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C H A P T E R

2 The Bridge: Special Relativity to
General Relativity16

Edmund Bertschinger & Edwin F. Taylor *

Law 1. Every body perseveres in its state of being at rest or of17

moving uniformly straight forward except insofar as it is18

compelled to change its state by forces impressed.19

—Isaac Newton20

At that moment there came to me the happiest thought of my21

life . . . for an observer falling freely from the roof of a house no22

gravitational field exists during his fall—at least not in his23

immediate vicinity. That is, if the observer releases any objects,24

they remain in a state of rest or uniform motion relative to25

him, respectively, independent of their unique chemical and26

physical nature. Therefore the observer is entitled to interpret27

his state as that of “rest.”28

—Albert Einstein29

2.1 LOCAL INERTIAL FRAME30

We can always and (almost!) anywhere “let go” and drop into a local inertial frame.31

Law 1 above, Newton’s First Law of Motion, is the same as our definition of32

an inertial frame (Definition 1, Section 1.1). For Newton, gravity is just one ofNo force of gravity
in inertial frame

33

many forces that can be “impressed” on a body. Einstein, in what he called34

the happiest thought of his life, realized that on Earth, indeed as far as we35

know anywhere in the Universe—except on the singularity inside the black36

hole—we can find a local “free-fall” frame in which an observer does not feel37

gravity. We understand instinctively that always and anywhere we can removeLocal inertial frame
available anywhere

38

*Draft of Second Edition of Exploring Black Holes: Introduction to General Relativity
Copyright c© 2014 Edmund Bertschinger, Edwin F. Taylor, & John Archibald Wheeler. All

rights reserved. Latest drafts at dropsite exploringblackholes.com.

2-1



March 16, 2016 13:37 SRtoGR160316v1 Sheet number 3 Page number 2-2 AW Physics Macros

2-2 Chapter 2 The Bridge: Special Relativity to General Relativity

FIGURE 1 Vito Ciaravino, a University of Michigan student, experiences weightlessness
as he rides the Vomit Comet. NASA photo.

the floor or cut the cable that holds us up and immediately drop into a local39

inertial frame. There is no force of gravity in Einstein’s inertial frame—“at40

least not in his immediate vicinity.”41

Einstein’s phrase “in his [the observer’s] immediate vicinity” brings a42

warning: Generally, an inertial frame is local. Section 1.11 showed that tidalIn curved spacetime
inertial frame is local.

43

effects can limit the extent of distances and times measured in a frame in44

which special relativity is valid and correctly describes motions and other45

observations.46

We call a local inertial frame a free-fall frame, even though from someInertial frame ≡
free-fall frame

47

viewpoints the frame may not be falling. A rising rocket immediately after48

burnout above Earth’s atmosphere provides a free-fall frame, even while it49

continues temporarily to climb away from the surface. So does an unpowered50

spaceship in interstellar space, which is not “falling” toward anything.51

Vito Ciaravino (Figure 1) floats freely inside the Vomit Comet, a NASA52

model C9 cargo plane guided to follow, for 25 to 30 seconds, the same53

trajectory above Earth’s surface that a free projectile would follow in the54

absence of air resistance (Figure 2). As Vito looks around inside the cabin, heLaws of physics
identical in every
inertial frame.

55

cannot tell whether his local container is seen by people outside to be rising or56

falling—or tracing out some other free-fall orbit. Indeed, he might forgetfully57

think for a moment that his capsule is floating freely in interstellar space. The58

Principle of Relativity tells us that the laws of physics are the same in every59

free-fall frame.60

Newton claims that tidal accelerations are merely the result of the61

variation in gravity’s force from place to place. But Einstein asserts: There is62

no such thing as the force of gravity. Rather, gravitational effects (including63

tides) are evidence of spacetime curvature. In Chapter 3 we find that tides are64
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FIGURE 2 Trajectory followed by the Vomit Comet airplane above Earth’s surface. Portions
of the trajectory marked “2 g” and “zero g” are parabolas. During the zero-g segment, which
lasts up to 30 seconds, the plane is guided to follow the trajectory of a free projectile in the
absence of air resistance. By guiding the plane through different parabolic trajectories, the pilot
can (temporarily!) duplicate the gravity on Mars (one-third of g on Earth) or the Moon (one-sixth
of g on Earth).

but one consequence of spacetime curvature. Many effects of curvature cannotSpacetime curvature
has many effects.

65

be explained or even described using Newton’s single universal frame in which66

gravity is a force like any other. General relativity is not just an alternative to67

Newton’s laws; it bursts the bonds of Newton’s vision and moves far beyond it.68

Flat and curved surfaces in space can illuminate, by analogy, features ofCurved surface
compared to
curved spacetime

69

flat and curved spacetime. In the present chapter we use this analogy between70

a flat or curved surface, on the one hand, and flat or curved spacetime, on the71

other hand, to bridge the transition between special relativity (SR) and72

general relativity (GR).73

2.2 FLAT MAPS: LOCAL PATCHES ON CURVED SURFACES74

Planning short and long trips on Earth’s spherical surface75

Spacetime curvature makes it impossible to use a single inertial frame to relateGeneral relativity
sews together
local inertial frames.

76

events that are widely separated in spacetime. General relativity makes the77

connection by allowing us to choose a global coordinate system that effectively78

sews together local inertial frames. General relativity’s task is similar to yours79

when you lay out a series of adjacent small flat maps to represent a long path80

between two widely separated points on Earth. We now examine this analogy81

in detail.82

Figure 3 is a flat road map of the state of Kansas, USA. Someone who83

plans a trip within Kansas can use the map scale at the bottom of this mapFlat Kansas map
“good enough”
for local traveler.

