
March 22, 2016 12:12 Mercury160322v3 Sheet number 1 Page number 0-0 AW Physics Macros

0-0

Chapter 101

Advance of Mercury’s Perihelion2

10.1 Joyous Excitement 10-13

10.2 Newton’s Simple Harmonic Oscillator 10-54

10.3 Newton’s Orbit Analysis 10-55

10.4 Effective Potential: Einstein. 10-76

10.5 Einstein’s Orbit Analysis 10-87

10.6 Predict Mercury’s Perihelion Advance 10-108

10.7 Compare Prediction with Observation 10-129

10.8 Advance of the Perihelia of the Inner Planets 10-1210

10.9 Check the Standard of Time 10-1411

10.10References 10-1512

• What does “advance of the perihelion” mean?13

• You say Newton does not predict any advance of Mercury’s perihelion in14

the absence of other planets. Why not?15

• The advance of Mercury’s perihelion is tiny. So why should we care?16

• Why pick out Mercury? Doesn’t the perihelion of every planet change17

with Earth-time?18

• You are always shouting at me to say whose time measures various19

motions. Why are you so sloppy about time in analyzing Mercury’s orbit?20
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10 Advance of Mercury’s Perihelion21
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This discovery was, I believe, by far the strongest emotional22

experience in Einstein’s scientific life, perhaps in all his life.23

Nature had spoken to him. He had to be right. “For a few24

days, I was beside myself with joyous excitement.” Later, he25

told Fokker that his discovery had given him palpitations of26

the heart. What he told de Haas is even more profoundly27

significant: when he saw that his calculations agreed with the28

unexplained astronomical observations, he had the feeling that29

something actually snapped in him.30

—Abraham Pais31

10.1 JOYOUS EXCITEMENT32

Tiny effect; large significance.33

What discovery sent Einstein into “joyous excitement” in November 1915? It34

was his calculation showing that his brand new (not quite completed) theory“Perihelion
precession”?

35

of general relativity gave the correct value for one detail of the orbit of the36

planet Mercury that had not been previously explained, an effect with the37

technical name precession of Mercury’s perihelion.38

Mercury (and every other planet) circulates around the Sun in a39

not-quite-circular orbit. In this orbit it oscillates in and out radially while it40

circles tangentially. A full Newtonian analysis predicts an elliptical orbit.41

Newton tells us that if we consider only the interaction between Mercury and42

the Sun, then the time for one 360-degree trip around the Sun is exactly theNewton:
Sun-Mercury
perihelion fixed.

43

same as the time for one in-and-out radial oscillation. Therefore the orbital44

point closest to the Sun, the so-called perihelion, stays in the same place; the45

elliptical orbit does not shift around with each revolution—according to46

Newton. You will begin by verifying his nonrelativistic prediction for the47

simple Sun-Mercury system.48

However, observation shows that Mercury’s orbit does indeed change. The49

perihelion moves forward in the direction of rotation of Mercury; it advances50

*Draft of Second Edition of Exploring Black Holes: Introduction to General Relativity
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Advance 
of aphelion

Advance of
perihelion

FIGURE 1 Exaggerated view of the advance, during one century, of Mercury’s
perihelion (and aphelion). The figure shows two elliptical orbits. One of these orbits is
the one that Mercury traces over and over again in the year, say, 1900. The other is the
elliptical orbit that Mercury traces over and over again in the year, say, 2000. The two
are shifted with respect to one another, a rotation called the advance (or precession)
of Mercury’s perihelion. The unaccounted-for precession in one Earth-century is about
43 arcseconds, less than the thickness of a line in this figure.

with each orbit (Figure 1). The long (“major”) axis of the ellipse rotates. WeObservation:
perihelion advances.

51

call this rotation of the axis the advance (or precession) of the52

perihelion.53

The aphelion is the point of the orbit farthest from the Sun; it advances54

at the same angular rate as the perihelion (Figure 1).55

Observation shows that the perihelion of Mercury precesses at the rate of56

574 arcseconds (0.159 degree) per Earth-century. (One degree equals 3600Newton: Influence
of other planets,
predicts most of the
perihelion advance . . .

