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• As I approach a black hole from far away, how can I put my spaceship13

into a circular orbit?14

• How can I transfer from one circular orbit to another one?15

• Why am I uncomfortable in some orbits near a black hole?16

• Can I enter a circular orbit without firing a rocket?17

• How do I move a probe from a circular orbit inward across the event18

horizon?19
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C H A P T E R

9 Orbiting the Black Hole20

Edmund Bertschinger & Edwin F. Taylor *

I want to know how God created this world. I am not interested21

in this or that phenomenon, in the spectrum of this or that22

element. I want to know his thoughts. The rest are details.23

*******24

What really interests me is whether God could have created25

the world any differently; in other words, whether the26

requirement of logical simplicity admits a margin of freedom.27

—Albert Einstein28

9.1 OBSERVE THE BLACK HOLE FROM A SEQUENCE OF CIRCULAR ORBITS29

The sequence of orbits in our exploration plan30

Chapter 8 introduced circular orbits of a free stone around a black hole. The31

present chapter describes how the captain of an approaching spaceship canObserve the
black hole from
circular orbits.

32

insert it into a circular orbit, then transfer to progressively smaller circular33

orbits in order to get closer looks at the black hole. Our exploration program34

includes several maneuvers:35

EXPLORATION PROGRAM FOR THE BLACK HOLE36

Step 1. Insert the approaching spaceship into a stable circular orbit at37

r = 20M .38

Step 2. Transfer a probe from this initial orbit to the innermost stable circularExploration program 39

orbit at rISCO = 6M .40

Step 3. Transfer the probe from the ISCO to an unstable circular orbit at41

r = 4M .42

Step 4. Tip the probe off the unstable circular orbit at r = 4M so that it43

spirals inward across the event horizon.44

*Draft of Second Edition of Exploring Black Holes: Introduction to General Relativity
Copyright c© 2016 Edmund Bertschinger, Edwin F. Taylor, & John Archibald Wheeler. All
rights reserved. Latest drafts at dropsite exploringblackholes.com.
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9-2 Chapter 9 Orbiting the Black Hole

To describe this sequence of orbits, use equations from previous chapters,45

summarized here in global rain coordinates, T, r, φ. Both the unpowered46

spaceship and the unpowered probe move in the same way as a free stone.47

GENERAL FREE MOTION OF UNPOWERED SPACESHIP OR PROBEFree motion 48
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CIRCULAR-ORBIT MOTION OF UNPOWERED SPACESHIP OR PROBE (r > 3M )Motion in a
circular orbit
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Figure 1 previews some kinds of orbits we discuss in this chapter.50

9.2 INSERT THE APPROACHING SPACESHIP INTO A CIRCULAR ORBIT51

Approach from far away and enter a circular orbit.52

How does the captain insert her approaching spaceship into an initial circularInsert into a
circular orbit.

53

orbit from which to observe the black hole? Here’s one possible method: While54

still far from the black hole, the captain uses speed- and direction-changing55
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2 Precessing
orbit results
from extra
"dwell time"
at inner part
of orbit

FIGURE 1 Preview: Some kinds of orbits discussed in this chapter, shown here for a
single value of map angular momentum L/m but several different values of map energy E/m.
A glance at the central plot allows us to make quick predictions about the motion of a stone that
orbits or is captured by a black hole. Four different energies numbered on this plot correspond
to orbits that appear in the four outer corners of the figure. Adapted from Misner, Thorne, and
Wheeler.

rocket thrusts to put the spaceship into a free-fall insertion orbit whose56

minimum r-value matches that of the desired circular orbit (Figure 2). At that57

minimum, when the spaceship moves tangentially for an instant, the captain58

fires a rocket to slow down the spaceship to the tangential speed of the stable59

circular orbit at that r.60

With what values of map E/m and L/m will an unpowered spaceshipInsertion orbit 61

approaching from far away end up moving tangentially for an instant at the62

desired r-coordinate? To find out, substitute (5) into (4), set dr/dτ = 0, and63

solve the resulting equation for L/m:64
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r = 64M
r = 32M

  r = 20M

FIGURE 2 Insertion orbit for unpowered spaceship that approaches from far away. At the
instant of tangential motion at r = 20M , the spaceship fires a tangential rocket thrust to reduce
the locally-measured shell velocity to that for a circular orbit (Figure 3).

L

m
= ±r2

[
(E/m)2

1− (2M/r)
− 1

]1/2

(tangential motion) (11)

65

The ± sign in (11) distinguishes between two possible directions of motion at66

the r-value in equation (11). We choose positive angular momentum—that is,67

in the counterclockwise direction of increasing φ. Equation (11) is valid whe68

dr/dτ = 0, including turning points of all orbits as well as everywhere along a69

circular orbit.70

The captain chooses her circular orbit at r = 20M . While still far from theChoose circular
orbit at r = 20M .

71

black hole, she maneuvers the incoming spaceship to move with72

arbitrarily-chosen map energy E/m = 1.001 and the positive value of L/m that73

results from equation (11)—both entered in Table 1. Then she turns off the74

rockets and lets the spaceship coast. Figure 2 shows the resulting orbit, which75

corresponds to the incoming horizontal arrow at E/m = 1.001 in Figure 3.76

DEFINITION 1. Subscripts in Table 177

Here are definitions of the subscripts in the left-hand column of Table 1.Definitions:
Subscripts
in Table 1

78

All definitions describe the motion of a free stone or unpowered79

spaceship or unpowered probe.80

insert: for free motion from far away to instantaneous tangential motion at r81

circle: for free motion in a circular orbit at r82

transfer: for free motion that is instantaneously tangential at both values of r83

shell: for values measured in the local inertial frame at r84
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TABLE 1 Numerical values at r = 20M and rISCO = 6M

Values of r = 20M rISCO = 6M

(L/m)insert 6.733 036 31M ———

(E/m)insert 1.001 ———

vx,shell,insert 0.319 056 897 ———

(L/m)circle 4.850 712 50M 3.464 101 62M

(E/m)circle 0.976 187 060 0.942 809 042

vx,shell,circle 0.235 702 260 0.5

(L/m)transfer 3.787 166 42M 3.787 166 42M

(E/m)transfer 0.965 541 773 0.965 541 773

vx,shell,transfer 0.186 052 102 0.266 880 257

NOTE: All shell velocities in this table are tangential, in the positive shell x-direction.