84

to convert centimeters of length on the map between two cities to kilometers85
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FIGURE 3 Road map of the state of Kansas, USA. Kansas is small enough, relative
to the entire surface of Earth, so that projecting Earth’s features onto this flat map does not
significantly distort separations or relative directions. (Copyright geology.com)

that he drives between these cities. The map reader has confidence that using86

the same map scale at different locations in Kansas will not lead to significant87

errors in predicting separations between cities—because “flat Kansas”88

conforms pretty well to the curved surface of Earth. Figure 4 shows a flat89

patch bigger than Kansas on which map distortions will still be negligible for90

most everyday purposes. In contrast, at the edge of Earth’s profile in Figure 491

is an edge-on view of a much larger flat surface. A projection from the rounded92

Earth surface onto this larger flat surface inevitably leads to some small93

distortions of separations compared to those actually measured along the94

curved surface of Earth. We define a space patch as a flat surface on which a95

projected map is sufficiently distortion-free for whatever purpose we are using96

the map.97

DEFINITION 1. Space patch98

A space patch is a flat surface purposely limited in size so that a mapDefinition:
space patch

99

projected onto it from a curved surface does not result in significant100

distortions of separations between locations for the purpose of a given101

measurement or journey.102

Let’s plan an overland trip along a path that we choose between the citySingle flat map
not accurate for
a long trip.

103

of Amsterdam in the Netherlands and the city of Vladivostok in Siberia. We104

recognize that on a single flat map the path of our long trip will be distorted.105

How then do we reckon the trip length from Amsterdam to Vladivostok? This106

total length for a long trip across much of the globe can be estimated using a107

series of local flat maps on slightly overlapping space patches (Figure 5). We108

sum the short separations across these small flat maps to reckon the total109

length of the long, winding path from Amsterdam to Vladivostok.110

On each local flat map we are free to fix positions using a square array of111

perpendicular coordinates (“Cartesian coordinates”) in north-south112
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FIGURE 4 Small space patch and large flat plane tangent to Earth’s surface. Projecting
Earth’s features onto the large flat plane can lead to distortion of those features on the resulting
flat map. For precise mapmaking, the larger surface does not satisfy the requirements of a
space patch.

FIGURE 5 To reckon the total length of the path between Amsterdam and Vladivostok,
sum the short separations across a series of small, overlapping, flat maps lined up along our
chosen path. One of these small, flat maps covers all of Latvia. The smaller each map is—
and the greater the total number of flat maps along the path—the more accurately will the sum
of measured distances across the series of local maps represent the actually-measured total
length of the entire path between the two cities.

(y-coordinate) and east-west (x-coordinate) directions applied to that113

particular patch, for example on our regional map of Latvia. The distance orOn each small
flat map, use the
Pythagorean
Theorem.

114

space separation between two points, ∆sLatvia, that we calculate using the115

Pythagorean Theorem applied to the flat Latvian map is almost equal to the116

separation that we would measure using a tape measure that conforms to117

Earth’s curved surface. Use the name local space metric to label the local,118

approximate Pythagorean theorem:119

∆s2
Latvia ≈ ∆x2

Latvia + ∆y2
Latvia (local space metric on Latvian patch) (1)
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Comment 1. Notation for Approximate Metrics120

Equation (1) displays the notation that we use throughout this book for an121

approximate metric on a flat patch. First, the symbol capital delta, ∆, stands for∆ means
increment, a
finite but small
separation.

122

increment, a measurable but still small separation that gives us “elbow room” to123

make measurements. This replaces the unmeasurably small quantity indicated by the124

zero-limit calculus differential d. Second, the approximately equal sign, ≈,125

acknowledges that, even though our flat surface is small, projection onto it from the126

curved surface inevitably leads to some small distortion. Finally, the subscript label,127

such as “Latvia,” on each incremental variable names the local patch.128

We order flat maps from each nation through which we travel from129

Amsterdam to Vladivostok and measure little separations on each map130

(Figure 5). In equation (1), from our choice of axes, ∆yLatvia aligns itself with131

a great circle that passes through the north geographic pole, while ∆xLatvia132

lies in the perpendicular east-west direction.133

On a more ancient local flat map, the coordinate separation ∆yLatvia,rot134

may lie in the direction of magnetic north, a direction directly determinedGeographic north
and magnetic north
yield same ∆s.

135

with a compass. Choose ∆xLatvia,rot to be perpendicular to ∆yLatvia,rot. Then136

in rotated coordinates using magnetic north the same incremental separation137

between points along our path is given by the alternative local space metric138

∆s2
Latvia ≈ ∆x2

Latvia,rot + ∆y2
Latvia,rot = ∆x2

Latvia + ∆y2
Latvia (2)

These two local maps are rotated relative to one another. But the value of139

the left side is the same. Why? First, because the value of the left side is140

measured directly; it does not depend on any coordinate system. Second, the141

values of the two right-hand expressions in (2) are equal because the142

Pythagorean theorem applies to all flat maps. Conclusion: Relative rotationPythagorean
Theorem valid on
rotated flat maps.