57

arcseconds.) Newton’s mechanics accounts for 531 seconds of arc of this58

advance by computing the perturbing influence of the other planets. But a59

stubborn 43 arcseconds (0.0119 degree) per Earth-century, called a residual,60

remains after all these effects are accounted for. This residual (though not its61

modern value) was computed from observations by Urbain Le Verrier as early62

as 1859 and more accurately later by Simon Newcomb (Box 1). Le Verrier63

attributed the residual in Mercury’s orbit to the presence of an unknown inner. . . but leaves
a residual.

64

planet, tentatively named Vulcan. We know now that there is no planet65

Vulcan. (Sorry, Mr. Spock!)66
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Box 1. Simon Newcomb

FIGURE 2 Simon Newcomb
Born 12 March 1835, Wallace, Nova Scotia.
Died 11 July 1909, Washington, D.C.
(Photo courtesy of Yerkes Observatory)

From 1901 until 1959 and even later, the tables of locations
of the planets (so-called ephemerides) used by most

astronomers were those compiled by Simon Newcomb and
his collaborator George W. Hill.

By the age of five Newcomb was spending several hours a
day making calculations, and before the age of seven was
extracting cube roots by hand. He had little formal education
but avidly explored many technical fields in the libraries of
Washington, D. C. He discovered the American Ephemeris

and Nautical Almanac, of which he said, “Its preparation
seemed to me to embody the highest intellectual power to
which man had ever attained.”

Newcomb became a “computer” (a person who computes) in
the American Nautical Almanac office and by stages rose to
become its head. He spent the greater part of the rest of his
life calculating the motions of bodies in the solar system from
the best existing data. Newcomb collaborated with Q. M. W.
Downing to inaugurate a worldwide system of astronomical
constants, which was adopted by many countries in 1896 and
officially by all countries in 1950.

The advance of the perihelion of Mercury computed by
Einstein in 1914 would have been compared to entries in the
tables of Simon Newcomb and his collaborator.

Newton’s mechanics says that there should be no residual advance of the67

perihelion of Mercury’s orbit and so cannot account for the 43 seconds of arc68

per Earth-century which, though tiny, is nevertheless too large to be ignoredEinstein correctly
predicts residual
precession.

69

or blamed on observational error. But Einstein’s general relativity accounted70

for the extra 43 arcseconds on the button. Result: joyous excitement!71

Preview, Newton: This chapter begins with Newton’s approximations72

that lead to his no-precession conclusion (in the absence of other planets).73

Mercury moves in a near-circular orbit; Newton calculates the time for one74

orbit. The approximation also describes the small radial in-and-out motion ofMethod: Compare
in-and-out time with
round-and-round
time for Mercury.

75

Mercury as if it were a harmonic oscillator moving back and forth about a76

potential energy minimum (Figure 3). Newton calculates the time for one77

in-and-out radial oscillation and compares it with the time for one orbit. The78

orbital and radial oscillation T -values are exactly equal (according to Newton),79

provided one considers only the Mercury-Sun interaction. He concludes that80

Mercury circulates around once in the same time that it oscillates radially81

inward and back out again. The result is an elliptical orbit that closes on itself.82

In the absence of other planets, Mercury repeats this exact elliptical path83

forever—according to Newton.84

Preview, Einstein: In contrast, our general relativity approximation85

shows that these two times—the orbital round-and-round and the radial86

in-and-out T -values—are not quite equal. The radial oscillation takes place87

more slowly, so that by the time Mercury returns to its inner limit, the88
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VL/m

E/m

r/M

FIGURE 3 Newton’s effective potential, equation (5) (heavy curve), on which we
superimpose the parabolic potential of the simple harmonic oscillator (thin curve) with
the shape given by equation (3). Near the minimum of the effective potential, the two
curves closely conform to one another.

circular motion has carried it farther around the Sun than it was at the89

preceding minimum r-coordinate. From this difference Einstein reckons the90

residual angular rate of advance of Mercury’s perihelion around the Sun and91

shows that this predicted difference is close to the observed residual advance.92

Now for the details.93

Comment 1. Relaxed about Newton’s time and coordinate T94

In this chapter we speak freely about Newton’s time or Einstein’s change in95

global T -value, without worrying about which we are talking about. We get away96

with this sloppiness for two reasons: (1) All observations are made from Earth’s97

surface. Every statement about time should in principle be followed by the98

phrase, “as observed on Earth.” (2) For this system, the effects of spacetime99

curvature on the rates of local clocks are so small that all time or T -measures100

give essentially the same rate of precession, as summarized in Section 10.11.101
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10.2 NEWTON’S SIMPLE HARMONIC OSCILLATOR102