Comment 1. Significant digits85

In this chapter we analyze several unstable (knife-edge) circular orbits.86

Interactive software, such as GRorbits, requires accurate inputs to display theLong numbers
in tables

87

orbit of an unpowered probe that stays in an unstable circular orbit for more than88

one revolution. To avoid clutter, we put numbers with many significant digits into89

tables.90

Comment 2. Long subscripts91

In Table 1 the symbols vx,shell,insert, vx,shell,circle, and vx,shell,transfer have long,92

ungainly subscripts. We need long subscripts to fully describe these velocity93

components: that they are x-components measured in a local shell frame and94

whether they describe insertion speed into a circular orbit, speed in that circular95

orbit, or transfer between circular orbits.96

Comment 3. Impulse rocket thrusts97

We assume that each change in vehicle speed results from a quick rocket thrust,98

an impulse. In practice there is no hurry; some efficient rocket engines provideImpulse
rocket thrusts

99

low thrust, which carries the vehicle through a series of intermediate orbits. To100

analyze the outcome of a slow burn complicates calculations and does not add101

to our understanding. So our vehicles use quick rocket thrusts to transfer from102

one orbit to another.103

Comment 4. Which direction is the “rocket thrust”?104

What is the meaning of the phrase outward rocket thrust? The rocket fires in one105

direction; the probe or spaceship that carries the rocket changes speed in the106

opposite direction. We define outward rocket thrust to mean that the rocket burn107

tends to move the rocket to larger r. Similarly, the inward rocket thrust tends to108

move the rocket to smaller r.109

When the spaceship moves tangentially for an instant at r = 20M , the110

spaceship fires a tangential rocket thrust to put it into the stable circular orbitInsert into
circular orbit

111

at that r. What change in tangential velocity must this rocket thrust provide?112

Tangential velocity in which frame? Our policy: make every measurement in a113

local inertial frame; for that purpose, choose the local shell frame. Box 2 in114

Section 7.4 gives shell frame coordinates from which we derive shell115

components of velocity. For reasons that will become apparent, we start with116
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Tangential
       rocket 
   thrust #1

E/m = 1.001

VL(r)/m

1512.5 20 25 30 35 r/M

1.00
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VL(r)/m

L/(mM) = 4.850

L/(mM) = 6.733

E/m = 
0.9762

FIGURE 3 At the instant when the incoming spaceship moves tangentially at the radial
turning point r = 20M (Figure 2), it fires tangential rocket thrust #1 that changes its map
energy and map angular momentum to insert it into a stable circular orbit.

definitions of dtshell/dτ , dyshell/dτ , and dxshell/dτ , each with wristwatch time117

differential dτ in the denominator.118

dtshell

dτ
= lim

∆τ→0

∆tshell

∆τ
(12)

=

(
1− 2M

r

)−1/2
[(

1− 2M

r

)
dT

dτ
−
(

2M

r

)1/2
dr

dτ

]
(13)

=

(
1− 2M

r

)−1/2
E

m
(14)

The last step uses equation (1). Similarly:119

dyshell

dτ
= lim

∆τ→0

∆yshell

∆τ
=

(
1− 2M

r

)−1/2
dr

dτ
(15)

To find an expression for dr/dτ in this equation, combine equations (4) and120

(5):121

dr

dτ
= ±

[(
E

m

)2

−
(

1− 2M

r

)(
1 +

L2

m2r2

)]1/2

(16)

And finally:122

dxshell

dτ
= lim

∆τ→0

∆xshell

∆τ
= r

dφ

dτ
=

L

mr
(17)

The last step uses equation (2). To complete the derivation of shell velocityShell velocity
components

123

components, note, for example, that vy,shell = (dyshell/dτ)(dτ/dtshell), so from124

(15) and (14):125
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vy,shell =
dr/dτ

E/m
= ±

[
1−

(
E

m

)−2(
1− 2M

r

)(
1 +

L2

m2r2

)]1/2

(18)

vx,shell =

(
1− 2M

r

)1/2
L

rE
(19)

126

Use the first two entries in Table 1 plus equation (19) to calculate the127

value of vx,shell,insert at r = 20M (where the shell y-component128

vy,shell,insert = 0) and check the result in the third line of Table 1.129

130

QUERY 1. Tangential shell velocity in a circular orbit131

A. What is the tangential shell velocity of the spaceship in the circular orbit at r? Combine132

equations (6) and (8) to find an expression for L/E and substitute the result into (19):133

vshell,circle =

(
M

r

)1/2(
1− 2M

r

)−1/2

(circular orbit, r > 3M) (20)

134

B. Show that your derivation is not valid unless r > 3M .135

C. Use (20) to calculate a value for vshell,circle at r = 20M . Check your answer with the entry in136

Table 1. 137

138

Table 1 tells us that the shell frame velocity vx,shell,insert of the spaceship139

in its insertion orbit is greater than its shell frame velocity vx,shell,circle in the140

circular orbit. Therefore a rocket thrust must bring the spaceship’s shell141

velocity down to that of the circular orbit.142

Einstein shouts, “Look out! To calculate the needed change in spaceshipUse velocity
addition laws.

143

velocity to be provided by the rocket thrust, you do not use the difference144

between vx,shell,insert and vx,shell,circle.” Why not? Because in special relativity145

(which rules in every local inertial frame), velocities do not simply add or146

subtract.147

In what local inertial frame can we measure directly the change in velocity148

provided by the rocket thrust? That would be the local inertial frame in which149

the spaceship is initially at rest just before the thrust. Just before the rocket150

thrust, the spaceship moves at velocity vx,shell,insert in the shell frame. We call151

the local inertial frame in which the spaceship is at rest the instantaneous152

initial rest frame or IIRF.153

DEFINITION 2. Instantaneous Initial Rest Frame (IIRF)154

The instantaneous initial rest frame (IIRF) is the local inertial frame inDefinition:
Instanteous Initial
Rest Frame (IIRF)

155

which a rocket is at rest just before it fires a rocket thrust to change its156

velocity with respect to that frame. We use the subscript IIRF to indicate157
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TABLE 2 Rocket Thrusts in Instantaneous Initial Rest Frames (IIRF)

Thrust at r = ∆vIIRF component Description

#1 20M ∆vx,IIRF1 = −0.090 132 846 2 into circular orbit

#2 20M ∆vx,IIRF2 = −0.051 927 321 7 into transfer orbit

#3 6M ∆vx,IIRF3 = −0.269 017 469 into ISCO

#4 6M ∆vx,IIRF4 = 0.060 908 153 8 into transfer orbit

#4 6M ∆vy,IIRF4 = − 0.228 989 795 into transfer orbit

NOTE: After thrust #4, the probe coasts into the unstable circular orbit at r = 4M .

quantities in this rest frame, as in the symbols ∆vx,IIRF and ∆vy,IIRF158

for the change in velocity components in the IIRF frame caused by that159

rocket impulse. We describe four different IIRF thrusts, listed with an160

additional number 1 through 4 added to the subscript (Table 2).161

Special relativity addition of velocities gives us our first, tangential, IIRF162

rocket-thrust change ∆vx,IIRF1 with the number 1 added to the subscript. This163

rocket thrust must reduce the shell speed of the spaceship. From equation (54)IIRF1 transfer
velocity change

164

of Section 1.13,165

∆vx,IIRF1 =
vx,shell,circle − vx,shell,insert

1− vx,shell,insertvx,shell,circle
(21)

= −0.090 132 846 2 (into circular orbit at r = 20M)

Put this numerical value into Table 2. This rocket-thrust velocity change (−27166

021 kilometers/second) inserts the incoming spaceship into the circular orbit167

at r = 20M .168

Objection 1. Wait! The two velocities, vx,shell,circle and vx,shell,insert are169

measured in the same local inertial shell frame. The difference in170

x-components is the measured difference in x-components; why confuse171

things with complicated equation (21)?172

Remember in special relativity the law of addition of velocities between two173

inertial frames in relative motion (Part A of Exercise 17 , Section 1.13)?174

Equation (21) could be called the law of subtraction of velocities—Part B of175

that earlier exercise. The complication of equation (21) does not require176

general relativity.177

Objection 2. Wow, that is quite a long vertical line in Figure 3. How fast178

does the probe move along that line? That quick transition must violate the179

light-speed limit!180

No, the probe does not change any global coordinate, T , r, or φ, as it181

traverses the (idealized) vertical line. That transition results from a rocket182

thrust; it simply changes L and E almost instantaneously (Comment 3).183
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FIGURE 4 Transfer orbit in which the unpowered probe coasts from tangential motion at
rA = 20M to tangential motion at rISCO = 6M . Figure 5 shows the effective potential for this
transfer and change in tangential speed required to put the probe into this transfer orbit.