143

does not change the predicted value of the incremental separation ∆sLatvia144

between nearby points along our path. So when we sum individual separations145

to find the total length of the trip, we make no error when we use a variety of146

maps if their only difference is relative orientation toward north.147

2.3 GLOBAL COORDINATE SYSTEM ON EARTH148

Global space metric using latitude and longitude149

A professional mapmaker (cartographer) gently laughs at us for laying side by150

side all those tiny flat maps obtained from different and possibly undependable151

sources. She urges us instead to use the standard global coordinate system ofUse latitude
and longitude.

152

latitude and longitude on Earth’s surface (Figure 6). She points out that a153

hand-held Global Positioning System (GPS) receiver (Chapter 4) verifies to154

high accuracy our latitude and longitude at any location along our path.155

Combine these readings with a global map—perhaps already installed in the156

GPS receiver—to make easy the calculation of differential displacements ds on157

each local map, which we then sum (integrate) to predict the total length of158

our path.159



March 16, 2016 13:37 SRtoGR160316v1 Sheet number 8 Page number 2-7 AW Physics Macros

Section 2.3 Global Coordinate System on Earth 2-7

FIGURE 6 Conventional global coordinate system for Earth using angles of latitude λ and
longitude φ.

What price do we pay for the simplicity and accuracy of latitude and160

longitude coordinates? Merely our time spent receiving a short tutorial on the161

surface geometry of a sphere. Our cartographer lays out Figure 6 that showsSpace metric in
global coordinates

162

angles of latitude λ and longitude φ, then gives us a third version of the space163

metric—call it a global space metric—that uses global coordinates to164

provide the same incremental separation ds between nearby locations as does a165

local flat map:166

ds2 = R2 cos2 λ dφ2 +R2dλ2 (0 ≤ φ < 2π and − π/2 ≤ λ ≤ +π/2) (3)

Here R is the radius of Earth. For a quick derivation of (3), see Figure 7.167

Why does the function cosλ appear in (3) in the term with coordinateGlobal space metric
contains coordinates
as well as
differentials.

168

differential dφ? Because north and south of the equator, curves of longitude169

converge toward one another, meeting at the north and south poles. When we170

move 15o of longitude near the equator we travel a much longer east-west path171

than when we move 15o of longitude near the north pole or south pole. Indeed,172

very close to either pole the traveler covers 15o of longitude when he strolls173

along a very short east-west path.174

RIDDLE: A bear walks one kilometer south, then one kilometer east, then175

one kilometer north and arrives back at the same point from which she176

started. Three questions:177

1. What color is the bear?178

2. Through how many degrees of longitude does the bear walk eastward?179

3. How many kilometers must the bear travel to cover the same number of180

degrees of longitude when she walks eastward on Earth’s equator?181

The global space metric (3) is powerful because it describes the differential182

separation ds between adjacent locations anywhere on Earth’s surface.183
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FIGURE 7 Derive the global space metric (3), as the sum of the squares of the north-south
and east-west sides of a little box on Earth’s surface. The north-south side of the little box is
Rdλ, where R is the radius of Earth and dλ is the differential change in latitude. The east-west
side is R cosλ dφ. The global space metric (3) adds the squares of these sides (Pythagorean
Theorem!) to find the square of the differential separation ds2 across the diagonal of the little
box.

However, we still want to relate global coordinates to a local measurement184

that we make anywhere on Earth. To achieve this goal, recall that on every185

space patch Earth’s surface is effectively flat. On this patch we apply ourAdapt global
metric on a
small patch . . .

186

comfortable local Cartesian coordinates, which allow us to use our187

super-comfortable Pythagorean Theorem—but only locally!188

For example the latitude λ does not vary much across Latvia, so we can189

use a constant (average) λ̄. Then we write:190
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∆s2
Latvia ≈ R2 cos2 λ̄∆φ2 +R2∆λ2 (in or near Latvia) (4)

≈ ∆x2
Latvia + ∆y2

Latvia

In the first line of (4) the coefficient R2 is a constant. (We idealize the Earth191

as a sphere with the same radius to every point on its surface.) Then the. . . to make
a local metric
with Cartesian
coordinates.

192

coefficient R2 cos2 λ̄ is also constant, but in this case only across the local193

patch with average latitude λ̄. Oh, joy! Constant coefficients allow us to define194

local Cartesian frame coordinates that lead to the second line in equation (4):195

∆xLatvia ≡ R cos λ̄∆φ and ∆yLatvia ≡ R∆λ (in or near Latvia) (5)

Over and over again in this book we go from a global metric to a local196

metric, following steps similar to those of equations (4) and (5).197

Comment 2. No reverse transformation198

Important note: This global-to-local conversion cannot be carried out in reverse. A199

local metric tells us nothing at all about the global metric from which it was derived.200

The reason is simple and fundamental: A space patch is, by definition, flat: it carries201

no information whatsoever about the curvature of the surface from which it was202

projected.203

Global space metric (3) provides only the differential separation ds204

between two adjacent points that have the “vanishingly small” separation205

demanded by calculus. To predict the measured length of a path from206

Amsterdam to Vladivostok, use integral calculus to integrate (“sum”) this207

differential ds along the entire path. Calculus advantage: Because allIntegrate differential
separation ds to
calculate exact
length of long path.