Assume radial oscillation is sinusoidal.103

Why does the planet oscillate in and out radially? Look at the effective104

potential in Newton’s analysis of motion, the heavy line in Figure 3. This105

heavy line has a minimum, the location at which the planet can ride around at106

constant r-value, tracing out a circular orbit. But with a slightly higher107

energy, it not only moves tangentially, it also oscillates radially in and out, as108

shown by the two-headed arrow in Figure 3.109

How long does it take for one in-and-out oscillation? That depends on the110

shape of the effective potential curve near the minimum shown in Figure 3.111

But if the amplitude of the oscillation is small, then the effective part of the112

curve is very close to this minimum, and we can use a well-known113

mathematical theorem: If a continuous, smooth curve has a local minimum,114

then near that minimum a parabola approximates this curve. Figure 3 shows115

such a parabola (thin curve) superimposed on the (heavy) effective potential116

curve. From the diagram it is apparent that the parabola is a goodIn-and-out motion
in parabolic potential . . .

117

approximation of the potential, at least near that local minimum.118

From introductory Newtonian mechanics, we know how a particle moves. . . predicts simple
harmonic motion.

119

in a parabolic potential. The motion is called simple harmonic oscillation,120

described by the following expression:121

x = A sinωt (1)

Here A is the amplitude of the oscillation and ω (Greek lower case omega) tells122

us how rapidly the oscillation occurs in radians per unit time. The potential123

energy per unit mass, V/m, of a particle oscillating in a parabolic potential124

follows the formula125

V

m
=

1

2
ω2x2 (2)

To find the rate of oscillation ω of the harmonic oscillator, take the second126

derivative with respect to x of both sides of (2).127

d2 (V/m)

dx2
= ω2 (3)

10.3 NEWTON’S ORBIT ANALYSIS128

Round and round vs. in and out129

The in-and-out radial oscillation of Mercury does not take place around r = 0130

but around the r-value of the effective potential minimum. What is the131

r-coordinate of this minimum (call it r0)? Start with Newton’s equation (25)Newton’s
equilibrium r0

132

in Section 8.4:133

1

2

(
dr

dt

)2

=
E

m
−
(
−M
r

+
L2

2m2r2

)
=
E

m
− VL(r)

m
(Newton) (4)
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This equation defines the effective potential,134

VL(r)

m
≡ −M

r
+

L2

2m2r2
(Newton) (5)

To locate the minimum of this effective potential, set its derivative equal to135

zero:136

d(VL/m)

dr
=
M

r2
− L2

m2r3
= 0 (Newton) (6)

Solve the right-hand equation to find r0, the r-value of the minimum:137

r0 =
L2

Mm2
(Newton, equlibrium radius) (7)

We want to compare the rate ωr of in-and-out radial motion of Mercury with138

its rate ωφ of round-and-round tangential motion. Use Newton’s definition ofNewton: In-and-out
time equals round-
and-round time.

139

angular momentum, with increment dt of Newton’s universal time, similar to140

equation (10) of Section 8.2:141

L

m
≡ r2

dφ

dt
= r2ωφ (Newton) (8)

where ωφ ≡ dφ/dt. Equation (8) gives us the angular velocity of Mercury along142

its almost-circular orbit.143

Queries 1 and 2 show that for Newton the radial in-and-out angular144

velocity ωr is equal to the orbital angular velocity ωφ.145

146

QUERY 1. Newton’s angular velocity ωφ of Mercury in orbit.147

Set r = r0 in (8) and substitute the result into (7). Show that at the equilibrium radius, ω2
φ = M/r30 for148

Newton. 149

150

151

QUERY 2. Newton’s radial oscillation rate ωr for Mercury’s orbit152

We want to use (3) to find the angular rate of radial oscillation. Accordingly, take the second derivative153

of VL in (5) with respect to r. Set r = r0 in the resulting expression and substitute your value for L2 in154

(7). Use (3) to show that at Mercury’s orbital radius, ω2
r = M/r30, according to Newton.155

156

Important result: For Newton, Mercury’s perihelion does not advance157

when one considers only the gravitational interaction between Mercury and the158

Sun.159
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10.4 EFFECTIVE POTENTIAL: EINSTEIN160

