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• Why did Einstein take seven years to go from special relativity to general14

relativity?15

• Why are so many different kinds of flat maps used to plot Earth’s curved16

surface?17

• Why use coordinates at all? Why not just measure distances directly, say18

with a ruler?19

• Why does the spacetime metric use differentials?20

• Are Schwarzschild global coordinates the only way to describe spacetime21

around a black hole?22
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C H A P T E R

5 Global and Local Metrics23

Edmund Bertschinger & Edwin F. Taylor *

The basic demand of the special theory of relativity24

(invariance of the laws under Lorentz-transformations) is too25

narrow, i.e., that an invariance of the laws must be postulated26

relative to nonlinear transformations for the co-ordinates in27

the four-dimensional continuum.28

This happened in 1908. Why were another seven years29

required for the construction of the general theory of relativity?30

The main reason lies in the fact that it is not so easy31

to free oneself from the idea that coordinates must32

have an immediate metrical meaning.33

—Albert Einstein [boldface added]34

5.1 EINSTEIN’S PERPLEXITY35

Why seven years between special relativity and general relativity?36

It took Albert Einstein seven years to solve the puzzle compressed into theEinstein’s
seven-year
puzzle

37

two-paragraph quotation above. The first paragraph complains that special38

relativity (with its restriction to flat spacetime coordinates) is too narrow.39

Einstein demands that a nonlinear coordinate system—that is, one that is40

arbitrarily stretched—should also be legal. Nonlinear means that it can be41

stretched by different amounts in different locations.42

In the second paragraph, Einstein explains his seven-year problem: He43

tried to apply to a stretched coordinate system the same rules used in special44

relativity. Einstein’s phrase immediate metrical meaning describes somethingStretch
coordinates
arbitrarily.

45

that can be measured directly—for example, the radar-measured distance46

between the top of the Eiffel Tower and the Paris Opera building. Einstein47

says that since we can use nonlinear stretched coordinates, these coordinate48

separations need not be something we can measure directly, for example with49

a ruler.50

*Draft of Second Edition of Exploring Black Holes: Introduction to General Relativity
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FIGURE 1 Compare distances between two different pairs of points on a flat wooden
cutting board. First measure with a ruler the distance between the pair of points P and Q. Then
measure the distance between the pair of points R and S. Measured distance PQ is smaller
than the measured distance RS. We require no coordinate system whatsoever to verify this
inequality; we measure distances directly on a flat surface.

What is the relation between the coordinate separations between two51

points and the directly-measured distance between those two points? HowSolving Einstein’s
puzzle leads to
the global metric.

52

does this distinction affect predictions of special and general relativity?53

Answering these questions reveals the unmeasurable nature of global54

coordinate separations, but nevertheless the central role of the global metric in55

connecting different local inertial frames in which we carry out measurements.56

5.2 EINSTEIN’S PERPLEXITY ON A WOODEN CUTTING BOARD57

Move beyond high school geometry and trigonometry!58

We transfer Einstein’s puzzle from spacetime to space and—to simplifySimplify: From curved
spacetime to a flat
cutting board.

59

further—measure the distance between two points on the flat surface of a60

wooden cutting board (Figure 1).61

A pair of points, P and Q, lie near to one another on the surface. A second62

pair of points, R and S, are farther apart than points P and Q. How do we63

know that distance RS is greater than distance PQ? We measure the twoMeasure distance
directly, with
a ruler.

64

distances directly, with a ruler. To ensure accuracy, we borrow a ruler from the65

local branch of the National Institute of Standards and Technology. Sure66

enough, with our official centimeter-scale ruler we verify distance RS to be67

greater than distance PQ. We do not need any coordinate system whatsoever68

to measure distance PQ or distance RS or to compare these distances on a flat69

surface.70

Next, apply coordinates to the flat surface. Do not draw coordinate lines71

directly on the cutting board; instead spread a fishnet over it (Figure 2). WhenDifference in
Cartesian coordinates
verifies difference
in distances.

72

we first lay down the fishnet, its narrow strings look like Cartesian square73

coordinate lines. Adjacent strings are one centimeter apart. The x-coordinate74

separation between P and Q is 1 centimeter, and the x-coordinate separation75
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FIGURE 2 A fishnet with one-centimeter separations covers the wooden cutting board.
Expressed in these coordinates, the coordinate separation PQ is 1 centimeter, while the
coordinate separation RS is 4 centimeters. In this case a coordinate separation does have
“an immediate metrical meaning” in Einstein’s phrase. Interpretation: In this case we can derive
from coordinate separations the values of directly-measured distances.

between R and S is 4 centimeters, confirming the inequality in our direct76

distance measurements. In this case each difference (or separation) in77

Cartesian coordinates, PQ and RS, does have “an immediate metrical78

meaning;” in other words, it corresponds to the directly-measured distance.79

Moving ahead, suppose that instead of string, we make the fishnet out ofStretch fishnet by
variable amounts
in x-direction.

80

rubber bands. As we lay the rubber band fishnet loosely on the cutting board,81

we do something apparently screwy: As we tack down the fishnet, we stretch it82

along the x-direction by different amounts at different horizontal positions.83

Figure 3 shows the resulting “stretch” coordinates along the x-direction.84

Now check the x-coordinate difference between P and Q in Figure 3, a“Stretch” coordinate
separation not equal
to measured distance.

85

difference that we call ∆xPQ. Then ∆xPQ = 5− 2 = 3. Compare this with the86

x-coordinate separation between R and S: ∆xRS = 10− 9 = 1. Lo and behold,87

the coordinate separation ∆xPQ is greater than the coordinate separation88

∆xRS, even though our directly-measured distance PQ is less than the89

distance RS. This contradiction is the simplest example we can find of the90

great truth that Einstein grasped after seven years of struggle: coordinate91

separations need not be directly measurable.92

“No fair!” you shout. “You can’t just move coordinate lines aroundStretch coordinates
form a legal map.