Objection 3. Your analysis of insertion into a circular orbit takes no184

account of mass loss due to required rocket thrusts. Whenever spaceship185

mass changes, its map energy and map angular momentum also change.186

Right you are. However, constants of motion in our equations are map187

energy and map angular momentum per unit mass. Map energy E/m and188

map angular momentum L/(mM) are unitless. Therefore the initial mass189

of the spaceship (before a rocket thrust) and the final spaceship mass190

(after the rocket thrust) do not affect these equations.191

9.3 TRANSFER TO THE ISCO192

Get closer193

The spaceship completes observations from the stable circular orbit at194

r = 20M and its captain wants to make further observations from a smaller195

circular orbit—still outside the event horizon. To take the entire spaceship to196

this smaller orbit requires a large amount of rocket fuel; instead the captain197

launches a small probe toward the smaller orbit.198

What r-value shall we choose for the inner circular orbit? Be bold! Take199

the probe all the way down to the so-called Innermost Stable Circular Orbit atTransfer to circular
orbit at rISCO = 6M .

200

rISCO = 6M (Definition 5, Section 8.5).201
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r/M

VL/m

0.95

1.05

1.15

0.9

1.1

1

2.5 10 15 25 3050

L/(mM) =
  4.8507

L/(mM) = 
3.4641

Transfer orbit, E/m = 0.9655

L/(mM) =
 3.7872

Tangential
rocket
thrust #3

Tangential
rocket
thrust #2

Stable
  orbit

=
rB = 6 M

rISCO  M rA = 20
 M

FIGURE 5 Transfer orbit between sequential tangential rocket thrusts #2 and #3. This
maneuver moves the probe from the stable circular orbit at r = 20M to the half-stable ISCO at
rISCO = 6M . Figure 4 plots this transfer orbit on the [r, φ] slice.

Comment 5. ISCO as a limiting case202

The ISCO is hazardous because it’s “half stable” and may lead to a death spiral203

inward through the event horizon. To prevent this, the inner circular orbit r-value204

should be slightly greater than rISCO to make it fully stable. In what follows we205

ignore this necessary small r-adjustment.206

Figure 4 shows a transfer orbit, tangential at both rA = 20M and207

rB = rISCO = 6M . Recall that these radii are called radial turning points,208

because at both r-values dr/dτ = 0, so the orbiter instantaneously sweeps209

around only tangentially. Figure 5 displays the corresponding map energy on210

the effective potential plot.211

212

QUERY 2. Profile of transfer orbit213

In 1925 Walter Hohmann described a transfer orbit between two planetary orbits around our Sun as214

“half an ellipse.” Half an ellipse would have maxima of rA and rB on opposite sides of the center of215

attraction. The orbit plot in Figure 4 does not look like half an ellipse. Why is this different from216

Hohmann’s prediction?217
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218

We seek a transfer orbit between the specified Above circular orbit at219

rA/M and the Below circular orbit at rB/M ; Figure 5 shows this transfer. In220

equation (4), dr/dτ = 0 at the two turning points rA/M and rB/M , which221

yields:222 (
E

m

)2

=

(
VL(rA)

m

)2

=

(
VL(rB)

m

)2

(at turning points) (22)

Look first at the right equality in (22), in which the square of the effective223

potential (5) has the same value at two different r. Write down this equality224

and solve the resulting equation for (L/m)2. The result is equation (23). NextTransfer orbit
map L and E

225

look at the left equality in (22), in which the square of the map energy226

(E/m)2 is equal to the square of the effective potential at either r. Write down227

this equality and solve the resulting equation for (E/m)2. The result is228

equation (24).229

(
L

m

)2

transfer

=
2Mr2

Ar
2
B(rA − rB)

r3
A(rB − 2M)− r3

B(rA − 2M)
(between circular orbits) (23)

(
E

m

)2

transfer

=
(rA − 2M)(rB − 2M)(r2

A − r2
B)

r3
A(rB − 2M)− r3

B(rA − 2M)
(between circular orbits)(24)

230

231

QUERY 3. Transfer either way232

Show that equations (23) and (24) are both symmetrical in rA and rB. In other words, show that the233

same values of (L/m)transfer and (E/m)transfer apply, irrespective of the direction of transfer between234

the circular orbits. Is this result obvious?235

236

Substitute values rA = 20M and rB = rISCO = 6M into equations (23) and237

(24); enter resulting values of L/m and E/m into Table 1. Then equations (18)238

and (20) give us values of vx,shell,transfer and vx,shell,circle. These results allow us239

to compute the rocket thrust needed to put the probe into the transfer orbit.240

This is our second, also tangential, instantaneous initial rest frame IIRF thrust241

(Definition 2) with the number 2 added to the subscript, ∆vx,IIRF2.IIRF2 transfer
velocity change

242

∆vx,IIRF2 =
vx,shell,transfer − vx,shell,circle

1− vx,shell,transfervx,shell,circle
(into transfer orbit (25)

= −0.051 927 321 7 from r = 20M to rISCO)

Enter this numerical result into Table 2. This rocket-thrust velocity change243

(−15 567 kilometers/second) inserts the probe into a transition orbit that244

carries it from tangential motion at r = 20M down to tangential motion at245

rISCO = 6M .246
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Objection 4. You talk about moving into a circular orbit and transferring247

between orbits. But what will our orbiting observers see? You have told us248

nothing about what they see as they look around.249

Guilty as charged! Section 7.7 showed only what a raindrop diver sees250

radially inward and radially outward as she plunges to the center of the251

black hole. Beyond that, we have made no predictions whatsoever about252

what any observer sees. For example: In what local frame direction must253

an observer look to see a particular star? What must we know to make254

such predictions? Chapters 13 answers these questions. The cosmic trip255

planner must read beyond the present chapter!256

When the probe reaches rISCO = 6M , it travels tangentially for an instant257

at shell velocity vx,shell,transfer. Then a third insertion rocket thrust changes258

this shell velocity to vx,shell,circle for the circular orbit at rISCO. Table 1 hasIIRF3 transfer
velocity change

259

values of both of these velocities. What insertion rocket thrust does this? As260

before, it is a tangential thrust in the instantaneous inertial rocket frame IIRF261

(Definition 2), with the number 3 added to the subscript, ∆vx,IIRF3.262

∆vx,IIRF3 =
vx,shell,transfer − vx,shell,circle

1− vx,shell,transfervx,shell,circle
(26)

= −0.269 017 469 (into circular orbit at rISCO = 6M)

Enter the numerical result in Table 2. This rocket-thrust velocity change263

(−86 494 kilometers/second) inserts the probe into the circular orbit at264

rISCO = 6M .265

9.4 TRANSFER TO AN UNSTABLE CIRCULAR ORBIT266

Put the probe at risk!267

Thus far we have inserted our spaceship into a stable circular orbit at268

r = 20M , then transferred a probe down to the half-stable circular orbit at269

rISCO = 6M . Now the spaceship captain wants to make observations evenTransfer to
unstable orbit
at r = 4M

270

closer to the black hole. She decides to transfer the probe from rISCO = 6M to271

the unstable circular orbit at r = 4M , a maneuver shown in Figures 6 and 7.272

273

QUERY 4. Unstable circular orbit at r = 4M274

A. Show that the unstable circular orbit at r = 4M has map angular momentum L/m = 4M .275

B. Show that the unstable circular orbit at r = 4M has map energy E/m = 1.276

C. Make an argument that the transfer orbit from r = 6M to r = 4M in Figures 6 and 7 must have277

the same values of map energy and map angular momentum given in the first two items of this278

Query. 279
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rocket
thrust #4

FIGURE 6 Probe transfer orbit between half-stable orbit at rISCO = 6M and unstable
circular orbit at r = 4M . See Figure 7.