208

increments are vanishingly small (for which each differential patch of Earth209

has, in this limit, no curvature at all), their integrated sum—the total210

length—is completely accurate. Similarly, when we use local space metrics (1)211

or (2) to approximate the total length, we sum the small separations across212

local maps, each of which is confined to a single patch. Multiple-patch213

advantage: We can use Cartesian coordinates to make direct local214

measurements, then simply sum our results to obtain an approximate total215

distance.216

Suppose that our goal is to find a path of shortest length between these217

two cities. Along our original path, we move some of the intermediate pointsFind shortest path 218

perpendicular to the path and recalculate its total length, repeating the219

calculus integration or summation until any alteration of intermediate220

segments no longer decreases the total path length between our fixed end221

locations, Amsterdam and Vladivostok. We say that the path that results from222

this process has the shortest length of all neighboring paths between these two223

cities on Earth. Everyone, using any global coordinate system or set of local224

frame coordinates whatsoever, agrees that we have found the path of shortest225

length near our original path.226

Does Earth care what global coordinate system we use to indicateUse any global
coordinate system
whatsoever.

227

positions on it? Not at all! An accident of history (and international politics)228
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fixed the zero of longitude at Greenwich Observatory near London, England. If229

Earth did not rotate, there would be no preferred axis capped by the north230

pole; we could place this pole of global coordinates anywhere on the surface.231

No one can stop us from abandoning latitude and longitude entirely and232

constructing a global coordinate system that uses a set of squiggly lines on233

Earth’s surface as coordinate curves (subject only to some simple requirementsSquiggly global
coordinates lead to
same predictions.

234

of uniqueness and smoothness). That squiggly coordinate system leads to a235

global space metric more complicated than (3), but one equally capable of236

providing the invariant differential separation ds on Earth’s surface—a237

differential separation whose value is identical for every global coordinate238

system. We can use the global space metric to translate differences in239

(arbitrary!) global coordinates into measurable separations on a space patch.240

Generalize further: Think of a potato—or a similarly odd-shaped asteroid.241

Cover the potato with an inscribed global coordinate system and derive from242

that coordinate system a space metric that tells us the differential separation243

ds between any two adjacent points on the potato. Typically this space metricMany global metrics
for the surface of
a given potato

244

will be a function of coordinates as well as of coordinate differentials, because245

the surface of the potato curves more at some places and curves less at other246

places. Then change the coordinate system and find another space metric. And247

again. Every global space metric gives the same value of ds, the invariant248

(measureable) separation between the same two adjacent points on the potato.249

Next draw an arbitrary continuous curve connecting two points far apart250

on the potato. Use any of the metrics again to compute the total length along251

this curve by summing the short separations between each successive pair of252

points. Result: Since every global space metric yields the same incrementalEveryone agrees
on the total length
of a given path.

253

separation between each pair of nearby points on that curve, it will yield the254

same total length for a given curve connecting two distant points on that255

surface. The length of the curve is invariant; it has the same value whatever256

global coordinate system we use.257

Finally, find a curve with a shortest total length along the surface of EarthEveryone agrees
that a given path
is shortest.

258

between two fixed endpoints. Since every global space metric gives the same259

length for a curve connecting two points on the surface, therefore every global260

space metric leads us to this same path of minimum length near to our original261

path.262

One can draw a powerful analogy between the properties of a curved263

surface and those of curved spacetime. We now turn to this analogy.264

2.4 MOTION OF A STONE IN CURVED SPACETIME265

A free stone moves so that its wristwatch time along each segment of its worldline is266

a maximum.267

Relativity describes not just the separation between two nearby points along a268

traveler’s path, but the spacetime separations between two nearby events that269

lie along the worldline of a moving stone. Time and space are inexorably tied270

together in the observation of motion.271
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How does a free stone move? We know the special relativity answer: WithStone follows
a straight worldline
in local inertial frame.

272

respect to an inertial frame, a free stone moves along a straight worldline, that273

is with constant speed on a straight trajectory in space. The Twin Paradox274

(Section 1.6) gives us an alternative description of free motion in an inertial275

frame, namely the Principle of Maximal Aging for flat spacetime: A free stone276

moves with respect to an inertial frame so that its wristwatch time between277

initial and final events is a maximum.278

How do we generalize the special-relativity Principle of Maximal Aging in279

order to predict the motion of a stone in curved spacetime? At the outset weHow to generalize
to GR Principle of
Maximal Aging?

280

don’t know the answer to this question, so we adopt a method similar to the281

one we used for our trip from Amsterdam to Vladivostok: There we laid a282

series of adjacent flat maps along the path (Figure 5) to create a map book or283

atlas that displays all the maps intermediate between the two distant cities.284

Then we determined the incremental separation along the straight segments of285

path on each flat map; finally we summed these incremental separations to286

reckon the total length of our journey.287

Start the spacetime analog with the spacetime metric in flat288

spacetime—equation (1.35):289

dτ2 = dt2lab − ds2
lab = dt2rocket − ds2

rocket (flat spacetime) (6)

where dtlab and dslab are the differential local frame time and space separations290

respectively between an adjacent pair of events in a particular frame, and dτ is291

the invariant (frame-independent) differential wristwatch time between them.292

Next we recall Einstein’s “happiest thought” (initial quote) and decide to293

cover the stone’s long worldline with a series of adjacent local inertial frames.Use adjacent
inertial frames.