93

arbitrarily like that.” Oh yes we can. Who is to prevent us? Any coordinate94

system constitutes a map. What is a map? Applied to our cutting board, a95

map is simply a rule for assigning numbers that uniquely specify the location96

of every individual point on the surface. Our coordinate system in Figure 397

does that job nicely; it is a legal and legitimate map. However, the amount of98

stretching—what we call the map scale—varies along the x-direction.99
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FIGURE 3 Global coordinate system that covers our entire cutting board, but in this case
made with a rubber fishnet tacked down so as to stretch the x separation of fishnet cords by
different amounts at different locations along the horizontal direction. The coordinate separation
∆xPQ = 3 between points P and Q is greater than the coordinate separation ∆xRS = 1
between points R and S, even though the measured distances between each of these pairs
show the reverse inequality. Einstein was right: In this case coordinate separations do not have
“an immediate metrical meaning;” in other words, coordinate separations do not tell us the
values of directly-measured distances.

Of course, for convenience we usually choose the map scale to be100

everywhere uniform, as displayed in Figure 2. This choice is perfectly legal. We101

call this legality of Cartesian coordinates Assertion 1:102

Assertion 1. ON A FLAT SURFACE IN SPACE, we CAN FIND a globalAssertion 1 for a
FLAT SURFACE:
CAN draw map with
everywhere-uniform
map scale.

103

coordinate system such that every coordinate separation IS a104

directly-measured distance.105

Standard Cartesian (x, y) coordinates allow us to use the power of the106

Pythagorean Theorem to predict the directly-measured distance s between two107

points anywhere on the board in Figure 2:108

∆s2 = ∆x2 + ∆y2 (flat surface: Choose Cartesian coordinates.) (1)

The coordinate separations ∆x and ∆y and the resulting measured distanceCartesian separations:
Pythagoras works!

109

∆s can be as small or as large as we want, as long as the map scale is uniform110

everywhere on the flat cutting board.111

In contrast, we cannot apply the Pythagorean Theorem using the112

“stretch” coordinates in Figure 3 to find the distance between a pair of points113

that are far apart in the x-direction. Why not? Because a large separation114

between two points can span regions where the map scale varies noticeably,115

that is, where rubber bands stretch by substantially different amounts. For116

example in Figure 3, the x-coordinate separation between points Q and S on117
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the flat surface is ∆xQS = 5, whereas points P and S have a much greaterStretch coordinates:
Pythagoras fails
on a flat surface.

118

x-coordinate separation: ∆xPS = 8. This is true even though the119

directly-measured distance between P and S is only slightly greater than the120

directly-measured distance between Q and S.121

Stretched-fishnet coordinates of Figure 3, provide a case in which the122

Pythagorean Theorem (1) gives incorrect answers—coordinate separations are123

not the same as directly-measured distances. This yields Assertion 2, an124

alternative to Assertion 1:125

Assertion 2. ON A FLAT SURFACE IN SPACE, we are FREE TO CHOOSE aAssertion 2 for a
FLAT SURFACE:
We are FREE to
choose variable
map scale over
the surface.

126

global coordinate system for which coordinate separations ARE NOT127

directly-measured distances.128

5.3 GLOBAL SPACE METRIC FOR A FLAT SURFACE129

Space metric to the rescue.130

Einstein tells us that we are free to stretch or contract conventional (in this131

case Cartesian) coordinates in any way we want. But if we do, then the132

resulting coordinate separations lose their “immediate metrical meaning;” thatHow can we predict
measured distances
using arbitrary
coordinates?
Answer: The metric!

133

is, a coordinate separation between a pair of points no longer predicts the134

distance we measure between these points. If the coordinate separation can no135

longer tell us the distance between two points, what can? Our simple question136

about space on a flat cutting board is a preview of the far more profound137

question about spacetime with which Einstein struggled: How can we predict138

the measured wristwatch time τ or the measured ruler distance σ between a139

pair of events using the differences in arbitrary global coordinates between140

them? The answer was a breakthrough: “The metric!” Here’s the path to that141

answer, starting with our little cutting board.142

Begin by recognizing that very close to any point on the flat surface the143

coordinate scale is nearly uniform, with a multiplying factor (local map scale)Space metric
gives differential ds
from differentials
dx and dy.

144

to correct for the local stretching in the x-coordinate. Strictly speaking, the145

coordinate scale is uniform only vanishingly close to a given point. Vanishingly146

close? That phrase instructs us to use the vanishingly small calculus limit:147

differential coordinate separations. For the coordinates of Figure 3, we find the148

differential distance ds from a global space metric of the form:149

ds2 = F (xstretch)dx2
stretch + dy2

stretch (variable x-stretch) (2)

To repeat, we use the word global to emphasize that x is a valid coordinate150

everywhere across our cutting board covered by the stretched fishnet. In (2),151

F (x)—actually the square root of F (x)—is the map scale that corrects for the152

stretch in the horizontal coordinate differentially close to that value of x. If153

F (x) is defined everywhere on the cutting board, however, then equation (2) is154

also valid at every point on the board.155



March 17, 2016 09:38 GlobalLocalMetrics160317v1 Sheet number 7 Page number 5-6 AW Physics Macros

5-6 Chapter 5 Global and Local Metrics

The global space metric is a tremendous achievement. On the right side ofMetric works well
LOCALLY, even
with stretched
coordinates.

156

metric (2) the function F (x) corrects the squared differential dx2
stretch to give157

the correct squared differential distance ds2 on the left side.158

We have gained a solution to Einstein’s puzzle for the simplified case of159

differential separations on a flat surface in space. But we seem to have suffered160

a great loss as well: calculus insists that the differential distance ds predicted161

by the space metric is vanishingly small. We cannot use our officialDifferential distance
ds is too small
to measure. . .

162

centimeter-scale ruler to measure a vanishingly small differential distance. How163

can we possibly predict a measured distance—for example the distance164

between points P and S on our flat cutting board? We want to predict and165

then make real measurements on real flat surfaces!166

Differential calculus curses us with its stingy differential separations ds,167

but integral calculus rescues us. We can sum (“integrate”) differential. . . but we can predict
measured distance
from summed
(integrated) ds.

168

distances ds along the curve. The result is a predicted total distance along the169

curved path, a prediction that we can verify with a tape measure. As a special170

case, let’s predict the distance s along the straight horizontal x-axis from point171

P to point S in Figure 3. Call this distance sPS. “Horizontal” means no172

vertical, so that dy = 0 in equation (2). The distance sPS is then the sum173

(integral) of ds = [F (x)]
1/2

dx from x = 2 to x = 10, where the scale function174

[F (x)]
1/2

varies with the value of x:175

sPS =

x=10∫
x=2

[F (xstretch)]
1/2

dxstretch (horizontal distance: P to S) (3)

When we evaluate this integral, we can once again use our official176

centimeter-scale ruler to verify by direct measurement that the total distance177

sPS between points P and S predicted by (3) is correct.178

The example of metric (2) leads to our third important assertion:179

Assertion 3. ON A FLAT SURFACE IN SPACE when using a globalAssertion 3 for a
FLAT SURFACE:
Metric gives us ds,
whose integral predicts
measured distance s.