D. Verify the bottom right hand entry in Table 3, namely that at r = 4M ,280

vx,shell,circle = vx,shell,transfer = |vshell,transfer|281

282

Transfer orbits have radial turning points where E/m = VL(r). Usually283

these turning points are not at an extremum of the effective potential, so they284

are not at r-values of circular orbits. In this case, however, we need a rocket285

thrust to create the extremum for a circular orbit at that r-value.286

At a maximum of the effective potential, the turning point occurs at the287

r-value of the circular orbit, so we need no rocket thrust to put the probe intoNo rocket thrust
needed for insertion
into unstable orbit.

288

that circular orbit. Figure 6 shows this special case: The probe moves to289

smaller r along the horizontal arrow in Figure 6. As it does so it reaches the290

effective potential maximum at r = 4M where it automatically enters the291

unstable circular orbit at that r-value. So we need only a single rocket thrust292

at r = 6M to change map energy and map angular momentum to that of the293

circular orbit at r = 4M (Figure 7).294

Objection 5. Once the rocket thrust #4 shoots the probe upward in Figure295

6 to map energy E/m = 1, why should the probe go left in that figure, to296

smaller r? Why doesn’t it go right, to larger r?297
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6.0

FIGURE 7 Transfer orbit from rISCO = 6M to the unstable circular orbit at r = 4M
(Figure 6). This requires a velocity vshell,transfer inward from 90◦ by 19.471 degrees, with shell
velocity components and magnitude given in Table 3.

Figure 7 and Table 3 show the answer: The rocket thrust is not tangential298

but has an inward r-component.299

Query 4 already tells us the map values E/m = 1 and L/m = 4M of the300

leftward horizontal arrow in Figure 6. Because the rocket thrust is not301

tangential, we need to apply the full set of equations (18) and (19) to find theNeed two thrust
components for
transfer orbit

302

shell components of the velocity in the transfer orbit. Enter these results for303

vy,shell,transfer and vx,shell,transfer in Table 3.304

To start this transfer from rISCO we use the fourth rocket thrust measured305

in the instantaneous initial rest frame. This thrust requires two components,306

which we call ∆vx,IIRF4 and ∆vy,IIRF4, with the number 4 added to the307

subscript. In this case we must adapt both velocity addition equations (54) in308

Section 1.13.309

∆vx,IIRF4 =
vx,shell,transfer − vx,shell,circle

1− vx,shell,circlevx,shell,transfer
(into the transfer orbit... (27)

∆vy,IIRF4 =
vy,shell,transfer

γx,shell,circle(1− vx,shell,circlevx,shell,transfer)
...from r = 6M (28)

where γx,shell,circle = (1− v2
x,shell,circle)−1/2 ...to r = 4M) (29)

Substitute into these equations from r = rISCO = 6M values in Tables 1310

and 3 and enter the resulting components into Table 2. This rocket thrust,311

which corresponds to the vertical arrow in Figure 6, causes a velocity change312

of magnitude, |∆vIIRF4| = 0.236 951 745 = 71 036 kilometers/second.313
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TABLE 3 Numerical values for transfer from rISCO = 6M to r = 4M

Values of rISCO = 6M r = 4M

(L/m)transfer 4M 4M

(E/m)transfer 1 1

vx,shell,transfer 0.544 331 054 0.707 106 781

vy,shell,transfer −0.192 450 090 0

|vshell,transfer| 0.577 350 269 0.707 106 781

θx,shell −19.471 220 6◦ 0

vx,shell,circle 0.500 000 000 0.707 106 781

Our probe coasts to the unstable circular orbit at r = 4M , an effective314

potential peak close to the black hole. After it completes measurements there,315

the captain decides to dispose of the probe. To do this, she commands theGood-bye probe! 316

probe to fire a tiny inward rocket thrust to tip it off the effective potential317

peak and send it spiraling inward across the event horizon. Good job!318

Section 9.5 applies some of what we have learned to analyze Larry Niven’s319

short story “Neutron Star.”320

9.5 “NEUTRON STAR” BY LARRY NIVEN321

Close to a neutron star? Look out!322

Larry Niven’s science fiction short story “Neutron Star” describes the trip by323

spaceship pilot Beowulf Schaeffer to discover why two earlier pilots died whileWhy did earlier
explorers die?

324

orbiting a neutron star. Sponsors of Beowulf’s trip are aliens called325

puppeteers, who manufacture spaceship hulls that are utterly indestructable326

and—so they claim—impenetrable. Naturally, the death of two pilots in an327

“impenetrable” puppeteer spaceship hull has reduced sales. The puppeteers328

want to know what deadly force has managed to enter their high-tech hulls.329

As Beowulf approaches the neutron star, the long axis of his spaceship330

inexorably orients along a radial line to the star (Why?). Beowulf suddenly331

realizes that he must position himself at the point in the spaceship where at332

least one part of his body feels no gravity in order to be in free-fall motionPassage through
closest approach

333

around the neutron star. Here is Niven’s description of his passage through the334

r-coordinate of closest approach:335

My time was up. A red disk leapt up at me; the ship swung336

around me; I gasped and shut my eyes tight. Giants’ hands337

gripped my arms and legs and head, gently but with great“Giants’ hands
gripped . . .”

338

firmness, and tried to pull me in two. In that moment it came339

to me that Peter Laskin had died like this. He’d made the340

same guesses I had, and he’d tried to hide in the access tube.341

But he’d slipped . . . as I was slipping . . . From the control342

room came a multiple shriek of tearing metal. I tried to dig my343

feet into the hard tube walls. Somehow they held.344
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According to Niven’s story, Beowulf is (barely!) able to cling to the point345

of zero local gravity, though the skin on his extremities is injured. After346

returning to base, he reports to the puppeteers that the deaths of earlierClose-call
survival

