$2^{\text {nd }}$ Make Up Test 2020. 05. 19.

1. A piano string having a mass per unit length equal to $1.25^{*} 10^{-3} \mathrm{~kg} / \mathrm{m}$ is under a tension of 1350 N. Find the speed of a wave traveling on this string.
a. $1320 \mathrm{~m} / \mathrm{s}$
b. $780 \mathrm{~m} / \mathrm{s}$
c. $1040 \mathrm{~m} / \mathrm{s}$
d. $520 \mathrm{~m} / \mathrm{s}$
e. none of them
2. The sound level at a distance of 2.00 m from a source is 140 dB . At what distance will the sound level be 100 dB ?
a. $3,40 \mathrm{~m}$
b. 20 m
c. 30 m
d. 200 m
e. none of them
3. A train is moving parallel to a highway with a constant speed of $20.0 \mathrm{~m} / \mathrm{s}$. A car is traveling in the same direction as the train with a speed of $40.0 \mathrm{~m} / \mathrm{s}$. The car horn sounds at a frequency of 510 Hz , and the train whistle sounds at a frequency of 400 Hz . When the car is behind the train, what frequency does an occupant of the car observe for the train whistle? ($\mathrm{v}_{\mathrm{s}}=340 \mathrm{~m} / \mathrm{s}$.)
a. 480 Hz
b. 422 Hz
c. 420 Hz
d. 375 Hz dB
e. none of them
4. A $1.20-\mathrm{kg}$ iron horseshoe initially at $600^{\circ} \mathrm{C}$ is dropped into a bucket containing 20.0 kg of water at $25.0^{\circ} \mathrm{C}$. What is the final temperature? (Ignore the heat capacity of the container, and assume that a negligible amount of water boils away.) $c_{\text {iron }}=450$ [SI]
a. $78,4^{\circ} \mathrm{C}$
b. $40,4^{\circ} \mathrm{C}$
c. $323,3{ }^{\circ} \mathrm{C}$
d. $28,71^{\circ} \mathrm{C}$
e. none of them
5. Two pulses traveling on the same string are described by