180

coordinate system for which coordinate separations ARE NOT181

directly-measured distances, a space metric is REQUIRED to give the182

differential distance ds whose integrated value predicts the measured183

distance s between points.184

5.4 GLOBAL SPACE METRIC FOR A CURVED SURFACE185

Squash a spherical map of Earth’s surface onto a flat table? Good luck!186

In Sections 5.2 and 5.3, we chose variably-stretched coordinates on a flat187

surface. Then we corrected the effects of the variable stretching using a metric.188

This is a cute mathematical trick, but who cares? We are not forced to use189

stretched coordinates on a flat cutting board, so why bother with them at all?190

To answer these questions, apply our ideas about maps to the curved surface191

of Earth. Chapter 2 derived a global metric—equation (3), Section 2.3—for192

the spherical surface of Earth using angular coordinates λ for latitude and φ193
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for longitude, along with Earth’s radius R. Here we convert that global metric194

to coordinates x and y:195

ds2 = R2 cos2 λ dφ2 +R2dλ2 (0 ≤ φ < 2π and − π/2 ≤ λ ≤ π/2) (4)

= cos2

(
Rλ

R

)
(Rdφ)2 + (Rdλ)2 (metric : Earth′s surface)

= cos2
( y
R

)
dx2 + dy2 (0 ≤ x < 2πR and − πR/2 ≤ y ≤ πR/2)

On a sphere, we define y ≡ Rλ and x ≡ Rφ (the latter from the definition of196

radian measure).197

Compare the third line of (4) with equation (2). The y-dependent198

coefficient of dx2 results from the fact that as you move north or south fromUndistorted flat
maps of Earth
impossible.

199

the equator, lines of longitude converge toward a single point at each pole.200

That coefficient of dx2 makes it impossible to cover Earth’s spherical surface201

with a flat Cartesian map without stretching or compressing the map at some202

locations.203

Throughout history, mapmakers have struggled to create a variety of flat204

projections of Earth’s spherical surface for one purpose or another. But each205

projection has some distortion. No uniform projection of Earth’s surface can206

be laid on a flat surface without stretching or compression in some locations. If207

this is impossible for a spherical Earth with its single radius of curvature, it is208

certainly impossible for a general curved surface—such as a potato—withA curved surface
forces us to use
stretched coordinates.

209

different radii of curvature in different locations. In brief, it is impossible to210

completely cover a curved surface with a single Cartesian coordinate system.211

(Is a cylindrical surface curved? No; technically it is a flat surface, like a212

rolled-up newspaper, which Cartesian coordinates can map exactly.) We213

bypass formal proof and state the conclusion:214

Assertion 4. ON A CURVED SURFACE IN SPACE, it is IMPOSSIBLE to find aAssertion 4 for a
CURVED SURFACE:
Everywhere-uniform
map scale is
IMPOSSIBLE.

215

global coordinate system for which coordinate separations EVERYWHERE216

on the surface are directly-measured distances.217

The dy on the third line of equation (4) is still a directly-measured218

distance: the differential distance northward from the equator. That is true for219

a sphere, whose constant R-value allows us to define y ≡ Rλ. But Earth is not220

a perfect sphere; rotation on its axis results in a slightly-bulging equator.221

Technically the Earth is an oblate spheroid, like a squashed balloon. In that222

case neither x or y coordinate separations are directly-measured distances.223

And most curved surfaces are more complex than the squashed balloon.224

Einstein was right: In most cases coordinate separations cannot be225

directly-measurable distances.226

No possible uniform map scale over the entire surface of Earth? ThenMetric required
on curved surface.

227

there is an inevitable distinction between a coordinate separation and228

measured distance. The space metric is no longer just an option, but has229

become the indispensable practical tool for predicting distances between two230

points from their coordinate separations.231
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Assertion 5. ON A CURVED SURFACE IN SPACE, a global space metric isAssertion 5 for a
CURVED SURFACE:
Metric REQUIRED
to calculate distance.

232

REQUIRED to calculate the differential distance ds between a pair of233

adjacent points from their differential coordinate separations.234

As before, integrating the differential ds yields a measured total distance s235

along a path on the curved surface, whose predicted length we can verify236

directly with a tape measure.237

SPACE SUMMARY: On a flat surface in space we can choose238

Cartesian coordinates, so that the Pythagorean theorem—with no239

differentials—correctly predicts the distance s between two points240

far from one another. On a curved surface we cannot. But on any241

curved surface we can use a space metric to calculate ds between aSpace
summary

242

pair of adjacent points from values of the differential coordinate243

separations between them. Then we can integrate these differentials244

ds along a given path in space to predict the directly-measured245

length s along that path.246

The combination of global coordinates plus the global metric is even more247

powerful than our summary implies. Taken together, the two describe a curved248

surface completely. In principle we can use the global coordinates plus the249

metric to reconstruct the curved surface exactly. (Strictly speaking, the global“Connectedness”
= topology.

250

coordinate system must include information about ranges of its coordinates,251

ranges that describe its “connectedness”—technical name: its topology.)252

5.5 GLOBAL SPACETIME METRIC253

Visit a neutron star with wristwatch, tape measure—and metric—in your back pocket.254

255

What does all this curved-surface-in-space talk have to do with Einstein’s256

perplexity during his journey from special relativity to general relativity? As257

usual, we express the answer as an analogy between a curved surface in space258

and a curved region of spacetime. Spacetime around a black hole multiplies theTo distorted space
add warped t.
Result? Trouble
for Einstein!

259

complications of the curved surface: not only is space distorted compared with260

its Euclidean description but the fourth dimension, the t-coordinate, is warped261

as well. All this complicates our new task, which is to predict our measurement262

of ruler distance σ or wristwatch time τ between a pair of events in spacetime.263

Here we simply state, for flat and curved regions of spacetime, five264

assertions similar to those stated earlier for flat and curved surfaces in space.265

Assertion A. IN A FLAT REGION OF SPACETIME, we CAN FIND a globalAssertion A for
FLAT SPACETIME:
Everywhere-uniform
map scale possible.