347

explorers were due to their slipping from this gravity zero point and falling to348

the front (or back) of the spaceship.349

Objection 6. What in (or out of) this world is happening to Beowulf? His350

orbit around the neutron star is similar to those we use to insert our351

spaceship into a circular orbit. Why is Beowulf in danger, and why did352

earlier explorers die?353

“All politics is local,” said politician Tip O’Neill. A monster may lurk at354

opposite ends of your spaceship. In “Neutron Star” the monster is tidal355

acceleration, which can be lethal.356

Tidal acceleration is nothing new for us. Section 7.9 introduced it for the357

radial fall into the black hole, and in the present chapter Section 9.7,358

Appendix: Killer Tides, gives expressions for radial and tangential tidalKiller tides 359

accelerations. This information allows us to answer the question, “Can360

Beowulf Schaffer survive his transit past the neutron star?”361

We need numerical values from “Neutron Star” in order to apply tidal362

acceleration expressions from Section 9.7. Larry Niven tells us that (a) theSurvival? 363

neutron star’s mass is 1.3 times the mass of our Sun, (b) the minimum364

r-coordinate of approach is approximately 10.5 kilometers, so that365

rmin ≈ 5.5M . (The neutron star is also spinning, but too slowly to have a366

significant effect on Beowulf’s global orbit or local safety.)367

368

QUERY 5. Einstein predicts Beowulf Schaeffer’s fate369

Use the parameters in the preceding paragraph to find out whether or not Beowulf Schaeffer survives370

tidal accelerations during his encounter with the neutron star. Assume that the distant speed of371

approach to the neutron star is nonrelativistic, so that E/m ≈ 1.372

A. Use (3) to determine vshell at the closest approach rmin.373

B. By what multiple is the radial tidal effect (in the local spaceship ∆yship direction) larger than374

the Newtonian prediction?375

C. At the moment of closest approach to the neutron star, Beowulf Schaeffer extends his arm one376

meter radially inward. What happens to him next?377

D. Give a definitive answer to the question, “Can Beowulf Schaeffer survive the trip described in378

“Neutron Star”? (When our class sent numerical results to Larry Niven, he replied, “Thank you379

for the calculations. I’m not sure how I will use them, but thanks anyway.”)380

E. If you conclude that Beowulf cannot survive the “Neutron Star” trip, find an r-coordinate of381

closest approach to the neutron star at which Beowulf Schaeffer can survive. State your criteria382

for survival. On the way to this result, give a specific numerical value for ∆g/∆yship that, in383

your estimate, is survivable.384
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385

386

QUERY 6. Blackmail387

Discussion question: Beowulf Schaefer blackmails the secretive puppeteers by threatening to reveal that388

they come from a moonless world. How does he know that?389

390

391

QUERY 7. Optional: Swimming in spacetime?392

A massive mother ship is in a circular orbit with its long dimension tangential with respect to the black393

hole. Astronauts inside extend a mechanical arm radially inward toward the black hole. The “hand” on394

this arm experiences a radially inward force.395

A. Can such a maneuver be used to change the orbit of the mother ship?396

B. Can similar maneuvers provide a method for balancing a spaceship in a circular knife-edge orbit397

without using rockets?398

C. Using repeated “calisthenics,” can a freely-floating astronaut “swim” around the mother ship?399

(See “Swimming in Spacetime” in the references.)400

D. Do such maneuvers violate the laws of conservation of map energy or map angular momentum?401

E. Do similar maneuvers work in flat spacetime?402

403

9.6 A COMFORTABLE CIRCULAR ORBIT404

How close to the black hole?405

Up to this point, our description of circular orbits has a serious flaw: We do406

not answer the question, “What is the minimum r-value of a circular orbit inMeaning of
“comfortable”?

407

which the astronaut will be comfortable?” Our answer to this question has408

three parts:409

• Part I. What are the tidal accelerations in a circular orbit of given410

r-coordinate? To answer this question, we consult Section 9.7, Appendix:411

Killer Tides.412

• Part II. What is the maximum tidal acceleration for which a human is413

comfortable?414

• Part III. What is the minimum r-coordinate of a circular orbit (Part I)415

for which a human is comfortable (Part II)?416

Instead of choosing an orbit that is comfortable for a human, we can417

replace the human with a probe hardened to withstand hundreds or thousands418

of times the tidal accelerations that would injure or kill a person.419
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Part I: Tidal acceleration in circular orbit420

In order to apply tidal equations (46) through (48) to a circular orbit, we need421

the square of the tangential shell velocity in (10).422

Think of an astronaut in a circular orbit with the long axis of his body423

oriented along the radial direction. His height is larger than his width, so we424

carry out our calculations for the radial tidal component only, knowing that425

the other components will be smaller. Half his height provides a value forTidal acceleration
in circular orbit

426

∆ylocal in equation (46). Substitute (10) into (46) and rearrange so the right427

side of the equation contains only expressions in r.428

∆glocal,y ≈
M

r̄3

(
2r̄ − 3M

r̄ − 3M

)
∆ylocal (circular orbit) (30)

Part II: Define human comfort.429

How large a tidal acceleration is comfortable for a human being? The answer430

is different for people of different heights. Here we treat our human astronaut431

gently, using the definition employed in Section 7.7 under the assumption that432

he is oriented along a radial line, with head above feet. Then with his stomach433

in free fall, the astronaut remains comfortable if his head is accelerated upwardTidal acceleration
for human comfort

434

with the acceleration it would experience on Earth—call it gE—and his feet435

are accelerated downward with the same magnitude of Earth acceleration.436

Assume the astronaut is approximately two meters tall, so his measured437

distance between head and stomach is one meter, the same as the separation438

between stomach and feet. Then ∆ylocal = 1 meter in equation (30).439

Part III: Minimum-r circular orbit for human comfort440

The acceleration gE at Earth’s surface has the numerical value441

gE = 1.09× 10−16 meter−1 (inside the front cover). We want to insert gE intoMinimum r
for comfort?

442

(30) when the circling astronaut’s “half height” is ∆ylocal = 1 meter:443

gE = ∆glocal,y ≈
M

r̄3
comfort

(
2r̄comfort − 3M

r̄comfort − 3M

)
× 1 meter (human comfort limit)(31)

gE ≈
M−2

(r̄comfort/M)
3

(
2r̄comfort/M − 3

r̄comfort/M − 3

)
× 1 meter (32)

In this equation, r̄comfort refers to the smallest r-value of the circular orbit in444

which the observer is comfortable. Multiply the left and right sides of (32) by445

M2 and divide by gE. The result is446

M2 ≈ 1

(r̄comfort/M)
3

(
2r̄comfort/M − 3

r̄comfort/M − 3

)
1 meter

gE
(human comfort limit)(33)

We can rearrange (33) to give the mass of the black hole in number of Suns,447

M/MSun, as a function of the minimum r-value, rcomfort, of the circular orbit448

in which a human astronaut will be comfortable:449
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FIGURE 8 The horizontal axis, rcomfort/M , gives the minimum-r circular orbit in which a
human will be comfortable. On the vertical axis, M/MSun is a number equal to the mass of the
black hole in units of the mass of our Sun. Arrows and little filled circles illustrate solutions of
Sample Problems 1A through 1D.

M

MSun
=

1

MSun

(
1 meter

gE

)1/2
[

1

(r̄comfort/M)
3

(
2r̄comfort/M − 3

r̄comfort/M − 3

)]1/2

(34)

= 6.47× 104

[
1

(r̄comfort/M)
3

(
2r̄comfort/M − 3

r̄comfort/M − 3

)]1/2

(35)

(minimum-r circular orbit for human comfort)

450

The last step substitutes values of MSun and gE from inside the front cover.451

Verify that both sides of this equation are unitless. Figure 8 plots the curve of452

this equation. Sample Problems 1 explain the arrows.453
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Sample Problems 1. Minimum-r Circular Orbit for Human Comfort
PROBLEM 1A
What is the numerical value of M/MSun for which
rcomfort/M = 20 is the minimum circular orbit in which a
human feels comfortable? What is the value of rcomfort in
meters?