294

We need to stretch differentials in (6) to give us advances in wristwatch time295

that we can measure between event-pairs along the worldline. (By definition,296

nobody can measure directly the “vanishingly small” differentials of calculus.)297

Around each pair of nearby events along a worldline we install a local inertial298

frame. Write the metric for each local inertial frame to reflect the fact that299

local spacetime is only approximately flat:300

∆τ2 ≈ ∆t2inertial −∆s2
inertial (“locally flat” spacetime) (7)

This approximation for the spacetime interval is analogous to the301

approximate equations (1) and (4) for Latvia. Equation (7) extends rigorous302

spacetime metric (6) to measurable quantities beyond the reach of differentials303

but keeps each pair of events within a sufficiently small spacetime region so304

that distortions due to spacetime curvature can be ignored as we carry out a305

particular measurement or observation. We call such a finite region of306

spacetime a spacetime patch. The effectively flat spacetime patch allows us307

to extend metric (6) to a finite region in curved spacetime large enough to308

accommodate local coordinate increments and local measurements. Equation309

(7) employs these local increments, indicated by the symbol capital delta, ∆,310

to label a small but finite difference.311
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DEFINITION 2. Spacetime patch312

A spacetime patch is a region of spacetime large enough not to be limitedSpacetime
patch

313

to differentials but small enough so that curvature does not noticeably affect314

the outcome of a given measurement or observation on that patch.315

Comment 3. What do “large enough” and “small enough” mean?316

Our definition of a patch describes its size using the phrases “large enough” and317

“small enough”. What do these phrases mean? Can we make them exact? Sure, but318

only when we apply them to a particular experiment. For every experiment, we can319

learn how to estimate a maximum local spatial size and a maximum local time lapse320

of the spacetime patch so that we will not detect effects of curvature on the results of321

our experiment. Until we choose a specific experiment, we cannot decide whether or322

not it takes place in a sufficiently small spacetime patch to escape effects of323

spacetime curvature.324

Equation (7) implies that we have applied local inertial coordinates to the325

patch. We call the result a local inertial frame, and use special relativity toApply special
relativity in
local inertial
frame.

326

describe motion in it. In particular the expression for a stone’s327

energy—equation (28) in Section 1.7—is valid for this local frame:328

Einertial

m
= lim

∆τ→0

∆tinertial

∆τ
=

1

(1− v2
inertial)

1/2
(8)

Here vinertial and Einertial are the speed and energy of the stone, respectively,329

measured in the local inertial frame using the tools of special relativity. The330

maximum size of a local inertial frame will depend on the sensitivity of our331

current measurement to local curvature. However, the minimum size of this332

frame is entirely under our control. In equation (8) we go to the differential333

limit to describe the instantaneous speed of a stone.334

We assert but do not prove that we can set up a local inertial335

frame—Einstein’s happiest thought—almost everywhere in the Universe. For336

more details on the spacetime patch and its coordinates, see Section 5.7.337

Now we generalize the special relativistic Principle of Maximal Aging to338

the motion of a stone in curved spacetime. Applying the Principle of Maximal339

Aging to a single local inertial frame tells us nothing new; it just leads to theUse adjoining
(flat) spacetime
patches.

340

original prediction: motion along a straight worldline in an inertial frame—this341

time a local one. How do we determine the effect of spacetime curvature?342

Generalize as little as possible by using two adjoining flat patches.343

DEFINITION 3. Principle of Maximal Aging (Special and General344

Relativity)345

The Principle of Maximal Aging says that a free stone follows a worldline346

through spacetime (flat or curved) such that its wristwatch time (aging) is a347

maximum across every pair of adjoining spacetime patches.348

In Sections 1.7 and 1.8 we used the Principle of Maximal Aging to find349

expressions for the energy and the linear momentum, constants of motion of a350

free stone in flat spacetime. In Section 6.2, the Principle of Maximal Aging is351



March 16, 2016 13:37 SRtoGR160316v1 Sheet number 14 Page number 2-13 AW Physics Macros

Section 2.5 Global spacetime metric in curved spacetime 2-13

central to finding an expression for the so-called global energy, a global352

constant of motion for the free stone near a black hole. Section 8.2 extends theTwo GR tools:
1. spacetime metric
2. Principle of
Maximal Aging

353

use of the Principle of Maximal Aging to derive an expression for the so-called354

global angular momentum, a second constant of motion for a free stone near a355

black hole. (Near a center of attraction, linear momentum is not a constant of356

motion for a free stone, but angular momentum is.) Chapter 11 adapts the357

Principle to describe the global motion of the fastest particle in the Universe:358

the photon. The spacetime metrics (global and local) and the359

Principle of Maximal Aging are the major tools we use to study360

general relativity.361

2.5 GLOBAL SPACETIME METRIC IN CURVED SPACETIME362

Wristwatch time between a pair of nearby events anywhere in a large spacetime363

region364

The cartographer laughed at us for fooling around with flat maps valid only365

over tiny portions of a curved surface in space. She displayed a metric (3) inSearch for
metric in global
coordinates.

366

global latitude and longitude coordinates, a global space metric that delivers367

the differential separation ds between two nearby stakes driven into the368

ground differentially close to one other anywhere on Earth’s curved surface. Is369

there a corresponding global spacetime metric that delivers the differential370

wristwatch time dτ between adjacent events expressed in global spacetime371

coordinates for the curved spacetime region around, say, a black hole?372

Yes! The global spacetime metric is the primary tool of general relativity.373

Instead of tracing a path from Amsterdam to Vladivostok across the curved374

surface of Earth, we want to trace the worldline of a stone through spacetimeGR global metric
delivers dτ .