266

coordinate system in which every coordinate separation IS a267

directly-measured quantity.268

In Chapter 1 we introduced a pair of expressions for flat spacetime called the269

interval, similar to the Pythagorean Theorem for a flat surface. One form of270

the interval predicts the wristwatch time τ between two events with a timelike271
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relation. The second form tells us the ruler distance σ between two events with272

a spacelike relation:273

∆τ2
lab = ∆t2lab −∆s2

lab (flat spacetime, timelike-related events) (5)

∆σ2 = ∆s2
lab −∆t2lab (flat spacetime, spacelike-related events)

In flat spacetime, each space coordinate separation ∆slab and time coordinate274

separation ∆tlab measured in the laboratory frame can be as small or as great275

as we want. On to our second assertion:276

Assertion B. IN A FLAT REGION OF SPACETIME we are FREE TO CHOOSEAssertion B for
FLAT SPACETIME:
We are free to choose
a variable map scale
over the region.

277

a global coordinate system in which coordinate separations278

ARE NOT directly-measured quantities.279

In this case we can choose not only stretched space coordinates but also a280

system of scattered clocks that run at different rates. If we choose such a281

“stretched” (but perfectly legal) global spacetime coordinate system, the282

interval equations (5) are no longer valid, because any of these coordinate283

separations may span regions of varying spacetime map scales. So we again284

retreat to a differential version of this equation, adding coefficients similar to285

that of space metric (2). A simple timelike metric might have the general form:286

dτ2 = J(t, y, x)dt2 −K(t, y, x)dy2 − L(t, y, x)dx2 (6)

Here each of the coefficient functions J , K, and L may vary with x, y, and t.Spacetime metric
delivers dτ from
differentials dt,
dy, and dx.

287

(The coefficient functions are not entirely arbitrary: the condition of flatness288

imposes differential relations between them, which we do not state here.)289

Given such a metric for flat spacetime, we are free to use this metric to290

convert differentials of global coordinates (right side of the metric) to291

measured quantities (left side of the metric). This leads to our third assertion:292

Assertion C. IN A FLAT REGION OF SPACETIME, when we choose a globalAssertion C for
FLAT SPACETIME:
Variable map scale
requires metric
to calculate
dτ or dσ.

293

coordinate system in which coordinate separations are not294

directly-measured quantities, then a global spacetime metric is REQUIRED295

to calculate the differential interval, dτ or dσ, between two adjacent events296

using their differential global coordinate separations.297

On the other hand, in a region of curved spacetime—analogous to the298

situation on a curved surface in space—we cannot set up a global coordinate299

system with the same map scale everywhere in the region.Assertion D for
CURVED
SPACETIME:
Everywhere-uniform
map scale is
IMPOSSIBLE.

300

Assertion D. IN A CURVED REGION OF SPACETIME it is IMPOSSIBLE to301

find a global coordinate system in which coordinate separations302

EVERYWHERE in the region are directly-measured quantities.303

Assertion E. IN A CURVED REGION OF SPACETIME, a global spacetime304

metric is REQUIRED to calculate the differential interval, dτ or dσ, betweenAssertion E for
CURVED
SPACETIME:
Metric REQUIRED
to calculate
dτ or dσ.

305

a pair of adjacent events from their differential global coordinate306

separations.307
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SPACETIME SUMMARY: In flat spacetime we can choose308

coordinates such that the spacetime interval—with no309

differentials—correctly predicts the wristwatch time (or the ruler310

distance) between two events far from one another. In curved311

spacetime we cannot. But in curved spacetime we can use aSpacetime
summary

312

spacetime metric to calculate dτ or dσ between adjacent events313

from the values of the differential coordinate separations between314

them. Then we can integrate dτ along the worldline of a particle,315

for example, to predict the directly-measured time lapse τ on a316

wristwatch that moves along that worldline.317

As in the case of the curved surface, a complete description of a spacetime318

region results from the combination of global spacetime coordinates and global319

metric—along with the connectedness (topology) of that region. For example,“Connectedness”
= topology.

320

we can in principle use Schwarzschild’s global coordinates and his metric to321

answer all questions about spacetime around the black hole.322

5.6 ARE WE SMARTER THAN EINSTEIN?323

Did Einstein fumble his seven-year puzzle?324

We have now solved the puzzle that troubled Einstein for the seven years it325

took him to move from special relativity to general relativity. Surely Einstein326

would understand in a few seconds the central idea behind cutting-board327

examples in Figures 1 through 3. However, the extension of this idea to the328

four dimensions of spacetime was not obvious while he was struggling to createEinstein’s struggle 329

a brand new theory of spacetime that is curved, for example, by the presence330

of Earth, Sun, neutron star, or black hole. Is it any wonder that during this331

intense creative process Einstein took a while to appreciate the lack of332

“immediate metrical meaning” of differences in global coordinates?333

It is embarrassing to admit that one co-author of this book (EFT)One co-author
didn’t get it.

334

required more than two years to wake up to the basic idea behind the present335

chapter, even though this central result is well known to every practitioner of336

general relativity. Even now EFT continues to make Einstein’s original337

mistake: He confuses global coordinate separations with measured quantities.338

You too will probably find it difficult to avoid Einstein’s mistake.339

FIRST STRONG ADVICE FOR THIS ENTIRE BOOK340

To be safe, it is best to assume that global coordinateFIRST ADVICE
FOR THE ENTIRE
BOOK

341

separations do not have any measured meaning. Use global342

coordinates only with the metric in hand to convert a343

mapmaker’s fantasy into a surveyor’s reality.344

Global coordinate systems come and go; wristwatch ticks and ruler lengths are345

forever!346
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FIGURE 4 On a flat patch we build an inertial Cartesian latticework of meter sticks
with synchronized clocks. This is an instrumented room (defined in Section 3.10), on
which we impose a local coordinate system—a frame—limited in both space and time.
Limited by what? Limited by the sensitivity to curvature of the measurement we want
to carry out in that local inertial frame.

