k'}] (r_{2}) [E_{k} + E_{k'}] (r_{1}) \rangle \\ &- \langle [E_{k} + E_{k'}]^{*} (r_{1}) [E_{k} + E_{k'}] (r_{1}) \rangle \langle [E_{k} + E_{k'}]^{*} (r_{2}) [E_{k} + E_{k'}] (r_{2}) \rangle \\ &= 2 \left\langle |\tilde{E}_{k}|^{2} |\tilde{E}_{k'}|^{2} \right\rangle + \left\{ \left\langle \tilde{E}_{k}^{*} \tilde{E}_{k} \tilde{E}_{k'}^{*} \tilde{E}_{k'} \right\rangle e^{i(k-k')(r_{2}-r_{1})} + c.c. \right\} \\ &= 2 \left\langle I_{k} \right\rangle \langle I_{k'} \rangle \left[ 1 + \cos(k \, d \, \phi) \right] \end{split}$$





#### Second order correlation function of quantized fields

Electric field operator for 1D, polarized e.m. field

$$\widehat{E}(z) = \widehat{E}^{(+)} + \widehat{E}^{(-)} = i \sum_{k} \left[ \sqrt{\frac{\hbar}{2\omega\varepsilon_0 L}} \widehat{a} e^{ikz} + H.c. \right]$$

where  $\widehat{E}^{(+)} \sim E(t)$  classical

Intensity : 
$$I = \langle \widehat{E}^{(-)}(\mathbf{r})\widehat{E}^{(+)}(\mathbf{r})\rangle$$

Second order correlation function:

$$G^{(2)} = \langle : \widehat{E}^{(-)}(\mathbf{r}_1) E^{(+)}(\mathbf{r}_1) \widehat{E}^{(-)}(\mathbf{r}_2) \widehat{E}^{(+)}(\mathbf{r}_2) : \rangle \equiv \langle \widehat{E}^{(-)}(\mathbf{r}_1) E^{(-)}(\mathbf{r}_2) \widehat{E}^{(+)}(\mathbf{r}_2) \widehat{E}^{(+)}(\mathbf{r}_1) \rangle$$

where  $[: \hat{a}^{\dagger} \hat{a} \hat{a}^{\dagger} \hat{a} :] = \hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a} \hat{a}$ 

Stellar interferometer: assume 
$$\langle \widehat{n}_k \rangle = \langle \widehat{n}_{k'} \rangle \equiv \langle \widehat{n} \rangle$$
, furthermore  $\langle \widehat{n}_k^2 \rangle = \langle \widehat{n}_{k'}^2 \rangle \equiv \langle \widehat{n}^2 \rangle$ 

$$G^{(2)} = 2\mathcal{E}^4 \left( \langle \widehat{n}^2 \rangle - \langle \widehat{n} \rangle + \langle \widehat{n} \rangle^2 \left\{ 1 + \cos[(\mathbf{k} - \mathbf{k}')(\mathbf{r}_1 - \mathbf{r}_2)] \right\} \right)$$

thermal 
$$2n^2 + n^2(1+\chi)$$
  $2n^2$   $4n^2$  laser  $n^2 + n^2(1+\chi)$   $n^2$   $3n^2$  single photon  $1+\chi$  0 2



where  $n = \langle \hat{n} \rangle$ ,  $\chi = \cos[(\mathbf{k} - \mathbf{k}')(\mathbf{r}_1 - \mathbf{r}_2)]$ 



## Observation of correlations through photon counting

#### Counting rates



Correlation between photo-counts (mode *V* is in vacuum)

$$g_{T,R}^{(2)}(\tau) = \frac{\langle : \widehat{I}_{T}(0)\widehat{I}_{R}(\tau) : \rangle}{\langle \widehat{I}_{T}(0) \rangle \langle \widehat{I}_{R}(\tau) \rangle}, \qquad g_{T,R}^{(2)}(0) = \frac{\langle \widehat{a}_{T}^{\dagger} \widehat{a}_{R}^{\dagger} \widehat{a}_{T} \widehat{a}_{R} \rangle}{\langle \widehat{a}_{T}^{\dagger} \widehat{a}_{T} \rangle \langle \widehat{a}_{R}^{\dagger} \widehat{a}_{R} \rangle} = \frac{\langle \widehat{n}_{I}(\widehat{n}_{I} - 1) \rangle}{\langle \widehat{n}_{I} \rangle^{2}}$$