375

in the vicinity of a (non-spinning or spinning) Earth, neutron star, or black376

hole. To do this, we set up a convenient (for us) global spacetime coordinate377

system. We submit these coordinates plus the distribution of mass-energy378

(plus pressure, it turns out) to Einstein’s general relativity equations.379

Einstein’s equations return to us a global spacetime metric for our submitted380

coordinate system and distribution of mass-energy-pressure. This metric is the381

key tool that describes curved spacetime, just as the space metric in (3) was382

our key tool to describe a curved surface in space.383

How do we use the global spacetime metric? Its inputs consist of global384

coordinate expressions and differential global coordinate separations—such as385

dt, dr, dφ—between an adjacent pair of events. The output of the spacetime386

metric is the differential wristwatch time dτ between these events. We then387

convert the global metric to a local one by stretching the differentials d to388

increments ∆, for example in (7), that track the wristwatch time of the stone389

as it moves across a local inertial frame. If the stone is free—that is, if its390

motion follows only the command of the local spacetime structure—then the391

Principle of Maximal Aging tells us that the stone moves so that its summed392

wristwatch time is maximum across every pair of adjoining spacetime patches393

along its worldline.394
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Does the black hole care what global coordinate system we use in deriving395

our global spacetime metric? Not at all! General relativity allows us to use anyUse any global
coordinate system
whatsoever.

396

global coordinate system whatsoever, subject only to some requirements of397

smoothness and uniqueness (Section 5.8). The metric for every alternative398

global coordinate system predicts the same value for the wristwatch time399

summed along the stone’s worldline. We have (almost) complete freedom to400

choose our global coordinate system.401

What does one of these global spacetime metrics around a black hole look402

like? On the left will be the squared differential of the wristwatch time dτ2. OnContents of GR
global metric

403

the right is an expression that depends on the mass-energy-pressure of the404

center of attraction, on its spin if it is rotating, and on differentials of the405

global coordinates between adjacent events. Moreover, by analogy to equation406

(3) and Figure 7, the spacetime separation between adjacent events can also407

depend on their location, so we expect global coordinates to appear on the408

right side of the global spacetime metric as well. For a black hole, the result is409

a global spacetime metric with the general form:410

dτ2 = Function of


1. central mass/energy/pressure,
2. spin, if any,
3. global coordinate location,
4.differentials of
global coordinates

 (black hole metric)(9)

Why do differentials appear in equation (9)? Think of the analogy to aCurvature requires
use of differentials
in the metric.

411

spatial surface. On a (flat) Euclidean plane we are not limited to differentials,412

but can use total separations: the Pythagorean theorem is usually written413

a2 + b2 = c2. However, on a curved surface such as that of a potato, this414

formula is not valid globally. The Pythagorean theorem, when applied to415

Earth’s surface, is true only locally, in its approximate incremental form (1)416

and (2). Metrics in curved spacetime are similarly limited to differentials.417

However, we will repeatedly use transformations from global coordinates to418

local coordinates—similar to the global-to-flat-map transformation of419

equations (5)—to provide a comfortable local inertial frame metric (7) in420

which to make measurements and observations and to analyze results with421

special relativity.422

Chapter 3, Curving, introduces one global spacetime metric, the423

Schwarzschild metric of the form (9) in the vicinity of the simplest black hole,424

a black hole with mass but no spin. Study of the Schwarzschild metric revealsDifferent metrics
for the same
and different
spacetimes

425

many central concepts of general relativity, such as stretching of space and426

warping of time. Chapter 7, Inside the Black Hole, displays a different global427

metric for the same nonrotating black hole. Chapters 17 through 21 use a428

metric of the form (9) for a spinning black hole. Metrics with forms different429

from (9) describe gravitational waves (Chapter 16), and the expanding430

Universe (Chapters 14 and 15). In each case we apply the Principle of431

Maximal Aging to predict the motion of a stone or photon—and for the432

expanding universe the motion of a galaxy—in the region of curved spacetime433

under study.434
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The global coordinate system plus the global metric, taken together,435

provide a complete description of the spacetime region to which they apply,436

such as around a black hole. (Strictly speaking, the global coordinate systemComplete description
of spacetime

437

must include information about the range of each coordinate, a range that438

describes its “connectedness”—technical name, its topology.)439

2.6 THE DIFFERENCE BETWEEN SPACE AND SPACETIME440

Cause and effect are central to science.441

The formal difference between space metrics such as (1) and (3) and spacetime442

metrics such as (6) and (7) is the negative sign in the spacetime metric between443

the space part and the time part. This negative sign establishes a fundamental444

relation between events in spacetime geometry: that of a possible cause and445

effect. Cause and effect are meaningless in space geometry; geometricMinus sign in
metric implies
cause and effect.

446

structures are timeless (a feature that delighted the ancient Greeks). No one447

says, “The northern hemisphere of Earth caused its southern hemisphere.” In448

spacetime, however, one event can cause some other event. (We already know449

from Chapter 1 that for some event-pairs, one event cannot cause the other.)450

How is causation (or its impossibility) implied by the minus sign in the451

spacetime metric? See this most simply in the interval equation for flat452

spacetime with one space dimension:453

τ2 = t2lab − x2
lab = t2rocket − x2

rocket (flat spacetime) (10)

Figure 8 shows the consequences of this minus sign for events in the past and454

future of selected Event A. The relations between coordinates of the same455

event on the two diagrams are calculated using the Lorentz transformation456

(Section 1.10). The left panel in Figure 8 shows the laboratory spacetime457

diagram. Light flashes that converge on or are emitted from Event A trace outLight cones
partition spacetime.