Extra effective potential term advances perihelion.161

Now we repeat the analysis of radial and tangential orbital motion for the162

general relativistic case. Chapter 9 predicts the radial motion of an orbiting163

satellite. Multiply equations (4) and (5) of Section 9.1 through by 1/2 to164

obtain an equation similar to (4) above for the Newton’s case:165

1

2

(
dr

dτ

)2

=
1

2

(
E

m

)2

− 1

2

(
1 − 2M

r

)(
1 +

L2

m2r2

)
(9)

=
1

2

(
E

m

)2

− 1

2

(
VL(r)

m

)2

(Einstein)

Equations (4) and (9) are of similar form, and we use this similarity to make aSet up general
relativity effective
potential.

166

general relativistic analysis of the harmonic radial motion of Mercury in orbit.167

In this process we adopt the algebraic manipulations of Newton’s analysis in168

Sections 10.2 and 10.3 but apply them to the general relativistic expression (9).169

Before we proceed, note three characteristics of equation (9). First, dτ on170

the left side of (9) is the differential wristwatch time dτ , not the differential dt171

of Newton’s universal time t. This different reference time is not necessarilyDifferent time rates
of different clocks
do not matter.

172

fatal, since we have not yet decided which relativistic measure of time should173

replace Newton’s universal time t. You will show in Section 10.11 that for174

Mercury the choice of which time to use (wristwatch time, global map175

T -coordinate, or even shell time at the r-value of the orbit) makes a negligible176

difference in our predictions about the rate of advance of the perihelion.177

Note, second, that in equation (9) the relativistic expression (E/m)2178

stands in the place of the Newtonian expression E/m in (4). However, both179

are constant quantities, which is all that matters in the analysis.180

Evidence that we are on the right track results when we multiply out the181

second term of the first line of (9), which is the square of the effective182

potential, equation (20) of Section 8.4, with the factor one-half. Note that we183

have assigned the symbol (1/2)(VL/m)2 to this second term.184

1

2

(
VL(r)

m

)2

=
1

2

(
1 − 2M

r

)(
1 +

L2

m2r2

)
(Einstein) (10)

=
1

2
− M

r
+

L2

2m2r2
− ML2

m2r3

The heavy curve in Figure 4 plots this function. The second line in (10)Details of relativistic
effective potential

185

contains the two effective potential terms that made up the Newtonian186

expression (5). The final term on the right of the second line of (10) describes187

an added attractive potential from general relativity. For the Sun-Mercury188

case at the r-value of Mercury’s orbit, this term leads to the slight precession189

of the elliptical orbit. As r becomes small, the r3 in the denominator causes190

this term to overwhelm all other terms in (10), which results in the downward191

plunge in the effective potential at the left side of Figure 4.192
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r*r/M

VL
m2

1 (  )2

E
m(   )2

1 2

FIGURE 4 General-relativistic effective potential (VL/m)2/2 (heavy curve) and its
approximation at the local minimum by a parabola (light curve) in order to analyse the
radial excursion (double-headed arrow) of Mercury as simple harmonic motion. The
effective potential curve is for a black hole, not for the Sun, whose effective potential
near the potential minimum would be indistinguishable from the Newton’s effective
potential on the scale of this diagram. However, this minute difference accounts for
the tiny residual precession of Mercury’s orbit.

Finally, note third that the last term (1/2)(VL/m)2 in relativistic equation193

(9) takes the place of the Newton’s effective potential VL/m in equation (4).194

In summary, we can manipulate general relativistic expressions (9) and195

(10) in nearly the same way that we manipulated Newton’s expressions (4) and196

(5) in order to analyze the radial component of Mercury’s motion and small197

perturbations of Mercury’s elliptical orbit brought about by general relativity.198

10.5 EINSTEIN’S ORBIT ANALYSIS199

Einstein tweaks Newton’s solution.200

Now analyze the radial oscillation of Mercury’s orbit according to Einstein.201

202

QUERY 3. Local minimum of Einstein’s effective potential203

Take the first derivative of the squared effective potential (10) with respect to r, that is find204

d[(1/2)(VL/m)2]/dr. Set this first derivative aside for use in Query 4. As a separate calculation, equate205
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this derivative to zero, set r = r0, and solve the resulting equation for the unknown quantity (L/m)2 in206

terms of the known quantities M and r0.207

208

209

QUERY 4. Einstein’s radial oscillation rate ωr for Mercury in orbit.210

We want to use (3) to find the rate of oscillation ωr in the radial direction.211