$$
y_{1}=\frac{5}{(3 x-4 t)^{2}+2} \quad y_{2}=\frac{-5}{(3 x+4 t-4)^{2}+2}
$$

At what point do the two pulses always cancel?
a. $\mathrm{x}=2 \mathrm{~m}$
b. $x=0,66 \mathrm{~m}$
c. $x=4 \mathrm{~m}$
d. $\mathrm{x}=2 \mathrm{~m}$
e. none of them
6. Just 36.00 g of water is placed in a 5.00 -L pressure cooker and heated to $427^{\circ} \mathrm{C}$. What is the pressure inside the container?
a. 2,83 atm
b. $35,25 \mathrm{~atm}$
c. $23,27 \mathrm{~atm}$
d. 2,5 atm
e. none of them
7. Standing at a crosswalk, you hear a frequency of 720 Hz from the siren of an approaching ambulance. After the ambulance passes, the observed frequency of the siren is 642 Hz . Determine the ambulance's speed from these observations. (Use $\mathrm{v}=340 \mathrm{~m} / \mathrm{s}$.)
a. $75 \mathrm{~km} / \mathrm{h}$
b. $56 \mathrm{~km} / \mathrm{h}$
c. $83 \mathrm{~km} / \mathrm{h}$
d. $72 \mathrm{~km} / \mathrm{h}$
e. none of them
8. A water hose 2.50 cm in diameter is used by a gardener to fill a $30.0-\mathrm{L}$ bucket. The gardener notes that it takes 1.00 min to fill the bucket. A nozzle with an opening of cross-
sectional area 0.500 cm 2 is then attached to the hose. The nozzle is held so that water is projected horizontally from a point 1.00 m above the ground. Over what horizontal distance can the water be projected?
a. $6,86 \mathrm{~m}$
b. $8,85 \mathrm{~m}$
c. $4,52 \mathrm{~m}$
d. $3,12 \mathrm{~m}$
e. none of them
9. A student holds a tuning fork oscillating at 400 Hz . He walks toward a wall at a constant speed of $2 \mathrm{~m} / \mathrm{s}$. (a) What beat frequency does he observe between the tuning fork and its echo? (Use v =340 m/s.)
a. $9,47 \mathrm{~Hz}$
b. $2,08 \mathrm{~Hz}$
c. $2,35 \mathrm{~Hz}$
d. $4,73 \mathrm{~Hz}$
e. none of them
10. A copper wire and a lead wire are joined together, end to end. The compound wire has an effective coefficient of linear expansion of $20.0 * 10^{-6}\left(1 /{ }^{\circ} \mathrm{C}\right)$! What fraction of the length of the compound wire is copper?
a. 0,35
b. 0,14
c. 0,45
d. 0,75
e. none of them
11. A $2.00-\mathrm{mol}$ sample of hydrogen gas is heated at constant pressure from 300 K to 600 K . Calculate the work done on the gas.
a. 3576 J
b. 12415 J
c. 4986 J
d. 7479 J
e. none of them
12. Water is filled to a height 2 m behind a dam of width 20 m . Determine the resultant force exerted by the water on the dam.
a. $4,4 * 10^{6} \mathrm{~N}$
b. $4,00 * 10^{5} \mathrm{~N}$
c. $10^{5} \mathrm{~N}$
d. $2 * 10^{4} \mathrm{~N}$
e. none of them
13. What must be the contact area between a suction cup (completely exhausted) and a ceiling if the cup is to support the weight of an $80.0-\mathrm{kg}$ student?
a. $7,74 * 10^{-3} \mathrm{~m}^{2}$
b. $598,4 \mathrm{~cm}^{2}$
c. $17,06 \mathrm{~cm}^{2}$
d. $0,589 \mathrm{~m}^{2}$
e. none of them
14. A piece of aluminum with mass 0.50 kg and density $2700 \mathrm{~kg} / \mathrm{m}^{3}$ is suspended from a string and then completely immersed in a container of water. Calculate the tension in the string after the metal is immersed.
a. $3,08 \mathrm{~N}$
b. $6,16 \mathrm{~N}$
c. 5.00 N
d. $4,13 \mathrm{~N}$
e. none of them
15. A refrigerator has a coefficient of performance equal to 3.00. The refrigerator takes in 153 J of energy from a cold reservoir in each cycle. Find the energy expelled to the hot reservoir in each cycle!
a. 459 J
b. 102 J
c. 204 J
d. 51 J
e. none of them
16. A sinusoidal wave is traveling along a rope. The oscillator that generates the wave completes 70.0 vibrations in 20.0 s . Also, a given maximum travels 450 cm along the rope in 10.0 s . What is the wavelength?
a. $0,128 \mathrm{~m}$
b. $1,575 \mathrm{~m}$
c. $0,533 \mathrm{~m}$
d. $0,023 \mathrm{~m}$
e. none of them
17. A large storage tank, open at the top and filled with water, develops a small hole in its side at a point 20.0 m below the water level. If the rate of flow from the leak is equal to $1.00 * 10^{-3}$ $\mathrm{m}^{3} / \mathrm{min}$, determine the speed at which the water leaves the hole.
a. $16,2 \mathrm{~m} / \mathrm{s}$
b. $19,8 \mathrm{~m} / \mathrm{s}$
c. $8,0 \mathrm{~m} / \mathrm{s}$
d. $15,5 \mathrm{~m} / \mathrm{s}$
e. none of them
18. A wave is described by $\mathbf{y}=(\mathbf{0 . 1 5} \mathbf{~ m}) \sin (\mathbf{0}, \mathbf{4 x}-\mathbf{5 0 t})$, where x is in meters, and t is in seconds. Determine the speed of the wave.
a. $7,5 \mathrm{~m} / \mathrm{s}$
b. $375 \mathrm{~m} / \mathrm{s}$
c. $20 \mathrm{~m} / \mathrm{s}$
d. $125 \mathrm{~m} / \mathrm{s}$
e. none of them
19. How much energy is required to change a $25.0-\mathrm{g}$ ice cube from ice at $-10.0^{\circ} \mathrm{C}$ to steam at $110^{\circ} \mathrm{C}$?
a. $7,6^{*} 10^{4} \mathrm{~J}$
b. $1,22 * 10^{5} \mathrm{~J}$
c. $1,02 * 10^{5} \mathrm{~J}$
d. $5,7 * 10^{4} \mathrm{~J}$
e. none of them
20. A cube of wood having an edge dimension of 8.0 cm and a density of $650 \mathrm{~kg} / \mathrm{m}^{3}$ floats on water. What is the distance from the horizontal top surface of the cube to the water level?
a. $6,5 \mathrm{~cm}$
b. $1,25 \mathrm{~cm}$
c. $2,80 \mathrm{~cm}$
d. $3,50 \mathrm{~cm}$
e. none of them