458

past and future light cones. These light cones provide boundaries for events in459

the past that can influence A and events in the future that A can influence.460

For example, thin lines that converge on Event A from events B, C, and D in461

its past could be worldlines of stones projected from these earlier events, any462

one of which could cause Event A. Similarly, thin lines diverging from A and463

passing through events E, F, and G in its future could be worldlines of stones464

projected from Event A that cause these later events.465

The right panel of Figure 8 shows the rocket spacetime diagram, which466

displays the same events plotted in the left side laboratory diagram. The key467

idea illustrated in Figure 8 is that the worldline of a stone projected, for468

example, from Event A to event G in the laboratory spacetime diagram isCause and effect
are preserved.

469

transcribed as the worldline of the same stone projected from A to G470

(although with a different speed) in the rocket diagram. If this stone projected471

from A causes event G in one frame, then it will cause event G in both472

frames—and indeed in all possible inertial frames that surround Event A.473

More: As the laboratory observer clocks a stone to move with a speed less474

than that of light in the laboratory frame, the rocket observer also clocks the475
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tlab trocket

xrocketxlab

FIGURE 8 Preservation of cause and effect in special relativity. The laboratory spacetime
diagram is on the left, an unpowered rocket spacetime diagram is on the right. Both diagrams
plot a central Event A, and other events that may or may not cause A or be caused by A. Heavy
diagonal lines are worldlines for light flashes that pass through Event A and form light cones
that partition spacetime into PAST, FUTURE, and ELSEWHERE with respect to Event A. Little
black-filled circles in the past of A plot events that can cause Event A in both frames. Little
open circles in the future of A plot events that Event A can cause in both frames or in any other
overlapping inertial frame. Little open squares plot events that cannot cause Event A and that
cannot be caused by Event A in these frames or in any other inertial frame. Every ELSEWHERE
event has a spacelike relation to Event A (Section 1.3).

stone to move with a speed less than that of light in the rocket frame. Still476

more: Events B, C, and D in the past of Event A in the laboratory frame477

remain in the past of Event A in the rocket frame; cause and effect can never478

be reversed! The spacetime interval (10) guarantees all these results and479

preserves cause-and-effect relationships in every physical process.480

In contrast, events shown as little open boxes in the regions labeled481

ELSEWHERE in laboratory and rocket spacetime diagrams can neither cause482

Event A nor be caused by Event A. Why not? Because a worldline between483

any little box and Event A in the laboratory frame would have a slope ofImpossibility of
cause and effect
is also preserved.

484

magnitude less than one, so a speed (the inverse of slope) greater than that of485

light, a speed forbidden to stone or light flash. More: These worldlines486

represent faster-than-light speed in every rocket frame as well.487

No event in the regions marked ELSEWHERE can have a cause-and-effect488

relation with selected Event A when observed in any overlapping free-fall frame489

whatsoever. In this case the impossibility of cause and effect is guaranteed by490

the spacetime interval, which becomes spacelike between these two events:491

equation (10) becomes σ2 = s2
frame − t2frame for any overlapping frame.492
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Comment 4. Before or after?493

Note that some events in the ELSEWHERE region that occur before Event A in the494

laboratory frame occur after Event A in the rocket frame and vice versa. Does this495

destroy cause and effect? No, because none of these events can either cause Event496

A or be caused by Event A. Nature squeezes out of every contradiction!497

Figure 8 shows that time separation between event A and any event in itsInvariant
wristwatch
time

498

past or future light cone is typically different when measured in the two499

inertial frames, ∆trocket 6= ∆tlab, as is their space separation,500

∆xrocket 6= ∆xlab. But equation (10) assures us that the stone’s wristwatch501

time ∆τ along the straight worldline between any of these events and A has502

the same value for the observers in any overlapping inertial frame.503

TWO-SENTENCE SUMMARYSpacetime metric:
the guardian of
cause and effect

504

The space metric—with its plus sign—is guardian of the invariant separation505

in space.506

The spacetime metric—with its minus sign—is guardian of the invariant507

interval (cause and effect) in spacetime.508

It gets even better: Figure 5 in Section 1.6 and the text that goes with it509

already tell us that the minus sign in the spacetime metric is the source of the510

Principle of Maximal Aging: in an inertial frame the straight worldline (which511

a free stone follows) is the one with maximal wristwatch time.512

2.7 DIALOG: GOODBYE “DISTANCE.” GOODBYE “TIME.”513

Throw distance alone and time alone out of general relativity!514

Reader: You make a big deal about using events to describe everything and515

using your mighty metric to connect these events. So what does the metric tell516

us about the distance between two events in curved spacetime?517

Authors: The metric, by itself, tells us nothing whatsoever about the518

distance between two events.519

Are you kidding? If general relativity cannot tell me the distance between two520

events, what use is it?521

The word “distance” by itself does not belong in a book on general522

relativity.523

You must be mad! Your later chapters include Expanding Universe and524

Cosmology, which surely describe distances. Now and then the news tells us525

about a more precise measurement of the time back to the Big Bang.526

The word “time” by itself does not belong in a book on general527

relativity.528
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How can you possibly exclude “distance” and “time” from general relativity?529