where

$$\widehat{a}_R = \frac{\widehat{a}_I + \widehat{a}_V}{\sqrt{2}}, \qquad \widehat{a}_T = \frac{\widehat{a}_I - \widehat{a}_V}{\sqrt{2}}$$





## Some measurements (by Krisztián Lengyel)

The probabilty distribution P(n, t, t + T) for laser light



here  $T=5\mu s$ , detector pulse length  $\approx$  18ns, detector dead time  $\approx$  40ns, sampling time bin = 400ps



## Some measurements (cont.)

Hanbury Brown-Twiss effect from photon counting



## Some measurements (cont.)

There are no quantum effects here





## Roy J. Glauber: the quantum theory of optical coherence

Coherent states

$$|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{n!} |n\rangle \,, \qquad \langle \alpha |\beta\rangle = e^{-|\alpha|^2/2 - |\beta|^2/2 - \alpha^*\beta} \,, \quad \text{non-orthogonal}$$

Completeness:  $\hat{I} = \frac{1}{\pi} \iint d^2\alpha |\alpha\rangle\langle\alpha| \longrightarrow \text{good to expand the quantum state of light}$ 

Glauber-Sudarshan  $P(\alpha)$  representation:  $\widehat{\varrho} = \iint d^2 \alpha P(\alpha) |\alpha\rangle\langle\alpha|$ 

|           | source type              | $P(\alpha)$                                                                                                            |
|-----------|--------------------------|------------------------------------------------------------------------------------------------------------------------|
| Examples: | laser light $eta$        | $\delta(\alpha-eta)$                                                                                                   |
|           | thermal light            | $\prod_{m{k},s} rac{1}{\pi \langle \widehat{n}_{m{k},s}  angle} m{e}^{- lpha ^2/\langle \widehat{n}_{m{k},s}  angle}$ |
|           | number state $ n\rangle$ | $\frac{n!}{2\pi r(2n)!}e^{r^2}\left(-\frac{\partial}{\partial r}\right)^{2n}\delta(r)$                                 |

Higher order correlation function for electromagnetic fields

$$G_{\mu_1...\mu_{2n}}^{(n)}(x_1...x_n,x_{n+1}...x_{2n}) = \operatorname{Tr}\{\widehat{\varrho}\widehat{E}_{\mu_1}^{(-)}(x_1)...\widehat{E}_{\mu_n}^{(-)}(x_n)\widehat{E}_{\mu_{n+1}}^{(+)}(x_{n+1})...\widehat{E}_{\mu_{2n}}^{(+)}(x_{2n})\}$$

#### Table of contents

First- and second-order coherence of light

Classical interference of light

The Hanbury Brown – Twiss experiments

Roy J. Glauber: the quantum theory of optical coherence

#### **Applications**

Experimental test of the Bell's inequality
Quantum state reconstruction of light
Continuous variable quantum key distribution





#### The Hong-Ou-Mandel interferometer

#### Interference of single-photon wave packets





- Two photons impinge at the two imputs of the beam splitter: |1<sub>a</sub>, 1<sub>b</sub>>
- Passing the beam splitter (R = T = 50%) the photons "stick together":

$$|\psi_{
m out}
angle = rac{i}{\sqrt{2}}(|2_A,0_B
angle + |0_A,2_B
angle)$$

The coincidence tends to zero if the two photons arrive at the same time to the beam splitter.





## Design of single photon wave packets



- Single photons source with an atom trapped inside a cavity: the atom is periodically excited (T = 3  $\mu$ s), to get a stream of photons
- $G^{(2)} = \langle P_{\rm D1}(t) P_{\rm D2}(t-\tau) \rangle$  is measured in a HBT setup to prove the single photon state
- ► A Hong-Ou-Mandel interferometer is used to test the overlap between the wigner photon wave packets.