5.7 LOCAL MEASUREMENT IN A ROOM USING A LOCAL FRAME347

Where we make real measurements348

Of all theories ever conceived by physicists, general relativity349

has the simplest, most elegant geometric foundation. Three350

axioms: (1) there is a global metric; (2) the global metric is351

governed by the Einstein field equations; (3) all special352

relativistic laws of physics are valid in every local inertial353

frame, with its (local) flat-spacetime metric.354

—Misner, Thorne, and Wheeler (edited)355

No phenomenon is a physical phenomenon until it is an356

observed phenomenon.357

—John Archibald Wheeler358
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Special relativity assumes that a measurement can take place throughout an359

unlimited space and during an unlimited time. Spacetime curvature denies us360

this scope, but general relativity takes advantage of the fact that almost361

everywhere on a curved surface, space is locally flat; remember “flat Kansas”Spacetime is
locally flat
almost everywhere.

362

in Figure 3, Section 2.2. Wherever spacetime is smooth—namely close to every363

event except one on a singularity—general relativity permits us to approximate364

the gently curving stage of spacetime with a local inertial frame. This section365

sets up the command that we shout loudly everywhere in this book:366

SECOND STRONG ADVICE FOR THIS ENTIRE BOOK367SECOND ADVICE
FOR THE ENTIRE
BOOK

In this book we choose to make every measurement in a local368

inertial frame, where special relativity rules.369

We ride in a room, a physical enclosure of fixed spatial dimensions (defined in370

Section 3.10) in which we make our measurements, each measurement limited371

in local time. We assume that the room is sufficiently small—and the duration372

of our measurement sufficiently short—that these measurements can be373

analyzed using special relativity. This assumption is correct on a patch.374

DEFINITION 1. Patch375

A patch is a spacetime region purposely limited in size and duration soDefinition:
patch

376

that curvature (tidal acceleration) does not noticeably affect a given377

measurement.378

Important: The definition of patch depends on the scope of the measurement379

we wish to make. Different measurements require patches of different extent in380

global coordinates. On this patch we lay out a local coordinate system, called381

a frame.382

DEFINITION 2. Frame383

A frame is a local coordinate system of our choice installed onto a384

spacetime patch.This local coordinate system is limited to that singleDefinition:
frame

385

patch.386

Among all possible local frames, we choose one that is inertial:387

DEFINITION 3. Inertial frame388

An inertial or free-fall frame is a local coordinate system—typicallyDefinition:
inertial frame

389

Cartesian spatial coordinates and readings on synchronized clocks390

(Figure 4)—for which special relativity is valid. In this book we report391

every measurement using a local inertial frame.392

In general relativity every inertial frame is local, that is limited in spacetime393

extent. Spacetime curvature precludes a global inertial frame.394

Who makes all these measurements? The observer does:395

DEFINITION 4. Observer = Inertial Observer396

An observer is a person or machine that moves through spacetimeDefinition:
observer

397

making measurements, each measurement limited to a local inertial398

frame. Thus an observer moves through a series of local inertial frames.399
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Box 1. What moves?
A story—impossible to verify—recounts that at his trial by the
Inquisition, after recanting his teaching that the Earth moves
around the Sun, Galileo muttered under his breath, “Eppur si
muove,” which means “And yet it moves.”

According to special and general relativity, what moves? We
quickly eliminate coordinates, events, patches, frames, and
spacetime itself:

• Coordinates do not move. Coordinates are number-
labels that locate an event; it makes no sense to say
that a coordinate number-label moves.

• An event does not move. An event is completely
specified by coordinates; it makes no sense to say
that an event moves.

• A flat patch does not move. A flat patch is a region
of spacetime completely specified by a small, specific
range of map coordinates; it makes no sense to say
that a range of map coordinates moves.

• A local frame does not move. A frame is just a set of
local coordinates—numbers—on a patch; it makes no
sense to say that a set of local coordinates move.

• Spacetime does not move. Spacetime labels the
arena in which events occur; it makes no sense to
say that a label moves.

You cannot drop a frame. You cannot release a frame. You
cannot accelerate a frame. It makes no sense to say that you

can even move a frame. You cannot carry a frame around, any
more than you can move a postal zip code region by carrying
its number around.

What does move? Stones and light flashes move; observers
and rooms move. Whatever moves follows a worldline or
worldtube through spacetime.

• A stone moves. Even a stone at rest in a shell
frame moves on a worldline that changes global t-
coordinate.

• A light flash moves; it follows a null worldline along
which both r and φ can change, but ∆τ = 0.

• An observer moves. Basically the observer is an
instrumented stone that makes measurements as it
passes through local frames.

• A room moves. Basically a room is a large, hollow
stone.

Why do almost all teachers and special relativity texts—
including our own physics text Spacetime Physics and
Chapter 1 of this book!—talk about “laboratory frame” and
“rocket frame”? Because it is a tradition; it leads to no major
confusion in special relativity. But when we specify a local rain
frame in curved spacetime using (for example) a small range
of Schwarzschild global coordinates t, r, and φ, then it makes
no sense to say that this local rain frame—this range of global
coordinates—moves. Stones move; coordinates do not.

The observer, riding in a room (Definition 3, Section 3.10), makes a sequence400

of measurements as she passes through a series of local inertial frames. As it401

passes through spacetime, the room drills out a worldtube (Definition 4,402

Section 3.10). Figure 5 shows such a worldtube.403

Objection 1. In Definition 4 you say that the observer moves through a404

series of local inertial frames. But doesn’t a shell observer stay in one local405

frame?406

No! The shell observer is not stationary in the global t-coordinate, but407

moves along a worldline (Figure 5). By definition, a local inertial frame408

spans a given lapse of frame time ∆tshell, as well as a given frame volume409

of space. In Figure 5 the first measurement takes place in Frame #1. When410

the first measurement is over, global t/M has elapsed and the observer411

leaves Frame #1. A second measurement takes place in Frame #2. The412

range of r/M and φ global coordinates of Frame #2 may be the same as413

in Frame #1. The shell observer makes a series of measurements, each414

measurement in a different local inertial frame.415
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Shell 
worldtube 

Shell observer
worldline 

Shell frame #2

Shell frame #3

Shell frame #1

t/M

r/M

φ

FIGURE 5 A shell worldtube (Section 3.10) that embraces three sample shell frames
outside the event horizon. The shell observer carries out an experiment while passing through
Frame #1 in the figure. He may then repeat the same experiment or carry out another one in
Frames #2 and #3 at greater t coordinates. For simplicity each shell frame is shown as a cube.
Each frame is nailed to a particular event at map coordinates (t̄/M, r̄/M, φ̄).