A. Take the second derivative of (1/2)(VL/m)2 from (10) with respect to r. Set the resulting r = r0212

and substitute the expression for (L/m)2 from Query 3 to obtain213

[
d2

dr2

(
1

2

V 2
L

m2

)]
r=r0

= ω2
r =

M

r30

(
1 − 6M

r0

)
(

1 − 3M

r0

) (Einstein) (11)

≈ M

r30

(
1 − 6M

r0

)(
1 +

3M

r0

)
(12)

≈ M

r30

(
1 − 3M

r0

)
(13)

where we have made repeated use of the approximation inside the front cover in order to find a214

result to first order in the fraction M/r.215

B. For our Sun, M ≈ 1.5 × 103 meters, while for Mercury’s orbit r0 ≈ 6 × 1010 meters. Does the216

value of M/r0 justify the approximations in equations (12) and (13)?217

Note that the coefficient M/r30 in these three equations equals Newton’s expression for ω2
r derived in218

Query 1. 219

220

Now compare ωr, the in-and-out oscillation of Mercury’s orbital221

r-coordinate with the angular rate ωφ with which Mercury moves tangentially222

in its orbit. The rate of change of azimuth φ springs from the definition of223

angular momentum in equation (10) in Section 8.2:224

L

m
= r2

dφ

dτ
(Einstein) (14)

Note the differential wristwatch time dτ for the planet.225

226

QUERY 5. Einstein’s angular velocity227

Square both sides of (14) and use your result from Query 3 to eliminate L2 from the resulting equation.228

Show that at the equilibrium r0 the result can be written229
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ω2
φ ≡

(
dφ

dτ

)2

=
M

r30

(
1 − 3M

r0

)−1

(Einstein) (15)

≈ M

r30

(
1 +

3M

r0

)
(16)

where again we use our approximation inside the front cover. Compare this result with equation (13)230

and with Newton’s result in Query 1.231

232

10.6 PREDICT MERCURY’S PERIHELION ADVANCE233

Simple outcome, profound consequences234

According to Einstein, the advance of Mercury’s perihelion springs from the235

difference between the frequency with which the planet sweeps around in its236

orbit and the frequency with which it oscillates in and out in r. In Newton’sEinstein: in-out
rate differs from
circulation rate.

237

analysis these two frequencies are equal (for the interaction between Mercury238

and the Sun). But Einstein’s theory shows that these two frequencies are239

slightly different; Mercury reaches its minimum r (its perihelion) at an240

incrementally greater angular position in each successive orbit. Result: the241

advance of Mercury’s perihelion. In this section we compare Einstein’s242

prediction with observation. But first we need to define what we are243

calculating.244

What do we mean by the phrase “the period of a planet’s orbit”? The245

period with respect to what? Here we choose what is technically called the246

synodic period of a planet, defined as follows:247

DEFINITION 1. Synodic period of a planet248

The synodic period of a planet is the lapse in time (Newton) or lapse inDefinition:
synodic period

249

global T -value (Einstein) for the planet to revolve once around the Sun250

with respect to the fixed stars.251

Comment 2. Fixed stars?252

What are the “fixed stars”? Chapter 14 The Expanding Universe shows that253

stars are anything but fixed. With respect to our Sun, stars move! However, stars254

that we now know to be very distant do not change angle rapidly from our point“Fixed” stars? 255

of view. Over a few hundred years—the lifetime of the field of astronomy256

itself—these stars may be called fixed.257

The value Tr to make a complete in-and-out radial oscillation is258

Tr ≡
2π

ωr
(period of radial oscillation) (17)

In global coordinate lapse Tr, Mercury goes around the Sun, completing an259

angle260
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ωφTr =
2πωφ
ωr

= (Mercury revolution angle in Tr) (18)

which exceeds one complete revolution in radians by:261

ωφTr − 2π = Tr (ωφ − ωr) = (excess angle per revolution) (19)

262

QUERY 6. Difference in Einstein’s oscillation rates263

The two angular rates ωφ and ωr are almost identical in value, even in the Einstein analysis. Therefore264

we can write approximately:265

ω2
φ − ω2

r = (ωφ + ωr)(ωφ − ωr) ≈ 2ωφ(ωφ − ωr) (20)