SOLUTION 1A
Figure 8 shows that at rcomfort/M = 20, M/MSun ≈ 103,
indicated by point A in the figure. The value of rcomfort in
meters is rcomfort = 20×M meters = 20×(M/MSun)×
MSun meters ≈ 20 × 103 × 1.48 × 103 meters ≈ 3 ×
107meters ≈ 3× 104 kilometers.

PROBLEM 1B
I approach the black hole of mass value NSuns = 102. What
is the minimum rcomfort of the circular orbit in which I will feel
comfortable?

SOLUTION 1B
The long horizontal arrow to the right at NSuns = 102 in
Figure 8 crosses the “comfort curve” at rcomfort/M ≈ 93,
indicated by point B in Figure 8.

PROBLEM 1C
I approach the monster black hole in the center of our galaxy,
for which NSuns ≈ 4 × 106. Assume (incorrectly) that this
monster black hole is not spinning. What is the approximate
value of rcomfort for this circular orbit?

SOLUTION 1C
The number M/MSun = 4.1×106 is point C on the curve in
Figure 8. You will be comfortable in an orbit of approximately
rcomfort/M = 3

PROBLEM 1D
The robot satellite released by the spaceship at
rcomfort/M = 20 in Problem 1A is made small and
hardened in various ways to withstand tidal accelerations 104

times as great as that for which a human will be comfortable.
What is the value of rcomfort of the circular orbit in which this
probe will continue to operate?

SOLUTION 1D
Look at equation (34). The black hole remains the same,
so the ratio M/MSun on the left side remains the same.
Therefore the right side must remain the same. When gE in
the denominator on the right side increases by a factor of 104,
then its square root contribution to the right side decreases
by the factor 102. To compensate, the square root of the
square-bracket expression must increase by the factor 102.
The vertical arrow in the figure extends upward by this factor
of 102. The leftward horizontal arrow finds rconf/M , for the
“comfort orbit” of the robot. This rcomfort/M ≈ 3 for the
robot is at almost the minimum r-value for an unstable circular
orbit.

9.7 APPENDIX: KILLER TIDES454

Avoid spaghettification!455

The dangers experienced by Beowulf and other explorers near a neutron star456

should not surprise us. Objects near to one another in curved spacetime canSize of local
inertial frame
limited by tides.

457

experience relative accelerations. Section 1.11 described these “tidal458

accelerations” that limit the size of a local inertial frame. At locations near to459

one another on Earth’s surface, these relative accelerations are too small for us460

to notice in everyday life. In contrast, near a neutron star or a black hole461

relative tidal accelerations at different locations on a single human body can462

injure or kill. We call such different accelerations killer tides.463

In principle, you can derive the following tidal accelerations using only464

basic tools for the motion of a stone: the metric plus the Principle of Maximal465

Aging. This process, however, is an algebraic nightmare, so we simply quote466

results obtained with the use of a more advanced general-relativistic formalism.467

TIDES DURING RADIAL MOTION468

Surprise! For the special cases of an observer either at rest in globalRadial motion:
Newton’s tidal
accelerations
are valid.

469

coordinates near a black hole or moving radially toward or away from it, local470
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tidal effects predicted by general relativity are identical to those predicted by471

Newton. Write Newton’s expression for gravitational acceleration in the472

radially outward or local y-direction due to a point or spherically symmetric473

source. In unitless coordinates:474

gy = −M
r2

(Newton) (36)

Take the differential of this to measure radial tidal effects and write the result475

in the approximate form for local frame measurements:476

∆glocal,y ≈
2M

r̄3
∆r ≈ 2M

r̄3
∆ylocal (Newton) (37)

The final step, equating ∆r to ∆ylocal, makes sense only for Newton; in477

general relativity the relation between global increment ∆r and local frame478

increment ∆ylocal depends on the position and motion of the local frame in479

global coordinates. Nevertheless—surprise again!—the full general relativity480

analysis also yields the last expression in (37). To show this is difficult. The481

following boxed three equations tell us the tidal accelerations in the three482

directions in the inertial frame.483

∆glocal,y ≈
2M

r̄3
∆ylocal (38)

∆glocal,x ≈ −
M

r̄3
∆xlocal (39)

∆glocal,z ≈ −
M

r̄3
∆zlocal (40)

Subscript “local” means any local frame at rest or moving

radially inward or outward in global rain coordinates.
484

A radially-diving observer suffers not only stretching in the radial485

direction, but also compression in tangential directions as her descending bodySpaghettification:
radial stretch plus
tangential
compression

486

funnels into an ever-narrowing local space. Negative signs in (39) and (40)487

reflect this compression. We give the light-hearted name spaghettification to488

the physical result of these combined stretch and compression tidal effects:489

lengthwise extension combined with transverse compression. Sample Problem490

2 carries out a Newtonian analysis of gravity gradients (tides), whose results491

turn out to be identical in form to general relativistic results (38) through (40).492

Expressions (38) through (40) shrink to become calculus expressions (44)493

at a point. Every approximate equation in this section can lead to a similar494

calculus expression. We keep the ∆ notation, however, to remind us that we495

deal here with a local frame of finite extent.496

Now apply equations (38) through (40) to a local inertial frame. A liquid497

drop of nearly incompressible fluid, such as water or mercury, has a surface498

tension that tends to minimize surface area, which makes the droplet spherical499
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Sample Problem 2. Newton’s tidal components
Derive expressions similar to (38) through (40) for Newton’s
case, in the calculus limit.

SOLUTION:
This is one of only two places in this book where we
use vector expressions and partial derivatives. Represent
unit vectors in the x, y, and z directions by x̂, ŷ, and
ẑ, respectively. Use this notation to write (36) as a vector
equation:

g = −
M (xx̂+ yŷ + zẑ)

(x2 + y2 + z2)3/2
(Newton) (41)

Each component of this vector has the algebraic form:

gq = −
Mq

(x2 + y2 + z2)3/2
(42)

where q stands for any coordinate x, y, or z. Take the partial
derivates similar to the general relativistic equations (38)
through (40). You can show that the results also have the
same form for all three components:

∂gq

∂q
= −

M

r3
+

3Mq2

r5
(q → x, y, z) (43)

We want expressions for these partial derivatives at global
coordinate r in flat spacetime. Take y to be along the radial
direction, so at that point y = r, while x = z = 0. Equations
(43) become:

∂gx

∂x
= −

M

r3
(Newton) (44)

∂gy

∂y
= −

M

r3
+

3M

r3
= +

2M

r3

∂gz

∂z
= −

M

r3

Inspection shows that equations (44) have the same form as
equations (38) through (40).

in an inertial frame. Equations (38) through (40) show us that for radialAll radial speeds
give same local
tidal accelerations.