Herman Minkowski predicted this exclusion in 1908, as Einstein530

started his seven-year trudge from special to general relativity.531

Minkowski declared, “Henceforth space by itself and time by itself are532

doomed to fade away into mere shadows, and only a kind of union of533

the two will preserve an independent reality.”534

So Minkowski saw this coming.535

Yes. We replace Minkowski’s word “space” with the more precise word536

“distance.” And get rid of his “doomed to fade” prediction, which has537

already taken place. Then Minkowski’s up-dated statement reads,538

“DISTANCE BY ITSELF AND TIME BY ITSELF ARE DEAD!539

LONG LIVE SPACETIME!”540

Spare me your dramatics. Do you mean to say that nowhere in describing541

general relativity do you write “the distance between these two events is 16542

meters” or “the time between these two events is six years”?543

Not unless we make a mistake.544

So if I catch you using either one of these words—“distance” or “time”—I can545

shout, “Gottcha!”546

Sure, if either word stands alone. Our book does talk about different547

kinds of distance and different kinds of time, but we try never to use548

either word by itself. Instead, we must always put a label on either549

word, even in the metric description of event separation.550

Okay Dude, what are the labels for a pair of events described by the metric551

itself?552

Differential or adjacent.553

Aha, now we’re getting somewhere. What do “differential” and “adjacent”554

mean?555

“Differential” refers to the zero-limit calculus separation between556

events used in a metric, such as metric (6) for flat spacetime or metric557

(9) for curved spacetime. “Adjacent” means the same, but we also use558

it more loosely to label the separation between events described by a559

local approximate metric, such as (7).560

Please give examples of “differential” separations between events in a metric.561

Only three possible kinds of separation: (1) Differential spacelike562

separation dσ. (2) Differential timelike separation dτ . And of course563

(3) differential lightlike—“null”—separation dσ = dτ = 0.564
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But each of those is on the left side of the metric. What about coordinates on565

the right side of the metric?566

You get to choose those coordinates yourself, so they have no direct567

connection to any physical measurement or observation.568

You mean I can choose any coordinate system I want for the right side of the569

metric?570

Almost. When you submit your set of global coordinates to Einstein’s571

equations—for example when Schwarzschild submitted his black-hole572

global coordinates—Einstein’s equations send back the metric. There573

are also a couple of simple requirements of coordinate uniqueness and574

smoothness (Section 5.8).575

What other labels do you put on “distance” and “time” to make them576

acceptable in general relativity?577

One is “wristwatch time” between events that can be widely separated578

along—and therefore connected by—a stone’s worldline. Also we will579

still allow measured coordinate differences ∆xinertial and ∆tinertial in a580

given local inertial frame, equation (7)—even though a purist will581

rightly criticize us because, even in special relativity, coordinate582

separations between events are different in rocket and laboratory583

frames.584

Tell me about Einstein’s equations, since they are so almighty important.585

Spacetime squirms in ways that neither a vector nor a simple calculus586

expression can describe. Einstein’s equations describe this squirming587

with an advanced mathematical tool called a tensor. (There are other588

mathematical tools that do the same thing.) After all the fuss, however,589

Einstein’s equations deliver back a metric expressed in simple calculus;590

in this book we pass up Einstein’s equations (until Chapter 22) and591

choose to start with the global metric.592

Okay, back to work: What meaning can you give to the phrase “the distance593

between two far-apart events,” for example: Event Number One: The star594

emits a flash of light. Event Number Two: That flash hits the detector in my595

telescope.596

Your statement tells us that the worldline of the light flash connects597

Event One and Event Two. On the way, this worldline may pass close598

to another star or galaxy and be deflected. The Universe expands a bit599

during this transit. Interstellar dust absorbs light of some frequencies,600

and also . . . .601

Stop, stop! I do not want all that distraction. Just direct that lightlike602

worldline through an interstellar vacuum and into my telescope.603
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Okay, but those features of the Universe—intermediate stars,604

expansion, dust—will not go away. Do you see what you are doing?605

No, what?606

You are making a model—some would call it a Toy Model—that uses607

a “clean” metric to describe the separation between you and that star.608

What you call “distance” springs from that model. Later you may add609

analysis of deflection, expansion, and dust to your model. Your final610

derived “distance” is a child of the final model and should be so labeled.611

To Hell with models! I want to know the Truth about the Universe.612

Good luck with that! See the star over there? Observationally we know613

exactly three things about that star’s location: (1) its apparent angle in614

the sky relative to other stars, (2) the redshift of its light, and (3) that615

its light follows a lightlike worldline to us. What do these observations616

tell us about that star? To answer this question, we must build a model617

of the cosmos, including—with Einstein’s help—a metric that describes618

how spacetime develops. Our model not only converts redshift to a619

calculated model-distance—note the label “model”—but also predicts620

the deflection of light that skims past an intermediate galaxy on its way621

to us, and so forth.622

What’s the bottom line of this whole discussion?623

The bottom line is that everyday ideas about the apparently simple624

words “distance” and “time” by themselves are fatally misleading in625

general relativity. Global coordinates connect local inertial frames, each626

of which we use to report all our measurements. We may give a remote627

galaxy the global radial coordinate r = 10 billion light years (with you,628

the observer, at radial coordinate r = 0), but that coordinate difference629

is not a distance.630

Wait! Isn’t that galaxy’s distance from us 10 billion light years?631

No! We did not say distance; we gave its global r-coordinate.632

Remember, coordinates are arbitrary. Never, ever, confuse a simple633

coordinate difference between events with “the distance” (or “the634

time”) between them. If you decide to apply some model to coordinate635

separations, always tell us what that model is and label the resulting636

separations accordingly. Again, “distance” by itself and “time” by itself637

have no place in general relativity.638

Okay, but I want to get on with learning general relativity. Are you going to639

bug me all the time with your picky distinctions between various kinds of640

“distances” and various kinds of “times” between events?641

No. The topic will come up only when there is danger of642

misunderstanding.643
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