Comment 1. Euclid’s curved space vs. Einstein’s curved spacetime416

Figure 5 shows a case in which a shell observer stands at constant r and φ417

coordinates while he passes, with changing map t-coordinate, through a series418

of local frames, each frame defined over a range of r, φ, and t-coordinates.419

Figure 5 in Section 2.2 showed the Euclidean space analogy in which a traveler420

passes across a series of local flat maps on her way along the curved surface of421

Earth from Amsterdam to Vladivostok. Each of these flat maps is essentially a422

set of numbers: local space coordinates we set up for our own use. Similarly,423

each local frame of Figure 5 is just a set of numbers, local space and time424

coordinates we set up for our own use. A frame is not a room; a frame does not425

fall; a frame does not move; it is just a set of numbers—coordinates—that we426

use to report results of local measurements (Box 1). Figure 5 shows multiple427

shell frames, two of them adjacent in t-coordinate. Shell frames can also overlap,428

analogous to the overlap of adjacent local Euclidean maps in Figure 5, Section429

2.2.430

Objection 2. Whoa! Can a frame exist inside the event horizon?431

Definitely. A frame is a set of coordinates—numbers! Numbers are not432

things; they can exist anywhere, even inside the event horizon. In contrast,433

the diver in her unpowered spaceship is a “thing.” Even inside the event434
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horizon the she-thing continues to pass through a series of local frames.435

Inside the event horizon, however, she is doomed to continue to the436

singularity as her wristwatch ticks inevitably forward.437

By definition, we use the flat-spacetime metric to analyze events in a local438

inertial frame. We write this metric for a local shell frame in a rather strange439

form which we then explain:440

∆τ2 ≈ ∆t2shell −∆y2
shell −∆x2

shell (7)

Choose the increment ∆yshell to be vertical (radially outward), and the ∆xshellLocal flat spacetime
→ local inertial metric.

441

increment to be horizontal (tangential along the shell).442

Instead of an equal sign, equation (7) has an approximately equal sign.443

This is because near a black hole or elsewhere in our Universe there is always444

some spacetime curvature, so the equation cannot be exact. The upper case445

Delta, ∆, also has a different meaning in (7) than in special relativity. In446

special relativity (Section 1.10) we used ∆ to emphasize that in flat spacetime447

the two events whose separation is described by (7) can be very far apart in448

space or time and their coordinate separations still satisfy (7) with an equals449

sign. In equation (7), however, both events must lie in the local frame within450

which the coordinate separations ∆tshell, ∆yshell, and ∆xshell are defined.451

How do we connect local metric (7) to the Schwarzschild global metric? WeConnect global
and local metrics

452

do this by considering a local frame over which global coordinates t, r, and φ453

vary only a little. Small variation allows us to replace r with its average value454

r̄ over the patch and write the Schwarzschild metric in the approximate form:455

∆τ2 ≈
(

1− 2M

r̄

)
∆t2 − ∆r2(

1− 2M

r̄

) − r̄2∆φ2 (spacetime patch) (8)

Equation (8) is no longer global. The value of r̄ depends on where this patch is456

located, leading to a local wristwatch time lapse ∆τ for a given change ∆r.457

The value of r̄ also affects how much ∆τ changes for a given change in ∆t or458

∆φ. Equation (8) is approximately correct only for limited ranges of ∆t, ∆r,459

and ∆φ. In contrast to the differential global Schwarzschild metric, (8) has460

become a local metric. That is the bad news; now for some good news.461

Coefficients in (8) are now constants. So simply equate correspondingLocal shell
coordinates

462

terms in the equations (8) and (7):463

∆tshell ≡
(

1− 2M

r̄

)1/2

∆t (9)

∆yshell ≡
(

1− 2M

r̄

)−1/2

∆r (10)

∆xshell ≡ r̄∆φ (11)

464
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FIGURE 6 Flat triangular segments on the surface of a Buckminster Fuller geodesic dome.
A single flat segment is the geometric analog of a locally flat patch in curved spacetime around
a black hole; we add local coordinates to this patch to create a local frame. (Figure 4 in Section
3.3 shows a complete geodesic dome with six-sided segments.)

Substitutions (9), (10), and (11) turn approximate metric (8) into465

approximate metric (7), which is—approximately!—the metric for flat466

spacetime. Payoff: We can use special relativity analyze local measurements467

and observations in a shell frame near a black hole.468

Objection 3. What is the meaning of equations (9) through (11)? What do469

they accomplish? How do I use them?470

These equations are fundamental to our application of general relativity to471

Nature. On the left are measured quantities: ∆tshell is the measured shell472

time between two events, ∆yshell and ∆xshell are their measured473

separations in local space shell coordinates. These equations, plus the474

local metric (7) unleash special relativity to analyze local measurements in475

curved spacetime. In this book we choose to report every measurement476

using a local inertial frame.477

Comment 2. Left-handed (∆yshell,∆xshell) local space coordinates478

We find it convenient to have the local ∆yshell point along the outward global479

Schwarzschild r-coordinate and the local ∆xshell point along the direction of480

increasing angle ∆φ, on the [r, φ] slice through the center of the black hole. This481

earns the label left-handed for the space part of these local coordinates, which482

differs from most physics usage.483

Figure 6 shows a geometric analogy to a local flat patch: the local flat484

plane segments on the curved exterior surface of a Buckminster Fuller geodesic485

dome.486
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We summarize here the new notation introduced in equation (7) andSummary:
local notation

487

equations (9) through (11):488

≈ equality is not exact, due to residual curvature (12)

and coordinate conversion (Section 5.8)

∆ coordinate separation of two events within the local frame (13)

r̄ average r-coordinate across the patch (14)

489

Objection 4. How large—in ∆tshell, ∆yshell, and ∆xshell—am I allowed490

to make my local inertial frame? If you cannot tell me that, you have no491

business talking about local inertial frames at all!492

You are right, but the answer depends on the measurement you want to493

make. Some measurements are more sensitive than others to tidal494

accelerations; each measurement sets its own limit on the maximum extent495

of the local frame in order that it remain inertial for that measurement. If496

the local frame is too extended in both the ∆xshell and ∆yshell directions497

to be inertial, then it may be necessary to restrict the frame time ∆tshell498

during which it is carried out. Result: Different measurements prevent us499

from setting a universal, one-fits-all size for a local inertial frame. Sorry.500