500

motion, the drop will be distorted into the shape of a throat lozenge or smooth501

potato—technical term: prolate spheroid—shown in Figure 9.502

Equations (38) through (40) are valid for all possible radial503

speeds—including rest—for example a local inertial frame launched in any of504

the following ways (Box 4, Section 7.4):505

• Local rain frame: Local inertial frame dropped from rest far away.506

• Local hail frame: Local inertial frame hurled radially inward from far507

away with any initial local shell speed.508

• Local drip frame: Local inertial frame dropped from rest at any initial509

r0 > 2M .510

All of these are radially-moving local free-fall frames (Section 2.1). Taken511

together, free-fall frames result in every possible inward or outward radial512

speed of the radially moving frame as measured by a shell observer at anyRadial free-
fall frames

513

given average r̄. General relativity provides results independent of radial speed514

in (38) through (40), but the tools developed in this book are not sufficient to515

explain the reason for this result.516

Notice that equations (38) through (40) satisfy the equation517

∆glocal,y

∆ylocal
+

∆glocal,x

∆xlocal
+

∆glocal,z

∆zlocal
≈ 0 (45)

This is a general result for tides analyzed by general relativity. In the calculusRelation among
tidal components

518

limit, the approximate equality in (45) becomes mathematically exact, and519

applies to partial derivatives in (44).520
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FIGURE 9 Schematic diagram of tide-induced shape for an incompressible liquid drop
with surface tension restoring force, observed in a local inertial frame instantaneously at rest or
moving radially with respect to a black hole. From the symmetry of the black hole with respect to
radial motion, it follows that the tidal squeeze is symmetric perpendicular to the radial direction.
Result: the shape is that of an oblong throat lozenge or smooth potato.

Comment 6. Tides preserve volume.521

In the calculus limit, equation (45) expresses a simple and powerful result: The522

volume of a tiny cloud of free, non-interacting dust particles remains constant as523

tidal accelerations act on the cloud. This central result is valid even for the far524

more complicated tidal accelerations near a spinning black hole (Chapter 19).525

Notice that equations (38) through (40) are continuous across the eventTidal effects are
continuous across
event horizon.

526

horizon at r/M = 2. This result provides additional evidence for our repeated527

claim that an observer falling through the event horizon experiences a steady528

increase in tidal effects but no sudden jar or jolt there. Indeed, from evidence529

internal to her local frame the diver cannot tell when she passes radially530

inward through the event horizon.531

TIDES DURING TANGENTIAL MOTION532

An observer moving in the r, φ plane streaks through a local shell frame in theTangential motion:
tidal accelerations
differ from Newton’s.

533

tangential, or ∆xshell, direction with shell velocity vshell,x. In the following534

equations, only the factor M/r̄3 reminds us of the corresponding Newtonian535

analysis in equation (37). For motion along the tangential ±∆xshell directions:536
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FIGURE 10 Schematic diagram of tide-induced shape for an incompressible liquid drop
with surface tension restoring force, observed in a local inertial frame that moves in either
direction along a ∆xshell tangential line. This figure shows results for high tangential speed
vshell,x: both the tidal stretch in the ∆yshell direction and the tidal squeeze in the ∆zshell
direction are huge, much greater than the tidal squeeze in the ∆xlocal direction. The resulting
shape: a thin ribbon with rounded ends lying in the ∆xshell, ∆yshell plane.

∆glocal,y ≈

(
1 + v2

shell,x/2

1− v2
shell,x

)
2M

r̄3
∆ylocal (46)

∆glocal,x ≈ −
M

r̄3
∆xlocal (47)

∆glocal,z ≈ −

(
1 + 2v2

shell,x

1− v2
shell,x

)
M

r̄3
∆zlocal (48)

Subscript “local” means any local frame moving tangentially

in either direction in global coordinates.
537

Notice that equation (47) is the same as equation (39) for radial motion, while538

the equations for the other two directions simply multiply the radial results by539

coefficients that depend on v2
shell,x. In the low-speed limit (v2

shell,x � 1), theseLimiting cases
for tangential
motion

540

equations also reduce to the radial ones (38) and (40). Finally, note that as541

vshell,x increases toward the speed of light, the y component leads to radical542

stretching, while the z component leads to much greater tangential543

compression than that in the ∆xlocal direction.544

Expressions (46) through (48) also satisfy the general relation (45) among545

the local components of gravity gradient, which preserves the volume of a tiny546

dust cloud moving in the map tangential direction.547

For a local inertial frame, the result is the tidal distortion of a drop of548

water or liquid mercury into a flat ribbon with rounded ends, shown in Figure549
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10 for tangential motion. Equations (46) through (48) are correct for any value550

of vshell,x, not just the value of a stone’s local shell speed when it is in a551

circular orbit. For example, a stone that approaches a black hole from far away552

and returns to far away will travel tangentially at its point of closest approach;553

these three equations apply at this point.554

Section 9.3 applies these results to find the minimum-r circular orbit for555

human comfort.556

557

QUERY 8. Departure from Newton’s gravity gradient558

Expressions in parentheses on the right sides of (46) and (48) are a measure of the departure of559

Einstein’s gravity gradients from those predicted by Newton. Temporarily call these expressions560

Einstein multipliers.561

A. For what value of vshell,x does the largest of the Einstein multipliers become “significant,” which562

we define as the value 1.1?563

B. For what value of vshell,x does the largest of the Einstein multipliers become “large,” which we564

define as the value 10?565

C. Exercise 5 in Chapter 1 analyzes the highest energy cosmic ray so far detected, with an energy566

of 3× 1020 electron volts. Let this cosmic ray be a speeding proton (mass = 1.63× 10−27
567

kilogram = 9.38× 108 electron-volts) that streaks tangentially past Earth just above its568

atmosphere, about 100 kilometers above the surface. Estimate the value of the largest Einstein569

multiplier in this case. Hint: Define vshell,x ≡ 1− δ, then use our approximation formula from570

inside the front cover to redefine the Einstein multipliers in terms of δ.571

D. The proton is a quantum particle; its “radius” is not a classical quantity. Nevertheless, estimate572

the tidal stress on the proton cosmic ray of Part C: Assume this proton radius to be 10−15
573

meter. What are the tidal accelerations at the surface of the “fastest proton” moving574

tangentially above Earth’s atmosphere?575

E. Repeat Part D for the “fastest proton” skimming past the surface of a neutron star with576

r/M = 10 kilometers.577

578

9.8 EXERCISES579

1. Smallest circular orbit for a hardened probe around the black hole580

We harden a probe so that it can withstand K times the maximum581

comfortable tidal acceleration of a human (Section 9.6). The probe enters a582

circular orbit around the black hole of mass M in which the tidal acceleration583

has this maximum. What is the r-value of this circular orbit?584

2. The “Perfect” (Star Trek) Rocket585

An advanced civilization develops the “perfect” rocket engine, one that586

combines matter and antimatter in a controlled way to yield photons587
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FIGURE 11 Exercise 2. Diagram showing initial and final states of a “perfect” rocket that
emits only radiation.

(high-energy gamma rays), all of which it directs out the rear of the rocket.588

This is called the “perfect” rocket engine because it has the greatest possible589

change of velocity in flat spacetime for a given fractional change in mass of the590

rocket ship. Analyze the perfect rocket using special relativity, including the591

definition γ ≡ (1− v2)−1/2.592

A. Write down the energy and momentum conservation laws using Figure593

11.594

B. Combine the conservations laws, show that γv =
(
γ2 − 1

)1/2
, and595

derive the equation for the mass ratio:596

minit

mfinal
= γ +

(
γ2 − 1

)1/2
(photon rocket, flat spacetime) (49)

where minit is the initial mass of the rocket ship.597

C. Find the mass ratio for γ = 10598

D. Show that the result of Part C is an example of the approximation599

minit

mfinal
≈ 2γ (when γ2 � 1) (photon rocket, flat spacetime) (50)

3. Newton’s Tangential Tidal Displacement Near Earth.600

Brave Monica Sefner “walks the plank” at the top of the 828-meter-tall Dubai601

Tower, Burj Khalifa (Figure 12), on which she moves horizontally outward to a602

point that clears the base of the tower. Then she steps off the plank attached603

to a bungee cord and falls freely for 600 meters, at which point the cord “takes604

hold” and slows her to a stop before she reaches the ground. As she leaves the605

plank, Monica stretches out her arms and releases from rest two marbles606



March 22, 2016 11:09 Orbiting160322v1 Sheet number 28 Page number 9-27 AW Physics Macros

Section 9.8 Exercises 9-27

FIGURE 12 Exercise 3. DubaiTower, 828 meters high.

