$1^{\text {st }}$ Midsemester Test 2020. 04. 06.

B

1. High-speed stroboscopic photographs show that the head of a golf club of mass 250 g is traveling at $40.0 \mathrm{~m} / \mathrm{s}$ just before it strikes a $40.0-\mathrm{g}$ golf ball at rest on a tee. After the collision, the club head travels (in the same direction) at $30.0 \mathrm{~m} / \mathrm{s}$. Find the speed of the golf ball just after impact.
a. $20,3 \mathrm{~m} / \mathrm{s}$
b. $80,2 \mathrm{~m} / \mathrm{s}$
c. $62,5 \mathrm{~m} / \mathrm{s}$
d. $56,7 \mathrm{~m} / \mathrm{s}$
e. none of them
2. A wheel starts from rest and rotates with constant angular acceleration to reach an angular speed of $7,5 \mathrm{rad} / \mathrm{s}$ in 3.00 s . The angular acceleration of the wheel is:
a. $41 / \mathrm{s}^{2}$
b. $41 / \mathrm{s}^{2}$
c. $2,51 / \mathrm{s}^{2}$
d. $61 / \mathrm{s}^{2}$
e. none of them
3. A rotating wheel rotates at constant angular acceleration. The initial angular velocity is 20 $\mathrm{rad} / \mathrm{s}$ in the beginning. The rotating wheel rotates 2.00 s and finally its angular speed is 64 $\mathrm{rad} / \mathrm{s}$. Find the angle in radians through which it rotates in this time:
a. 60 rad
b. 84 rad
c. 50 rad
d. 40 rad
e. none of them
4. A wheel starts from rest and rotates with constant angular acceleration to reach an angular speed of $16.0 \mathrm{rad} / \mathrm{s}$ in 4.00 s . Find the angle in radians through which it rotates in this time:
a. 20 rad
b. 4 rad
c. 32 rad
d. 18 rad
e. none of them
5. A horizontal 400-N merry-go-round is a solid disk of radius 4.0 m , started from rest by a constant horizontal force of 200.0 N applied tangentially to the edge of the disk. Find the angular acceleration of the disc:
a. $2,51 / \mathrm{s}^{2}$
b. $6,21 / \mathrm{s}^{2}$
c. $1,251 / \mathrm{s}^{2}$
d. $0,6251 / \mathrm{s}^{2}$
e. none of them
6. A uniform solid disc of mass 20.0 kg rolls without slipping on a horizontal surface. At the instant its center of mass has a speed of $5.0 \mathrm{~m} / \mathrm{s}$. Find the total kinetic energy of the disk!
a. 750 J
b. 1500 J
c. 3000 J
d. 375 J
e. none of them
7. A $0.50-\mathrm{kg}$ object is attached to a horizontal spring. The spring is initially stretched by 0.200 m , and the object is released from rest there. It proceeds to move without friction. The next time the speed of the object is zero is 0.20 s later. What is the maximum speed of the object?
a. $0,253 \mathrm{~m} / \mathrm{s}$
b. $3,14 \mathrm{~m} / \mathrm{s}$
c. $0,628 \mathrm{~m} / \mathrm{s}$
d. $1,356 \mathrm{~m} / \mathrm{s}$
e. none of them
8. A $1.50-\mathrm{kg}$ particle moves in the $\mathrm{x}-\mathrm{y}$ plane with a velocity of $\overrightarrow{\mathrm{v}}=2 \overrightarrow{\mathrm{i}}+6 \overrightarrow{\mathrm{j}} \mathrm{m} / \mathrm{s}$. Determine the angular momentum of the particle in Js, when its position vector is $\overrightarrow{\mathrm{r}}=5 \overrightarrow{\mathrm{i}}$:
a. $45 \overrightarrow{\mathrm{k}}$
b. $30 \overrightarrow{\mathrm{k}}$
c. $15 \overrightarrow{\mathrm{i}}$
d. $6 \vec{j}$
e. none of them
9. A $2000-\mathrm{kg}$ car stopped at a traffic light is struck from the rear by a $1200-\mathrm{kg}$ car, and the two become entangled, moving along the same path as that of the originally moving car. If the smaller car were moving at $40.0 \mathrm{~m} / \mathrm{s}$ before the collision, what is the velocity of the entangled cars after the collision?
a. $22 \mathrm{~m} / \mathrm{s}$
b. $15 \mathrm{~m} / \mathrm{s}$
c. $16 \mathrm{~m} / \mathrm{s}$
d. $6,67 \mathrm{~m} / \mathrm{s}$
e. none of them
10. A horizontal $600-\mathrm{N}$ merry-go-round is a solid disk of radius 2.0 m , and it rotates at 4 $\mathrm{rad} / \mathrm{s}$. Find the kinetic energy of the disk:
a. 960 J
b. 2560 J
c. 3000 J
d. 1280 J
e. none of them
11. The angular position of the particle is $\Theta(t)=2-3 t^{2}+2 t^{3}(\mathrm{rad})$, its average angular velocity between 1 s and 3 s is:
a. $221 / \mathrm{s}$
b. $231 / \mathrm{s}$
c. $161 / \mathrm{s}$
d. $251 / \mathrm{s}$
e. none of them
12. A ball of mass 0.15 kg is released from a height of 1.25 m . It rebounds from the floor to reach a height of 0.80 m . What impulse was given to the ball by the floor?
a. $1,35 \mathrm{Ns}$
b. $0,6 \mathrm{Ns}$
c. $0,75 \mathrm{Ns}$
d. $1,82 \mathrm{Ns}$
e. none of them
13. The angular velocity of the particle is $\omega(\mathrm{t})=2+3 \mathrm{t}^{2}+\mathrm{t}^{3}(1 / \mathrm{s})$, its average angular acceleration between 1 s and 3 s is:
a. $501 / \mathrm{s}^{2}$
b. $281 / \mathrm{s}^{2}$
c. $61 / \mathrm{s}^{2}$
d. $251 / \mathrm{s}^{2}$
e. none of them
14. The simple pendulum has a string of $0,25 \mathrm{~m}$. The period of the harmonic motion of the pendulum is:
a. $1,0 \mathrm{~s}$
b. $1,4 \mathrm{~s}$
c. $2,9 \mathrm{~s}$
d. $0,69 \mathrm{a}$
e. none of them
15. A 4.00 kg particle has a velocity of $-6 \vec{i}+8 \vec{j} \mathrm{~m} / \mathrm{s}$. The magnitude of the linear momentum:
a. 24 Ns
b. 15 Ns
c. 40 Ns
d. 32 Ns
e. none of them
16. A rotating wheel requires 4.00 s to rotate through 320 rad . Its angular speed at the end of the 4.00 s interval is $40 \mathrm{rad} / \mathrm{s}$. What is the magnitude of the constant angular acceleration of the wheel?
a. $10 \mathrm{1} / \mathrm{s}^{2}$
b. $120 \mathrm{1} / \mathrm{s}^{2}$
c. $20 \mathrm{1} / \mathrm{s}^{2}$
d. $160 \mathrm{1} / \mathrm{s}^{2}$
e. none of them