#### Experimental test of the Bell's inequality

Einstein's locality: the outcome of a measurement cannot depend on parameters controlled by faraway agents.

Two observers test the polarization of photons emitted in an SPS cascade.

Observer A measures  $\alpha$ ,  $\gamma$  polarizations, the outcome  $\pm 1$ .

Observer B measures  $\beta$ ,  $\delta$  polarizations, the outcome  $\pm 1$ .



If local hidden variables exist (Clauser, Horne, Shimony, Holt)

$$a_jb_j+b_jc_j+c_jd_j-d_ja_j\equiv\pm2$$

After averaging

$$|\cos 2(\alpha-\beta)+\cos 2(\beta-\gamma)+\cos 2(\gamma-\delta)-\cos 2(\delta-\alpha)|\leq 2$$

4□ > 4回 > 4 豆 > 4 豆 > 豆 めので

QM says: lhs =  $2\sqrt{2}$ , agrees with the measurement

## Quantum state reconstruction of light

Quantum state reconstruction: find the density operator  $\widehat{\varrho}$  ... or something equivalent Quasiprobability distributions:

- ▶ Glauber-Sudarshan  $P(\alpha)$  representation : not good, it's an ugly distribution
- ▶ Wigner's function,  $W(q,p) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp(ipx) \langle q x/2 | \widehat{\varrho} | q + x/2 \rangle dx$
- ▶ The  $Q(\alpha)$  function :  $Q(\alpha) = \langle \alpha | \widehat{\varrho} | \alpha \rangle$



How to reconstruct the phase space distributions?

Measure the quadrature distributions:

$$\widehat{q}_{ heta} = \widehat{q}\cos heta + \widehat{p}\sin heta$$

From the marginal distributions  $pr(q, \theta)$  a quasiprobability distribution between W and Q can be reconstructed.





## Homodyne detection for measuring $pr(q, \theta)$



There are two fields: 1. signal; 2. the local oscillator

Very important: they are phase locked

Beam splitter mixing:

$$\hat{a}'_1 = \frac{\hat{a} + \alpha_{LO}}{\sqrt{2}}$$

$$\hat{a}'_2 = \frac{\hat{a} - \alpha_{LO}}{\sqrt{2}}$$

Measure the intensity at the output ports:

$$\widehat{\textit{I}}_{1} = \frac{1}{2}\{\langle \widehat{\textit{a}}^{\dagger}\widehat{\textit{a}}\rangle + |\alpha_{\text{LO}}|^{2} + |\alpha_{\text{LO}}|(\widehat{\textit{a}}\textit{e}^{-\textit{i}\theta} + \widehat{\textit{a}}^{\dagger}\textit{e}^{\textit{i}\theta})\}\,,\,\, \widehat{\textit{I}}_{2} = \frac{1}{2}\{\langle \widehat{\textit{a}}^{\dagger}\widehat{\textit{a}}\rangle + |\alpha_{\text{LO}}|^{2} - |\alpha_{\text{LO}}|(\widehat{\textit{a}}\textit{e}^{-\textit{i}\theta} + \widehat{\textit{a}}^{\dagger}\textit{e}^{\textit{i}\theta})\}\,,\,\, \widehat{\textit{L}}_{3} = \frac{1}{2}\{\langle \widehat{\textit{a}}^{\dagger}\widehat{\textit{a}}\rangle + |\alpha_{\text{LO}}|^{2} - |\alpha_{\text{LO}}|(\widehat{\textit{a}}\textit{e}^{-\textit{i}\theta} + \widehat{\textit{a}}^{\dagger}\textit{e}^{\textit{i}\theta})\}\}$$

Record the difference

$$\widehat{l}_1 - \widehat{l}_2 = |lpha_{ ext{LO}}|(\widehat{a}e^{-i heta} + \widehat{a}^{\dagger}e^{i heta}) pprox \widehat{q}_{ heta}$$





## Continuous variable quantum key distribution







## Thank you for your attention