FIGURE 13 Exercise 3. Construction to analyze tangential tidal acceleration of radially
falling marbles in Newton’s mechanics. Not to scale, and with gross differences in relative scale
of different parts of the diagram.

initially 2 meters apart horizontally. Just before the end of her 600-meter free607

fall, how much will the measured separation between these marbles have608

decreased? Will Monica be able to measure this decrease in separation? To609

answer these questions, use the following method of similar triangles (Figure610

13) or your own method.611

Assume that the air neither slows down nor deflects either marble from612

its straight-line course. Then each marble falls from rest toward the613

center of Earth, as indicated by arrows in Figure 13. Solve the problem614

using the ratio of sides of similar triangles abc and a′b′c′. These triangles615
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are upside down with respect to one another, but they are similar616

because their respective sides are parallel. We know the lengths of some617

of these sides (some greatly exaggerated in the figure): Side b′c′ = 600618

meters; side bc is effectively equal to the r-coordinate of Earth; side619

ab = 1 meters equals half of the original separation of the marbles; side620

a′b′ equals half the change in their separation after a drop of 600 meters.621

A. Use the ratio of sides of similar triangles to find the “half change” in622

separation as the two marbles fall 600 meters. From this result, find the623

entire change in separation between the marbles.624

B. Suppose that, as she steps off the plank, Monica releases the two625

marbles from rest with a vertical separation of 2 meters. From626

Newton’s equations (36) and (37), find the increase in separation of two627

marbles after they fall 600 meters, under the assumption that the628

marbles fall in a vacuum.)629

C. Re-derive your result of Part A using the simpler Part B plus equation630

(45).631

4. Measure your global radial coordinate r near a black hole?632

You are the captain of a spaceship with rockets blasting as you descend slowly633

toward a black hole along a radial line. In effect, you stand for a minute on634

each shell, then step downward sequentially to the next shell below. From635

earlier observations you know the value of the black hole mass M and would636

like to measure your map r-coordinate in order to be sure you are not near the637

event horizon.638

A. Describe how you can determine r from the initial acceleration of a test639

particle as you descend.640

B. Oops! Is there a paradox here? You have measured a map quantity, r,641

using observations on a local shell. Isn’t that illegal?642

5. Spaceship approach at relativistic speed643

The present chapter assumes that the approaching spaceship moves644

slowly—not at relativistic speed—with respect to the black hole, so that645

E/m ≈ 1. But the captain of the approaching spaceship does not want to646

waste valuable rocket fuel to slow down in order to apply the analysis of this647

chapter. She decides not to reduce the large value of her map energy E/m648

(with respect to the black hole) and instead to use her main thrusters to649

adjust the value of her map angular momentum L/(mM) so that she moves650

directly to a knife-edge orbit. If the rocket thrust that increase L/m also651

increases E/m, no problem: Just use the final value of E/m in what follows.652
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A. For a large value of map energy E/m� 1, the r-value of the knife-edge653

orbit is only slightly greater than 3M. Set r/M = 3(1 + δ) in (8). Show654

that:655

E

m
≈ 1

3δ1/2
(E/m� 1, knife-edge orbit) (51)

so that for the given large value of E/m,656

δ1/2 ≈ m

3E
(E/m� 1, knife-edge orbit) (52)

B. Show that for this case, equation (6) for the knife-edge orbit becomes:657

L

mM
≈
(

3

δ

)1/2

= 33/2E

m
(E/m� 1, knife-edge orbit) (53)

C. When observations are complete, how does the commander move away658

from the black hole? Give a general description of this maneuver; don’t659

sweat the details.660

6. Swoop Orbit661

Figure 14 shows the effective potential for a so-called swoop orbit of a stone662

whose map energy E/m is slightly smaller than that of the effective potential663

peak at small r-value.664

E*
r/M

E/m

E/m just below peak of effective potential

VL(r) m 

FIGURE 14 Exercise 6: Effective potential for the swoop orbit of a stone with map energy
E/m just below the (left-hand peak) of the effective potential.
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A. Make a rough sketch of the swoop orbit on the [r, φ] slice. Optional: Use665

interactive softward GRorbits to create and print this swoop orbit.666

Luc Longtin is a junior engineer at the Space Agency. He claims that with667

a small rocket thrust he can put the entire incoming spaceship into a swoop668

orbit that oscillates between r = 4M and r = 100M . This will allow direct669

observations from the spaceship at r-values between these two limits,670

completely eliminating the need for probes.671

The Space Agency rejects Luc’s plan as too risky. Luc invites you, the672

Chief Engineer, to a bar where he tries to convince you to that the Space673

Agency should reverse its decision and use his plan. Luc lays out his proposal674

as follows:675

B. Luc begins, “Look at the effective potential for L/(mM) = 4 in Figure676

6. The inner peak of this effective potential is at r = 4M with E/m = 1677

and the spaceship approaches from far away with E/m = 1 + ε, where678

ε = 0.001. My plan is that when the spaceship reaches, say r = 20, it679

uses a tiny rocket thrust to flip its map energy to E/m = 1− ε without680

changing its angular momentum (so the effective potential does not681

change). Let engineers worry about details of that thrust; just look at682

the result. The spaceship enters a swoop orbit that bounces off the683

effective potential peak just outside r = 4M . At that bounce,684

dr/dτ = 0, so equation (17) in Section 8.4 becomes”685

dr

dτ
= 0 =

(
E

m

)2

−
(

1− 2M

r

)(
1 +

L2

m2r2

)
(54)

0 = (1− ε)2 −
(

1− 2M

r

)(
1 +

16M2

r2

)
(55)

0 = 32

(
M

r

)3

− 16

(
M

r

)2

+ 2

(
M

r

)
− [1− (1− ε)2] (56)

Fill in the steps between (55) and (56).686

C. Luc continues, “We set up equation (56) for the bounce point near687

r = 4M . But this equation has only global map quantities in it, so is688

also correct for the bounce point at the large r-value at the outward689

end of the swoop orbit. At this large r-value, the first term on the right690

of (56) is small compared to the other terms, so neglect this first term.691

What remains is a quadratic in the small quantity M/r. Solve this692

quadratic to show that the only acceptable solution for large r/M is693

M/r = ε or r = M/ε = 100M for the right-hand bounce point of the694

swoop orbit.”695

Verify Luc’s calculations.696

C. Luc concludes, “So a very small rocket thrust installs the entire697

incoming spaceship in a swoop orbit that moves in and out between698
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r = 100M and an r-value slightly greater than r = 4M . No need for699

those silly probes. Astronauts can make observations in this orbit as700

long as they want as they move in and out. When they finish, a small701

rocket thrust similar to that described in Item B (during the outgoing702

portion of its orbit) flips the spaceship map energy back to703

E/m = 1 + ε, so the spaceship escapes the black hole.”704

Do you agree with this part of Luc’s plan?705

Will you recommend Luc’s program to the Space Agency?706
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