Elektrosztatika példák - Végtelen hosszú egyenes fonál elektromos tere 2.

A Fizipedia wikiből
Navigáció Pt·1·2·3
Kísérleti fizika gyakorlat 2.
Gyakorlatok listája:
  1. Erőhatások elektromos erőtérben, elektromos térerősség
  2. Elektromos potenciál
  3. Dielektrikumok, Gauss-tétel. Kapacitás, kondenzátorok
  4. Kapacitás, kondenzátorok. Elrendezések energiája
  5. Vezetőképesség, áramsűrűség
  6. Biot-Savart törvény, gerjesztési törvény
  7. Erőhatások mágneses térben
  8. Mágneses térerősség. Kölcsönös és öninduktivitás
  9. Az indukció törvénye, mozgási indukció
  10. Mágneses tér energiája. Váltakozó áram, eltolási áram
Elektrosztatika - Erőhatások elektromos erőtérben, elektromos térerősség
Feladatok listája:
  1. Négyszög sarkaiba helyezett ponttöltések elektromos tere
  2. Két töltést összekötő egyenes mentén az elektromos tér
  3. Körvezető tengelye mentén az elektromos tér
  4. Egyenletesen töltött körlap tengelye mentén az elektromos tér
  5. Végtelen hosszú egyenes fonál elektromos tere 1.
  6. Végtelen hosszú egyenes fonál elektromos tere 2.
  7. Végtelen sík elektromos tere
  8. Két, egymásra merőleges végtelen sík elektromos tere
  9. Homogén térfogati töltéssűrűségű töltött gömb elektromos tere
  10. Földelt gömbhéjjal koncentrikusan körülvett egyenletesen töltött gömb elektromos tere
  11. Egyenletesen töltött gömbben lévő, gömb alakú üreg elektromos tere
  12. Végtelen hosszú egyenes fonálpár elektromos tere
  13. Az elektromos térerősség helyfüggő lineáris töltéssűrűségű szigetelő gyűrű tengelye mentén
  14. Vezető gömbhéjjal koncentrikusan körülvett egyenletesen töltött gömb elektromos tere
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Feladat

  1. Végtelen hosszú egyenes fonálon a lineáris töltéssűrűség \setbox0\hbox{$\lambda$}% \message{//depth:\the\dp0//}% \box0%. Határozzuk meg a térerősséget a fonáltól \setbox0\hbox{$r$}% \message{//depth:\the\dp0//}% \box0% távolságra a Gauss-tétel segítségével!

Megoldás


KFGY2-1-6uj2.png

A fonalat vegyük körbe egy \setbox0\hbox{$L$}% \message{//depth:\the\dp0//}% \box0% hosszúságú, \setbox0\hbox{$r$}% \message{//depth:\the\dp0//}% \box0% sugarú hengerrel, és írjuk fel erre a Gauss-tételt:

\[\iint\vec{E}\cdot\vec{dA} = \frac{1}{\epsilon_{0}}\iiint\rho\cdot dV\]

A rendszer hengerszimmetriája miatt az elektromos tér mindenütt merőleges a vonaltöltésre, továbbá feltételezhetjük, hogy a vonaltöltéstől adott \setbox0\hbox{$r$}% \message{//depth:\the\dp0//}% \box0% távolságra elhelyezkedő pontokban a térerősség nagysága állandó. A Gauss törvényben szereplő térerősség henger felületre vett integrálja tehát a következőképp egyszerűsíthető:

-A térerősségnek sehol sincs a henger alapjaira merőleges komponense, így a henger alapjaira vett felületi integrál zérus.

-A henger palástján a térerősség mindenütt merőleges a felületre, abból kifelé mutat, így a felületre vett integrálban szereplő skalárszorzat helyettesíthető a vektorok abszolút értékének szorzatával:

\[\vec{E}\vec{dA}=EdA\]

-Mivel a térerősség nagysága a hengerpaláston mindenütt állandó, az integrálást helyettesíthetjük a teljes felület és a konstans térerősség szorzatával:

\[ \int \int EdA=EA\]

Ezek alapján az egyszerűsített Gauss törvény:

\[ E2r\pi L = \frac{\lambda\cdot L}{\epsilon_{0}}\]

Ahol \setbox0\hbox{$\lambda L$}% \message{//depth:\the\dp0//}% \box0% a felület által bezárt töltés. Kifejezve a térerősséget:


\[E= \frac{\lambda}{2\cdot r\cdot\epsilon_{0}\cdot\pi}\]

Megjegyzés: Az eredményt érdemes összevetni az előző feladat megoldásával, ahol a Gauss törvény helyett a Coulomb törvényt és a szuperpozíció elvét alkalmazva számoltuk ki a vonaltöltés terét. Láthatjuk, hogy a Gauss törvény alkalmazása jelentősen egyszerűsíti a számolást, ehhez azonban alaposan ki kellett használnunk a rendszer szimmetriáit. Ha a vizsgált töltéselrendezés sérti a fent kihasznált szimmetriákat, a Gauss törvény ilyen formában nem használható. Így például a véges hosszúságú vonaltöltés terének meghatározásakor célravezetőbb az előző példában alkalmazott integrál kiszámítása.