Objection 5. What happens when we choose the size of the local frame501

too great, so the frame is no longer inertial? How do we know when we502

exceed this limit?503

504

There are two answers to these questions. The first is spacetime505

curvature: Section 1.11 entitled Limits on Local Inertial Frames describes506

this situation using Newtonian intuition. If two stones initially at rest near507

Earth are separated radially, the stone nearer the center accelerates508

downward at a faster rate. If two stones, initially at rest, are separated509

tangentially, their accelerations do not point in the same directions, Figure510

8, Section 1.11. These effects go under the name tidal accelerations,511

because ocean tides on Earth result from differences in gravitational512

attraction of Moon and Sun at different locations on Earth. If these tidal513

accelerations exceed the achievable accuracy of an experiment, then the514

local frame cannot be considered inertial.515

The second answer to the question results from the global coordinate516

system itself and the process by which the local inertial frame is derived517

from it. This part is treated in Section 5.8.518
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Box 2. Who cares about local inertial frames?
Sections 5.1 through 5.6 make no reference to local inertial
frames. Nor are they necessary. The left side of the
global metric predicts differentials dτ or dσ (or dτ =

dσ = 0) between adjacent events. Of course we cannot
measure differentials directly, because they are, by definition,
vanishingly small. We need to integrate them; for example
we integrate wristwatch time along the worldline of a stone.
The resulting predictions are sufficient to analyze results of

any experiment or observation. No local inertial frames are
required, and most general relativity texts do not use them.

Our approach in this book is different; we choose to predict,
carry out, and report all measurements with respect to a local
inertial frame. Payoff: In each local inertial frame we can
unleash all the concepts and tools of special relativity, such
as directly-measured space and time coordinate separations,
measurable energy and momentum of a stone; Lorentz
transformations between local inertial frames.

We may report local-frame measurements in the calculus limit, as we often519

do on Earth. For example, we record the motion of a light flash in our local520

inertial frame. Rewrite (7) as521

∆τ2 ≈ ∆t2shell −∆s2
shell (15)

where ∆sshell is the distance between two events measured in the shell frame.522

Now let a light flash travel directly between the two events in our local frame.523

For light ∆τ = 0 and we write its speed (a positive quantity) as:524 ∣∣∣∣∆sshell

∆tshell

∣∣∣∣ ≈ 1 (speed of light flash) (16)

We may want to know the instantaneous speed, which requires the calculusCan take calculus
limit in local frame.

525

limit. In this process all increments shrink to differentials and r̄ → r. For the526

light flash the result is:527

vshell ≡ lim
∆tshell→0

∣∣∣∣∆sshell

∆tshell

∣∣∣∣ = 1 (instantaneous light flash speed) (17)

Equation (17) reassures us that the speed of light is exactly one when528

measured in a local shell frame at any r (outside the event horizon, where529

shells can be constructed). The measured speed of a stone is always less than530

unity:531

vshell ≡ lim
∆tshell→0

∣∣∣∣∆sshell

∆tshell

∣∣∣∣ < 1 (instantaneous stone speed) (18)

5.8 THE TROUBLE WITH COORDINATES532

Coordinates, as well as spacetime curvature, limit accuracy.533

We need global coordinates and cannot apply general relativity without them.534

Only global coordinates can connect widely separated local inertial frames inCan use global
metric exclusively.

535
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FIGURE 7 Inaccuracies due to polar coordinates on a flat sheet of paper. Coordinates in
the middle frame are curved.

which we make measurements. Indeed, we can choose to use only global536

coordinates to apply general relativity (Box 2). Instead, in this book we choose537

to design and carry out measurements in a local inertial frame in order to538

unleash the power and simplicity of special relativity. In this process we fix539

average values of global coordinates to make constant the coefficients in theWe choose
to use local
coordinates.

540

global metric. This allows us to write down the relation between global and541

local coordinates, equations (9) through (11), in order to generate a local flat542

spacetime metric (7).543

But our choice has a cost that has nothing to do with spacetime544

curvature, illustrated by analogy to a flat geometric surface in Figure 7. The545

left frame shows polar coordinates laid out on the entire flat sheet. Choose aApproximation
due to coordinate
conversion

546

small area of the sheet (expanded in the second frame). That small area is, a547

patch (Definition 1) with a small section of global coordinates superimposed.548

This is a frame (Definition 2) whose local coordinate system is derived from549

global coordinates. The third frame shows Cartesian coordinates that cover550

the same patch, converting it to a local Cartesian frame, analogous to an551

inertial frame (Definition 3). What is the relation between the second frame552

and the third frame?553

The exact differential separation between adjacent points is554

ds2 = dr2 + r2dφ2 (19)

In order to provide some “elbow room” to carry out local measurements on555

our small patch, we expand from differentials to small increments with the556

approximations:557

∆s2 ≈ ∆r2 + r̄2∆φ2 (20)

≈ ∆x2 + ∆y2

Because of the average r̄ due to curved coordinates, equation (20) is not exact.Approximate due to
(1) residual curvature
plus (2) coordinate
conversion.

558

The approximation of this result has nothing to do with curvature, since the559

surface in the left panel is flat. A similar inexactness haunts the relation560
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FIGURE 8 Left panel. Example of global coordinates that satisfy the uniqueness
requirement: every event shown (filled circles) has a unique value of x and t. Right panel:
Example of a global coordinate system that fails to satisfy the uniqueness requirement; Event
A has two x-coordinates: x = 1 and x = 2; Event B has two t-coordinates: t = 2 and t = 3.

between global and local coordinates in equations (9) through (11). These561

equations are approximate for two reasons: (1) the residual curvature of562

spacetime across the local frame and (2) the conversion between global and563

local coordinates. In this book we emphasize the first of these, but the second564

is ever-present.565

5.9 REQUIREMENTS OF GLOBAL COORDINATE SYSTEMS566

Which coordinate systems can we use in a global metric?567

Thus far we have put no restrictions on global coordinate systems for globalSome restrictions
on global coordinates

568

metrics in general relativity. The basic requirements are a global coordinate569

system that (a) uniquely specifies the spacetime location of every event, and570

(b) when submitted to Einstein’s equations results in a global metric. Here are571

some technical requirements, quoted from advanced theory without proof.572

UNIQUENESS REQUIREMENT573

The global coordinate system must provide a unique set of coordinates for eachUnique set of
coordinates
for each event

574

separate event in the spacetime region under consideration.575

The uniqueness requirement seems reasonable. A set of global coordinates, for576

example t, r, φ, must allow us to distinguish any given event from every other577

event. That is, no two distinct events can have every global coordinate the578

same; nor can any given event be labelled by more than one set of coordinates.579

The left panel in Figure 8 shows an example of global coordinates that satisfy580

the uniqueness requirement; the right panel shows an example of global581

coordinates that fails this requirement.582
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t

Box 3. Find a particular local inertial frame.
How can we locate and label a particular local inertial frame
on a shell around a black hole?

Ask a simpler question: How do we label and find one
particular flat triangular surface on a Buckminster Fuller
geodesic dome (Figure 6)? One way is simply to number
each flat surface: triangle #523 next to triangle #524 next to
triangle #525. Carry out this procedure for every flat triangle
on the geodesic dome. The result is a huge catalog that we
must consult to locate a given local flat segment on these
nested Buckminster Fuller geodesic domes.

We could use a similar sequential numbering scheme to label
and find a local inertial shell frame around a black hole,

sequential in both space and time. But we already have a
simpler way to index a single local inertial frame:

Equations (9) through (11) provide a much simpler indexing
scheme: the average values t̄, r̄, and φ̄. Average r̄ gives us
the shell, average φ̄ locates the position of the local frame
along the shell, and average t̄ tells us the global t-coordinate
of the frame at that location—local in time as well as space.
Three numbers, for example t̄, r̄, and φ̄, specify precisely
the local inertial shell frame in spacetime surrounding a black
hole.

In addition to the uniqueness requirement, we must be able to set up a583

local inertial frame everywhere around the black hole (except on its singularit.584

To allow this possibility, we add the second, smoothness requirement:585

SMOOTHNESS REQUIREMENT586

The coordinates must vary smoothly from event to neighboring event. In practice,Smooth
coordinates

587

this means there must be a differentiable coordinate transformation that takes588

the global metric to a local inertial metric (except on a physical singularity).589

Comment 3. The (almost) complete freedom of general relativity590

There are an unlimited number of valid global coordinate systems that describe591

spacetime around a stable object such as a star, white dwarf, neutron star, or592

black hole (Box 3 in Section 7.5). Who chooses which global coordinate system593

to use? We do!594

Near every event (except on a singularity) there are an unlimited number of595

possible local inertial frames in an unlimited number of relative motions. Who596

chooses the single local frame in which to carry out our next measurement? We597

do!598

Nature has no interest whatsoever in which global coordinates we choose or599

how we derive from them the local inertial frames we employ to report our600

measurements and to check our predictions. Choices of global coordinates and601

local frames are (almost) completely free human decisions. Welcome to the wild602

permissiveness of general relativity!603

5.10 EXERCISES604

5.1. Rotation of vertical605

The inertial metric (7) assumes that the ∆xshell and ∆yshell are both606

straight-line separations that are perpendicular to one another. How many607

kilometers along a great circle must you walk before both the horizontal and608

vertical directions “turn” by one degree609
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A. on Earth.610

B. on the Moon (radius 1 737 kilometers).611

C. on the shell at map coordinate r = 3M of a black hole of mass five612

times that of our Sun.613

5.2. Time warping614

In a given global coordinate system, two identical clocks stand at rest on615

different shells directly under one another, the lower clock at map coordinate616

rL, the higher clock at map coordinate rH. By identical clocks we mean that617

when the clocks are side by side the measured shell time between sequential618

ticks is the same for both. When placed on shells of different map radii, the619

measured time lapses between adjacent ticks are ∆tshell H and ∆tshell L,620

respectively.621

A. Find an expression for the fractional measured time difference f622

between the shell clocks, defined as:623

f ≡ ∆tshell H −∆tshell L

∆tshell L
(21)

This expression should depend on only the map r-values of the two624

clocks and on the mass M of the center of attraction.625

B. Fix rL of the lower shell clock. For what higher rH-value does the626

fraction f have the greatest magnitude? Derive the expression fmax for627

this maximum fractional magnitude.628

C. Evaluate the numerical value of the greatest magnitude fmax from Item629

B when rL corresponds to the following cases:630

(a) Earth’s surface (numerical parameters inside front cover)631

(b) Moon’s surface (radius 1 737 kilometers, mass 5.45× 10−5 meters)632

(c) on the shell at rL = 3M of a black hole of mass M = 5MSun (Find633

the value of MSun inside front cover)634

D. Find the higher map coordinate rH at which the fractional difference in635

clock rates is 10−10 for the cases in Item C.636

E. For case (c) in item C, what is the directly-measured distance between637

the shell clocks?638

F. What is the value of fmax in the limit rL → 2M? What is the value of f639

in the limit rL → 2M and rH = 2M(1 + ε), where 0 < ε� 1. What640

does this result say about the ability of a light flash to move outward641

from the event horizon?642

G. Which items in this exercise have different answers when the upper643

clock and the lower clock do not lie on the same radial line, that is644

when the upper clock is not directly above the lower clock?645
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5.3. Diving inertial frame646

Think of a local inertial frame constructed in a free capsule that dives past a647

local shell frame with local radial velocity vrel measured by the shell observer.648

Use Lorentz transformations from Chapter 1 to find expressions similar to649

equations (9) through (11) that give coordinate increments ∆tdive, ∆ydive, and650

∆xdive between a pair of events in the diving frame in terms of r̄, vrel, and651

global coordinate increments ∆t, ∆r, and ∆φ.652

5.4. Tangentially moving inertial frame653

Think of a local inertial frame constructed in a capsule that moves654

instantaneously in a tangential direction with tangential speed vrel measured655

by the shell observer. Use Lorentz transformations from Chapter 1 to find656

expressions similar to equations (9) through (11) that give coordinate657

increments ∆ttang, ∆ytang, and ∆xtang between a pair of events in the658

tangentially-moving frame in terms of r̄, vrel, and global coordinate increments659

∆t, ∆r, and ∆φ.660
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