A. Substitute equations (13) and (16) into the left side of (20):266

ω2
φ − ω2

r ≈ M

r30

[(
1 +

3M

r0

)
−

(
1 − 3M

r0

)]
=
M

r30

6M

r0
(21)

B. Equation (20) becomes:267

ω2
φ − ω2

r ≈ M

r30

6M

r0
≈ ω2

φ

6M

r0
≈ 2ωφ(ωφ − ωr) (22)

C. Simplify the right-hand equation in (22), write the result as:268

ωφ − ωr ≈
3M

r0
ωφ (angular rates, Einstein) (23)

269

Equation (23) shows the difference in angular velocity between the tangential motion and the radial270

oscillation. From this rate difference we will calculate the advance of the perihelion of Mercury in one271

Earth-century. 272

273

Comment 3. What is X?274

Symbols ω in (23) express rotation rates in radians per unit of—what? Question:275

What is X in the denominator of dφ/dX ≡ ω? Does X equal global coordinate276

T? planet wristwatch time τ? shell time tshell at the average r-value of the orbit?277

Answer: It does not matter which of these quantities X represents, as long as278

this measure is the same on both sides of any resulting equation. Comment 1279

told us to be relaxed about time. In the following Queries you use (23) to280

calculate the precession rate of Mercury in radians/second, then to convert this281

result to arcseconds/Earth-century.282
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10.7 COMPARE PREDICTION WITH OBSERVATION283

Check out Einstein!284

Now compare our approximate relativistic prediction with observation.285

286

QUERY 7. Mercury’s angular velocity287

The synodic period of Mercury’s orbit is 7.602 × 106 seconds. To one significant digit, ωφ ≈ 8 × 10−7
288

radian/second. What is its value to three significant digits?289

290

291

QUERY 8. Calculated coefficient292

The mass M of the Sun is 1.477 × 103 meters and r0 of Mercury’s orbit is 5.80 × 1010 meters. To one293

significant digit, the coefficient 3M/r0 in (23) is 1 × 10−7. Find this result to three significant digits.294

295

296

QUERY 9. Advance of Mercury’s perihelion in radians/second297

From equation (23) and results of Queries 7 and 8, derive a numerical prediction of the advance of the298

perihelion of Mercury’s orbit in radians/second. To one significant digit the result is 6 × 10−14
299

radians/second. Find the result to three significant digits.300

301

302

QUERY 10. Advance of Mercury’s perihelion in arcseconds per Earth-century.303

Estimate the general relativity prediction of advance of Mercury’s perihelion in arcseconds per century.304

Use results from preceding queries plus conversion factors inside the front cover plus the definition that305

3600 arcseconds equals one degree. To one significant digit, the answer is 40 arcseconds/century. Find306

the result to three significant digits.307

308

A more accurate relativistic analysis predicts 42.980 arcseconds (0.011939309

degrees) per Earth-century (Table 1). The observed rate of advance of theObservation and
careful calculation
agree.

310

perihelion is in perfect agreement with this value: 42.98 ± 0.1 arcseconds per311

Earth-century. By what percentage did your prediction differ from312

observation?313

10.8 ADVANCE OF THE PERIHELIA OF THE INNER PLANETS314

Help from a supercomputer.315

Do the perihelia (plural of perihelion) of other planets in the solar system also316

advance as described by general relativity? Yes, but these planets are farther317

from the Sun, and their orbits are less eccentric, so the magnitude of theAll planet orbits
precess.

318

predicted advance is less than that for Mercury. In this section we compare our319
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TABLE 1 Advance of the perihelia of the inner planets

Planet Advance of perihelion in seconds
of arc per Earth-century (JPL

calculation)

r-value of
orbit in

AU*

Period of
orbit in
years

Mercury 42.980 ± 0.001 0.38710 0.24085
Venus 8.618 ± 0.041 0.72333 0.61521
Earth 3.846 ± 0.012 1.00000 1.00000

Mars 1.351 ± 0.001 1.52368 1.88089

∗Astronomical Unit (AU): average r-value of Earth’s orbit; inside front cover.

estimated advance of the perihelia of the inner planets Mercury, Venus, Earth,320

and Mars with results of an accurate calculation.321

The Jet Propulsion Laboratory (JPL) in Pasadena, California, supports322

an active effort to improve our knowledge of the positions and velocities of the323

major bodies in the solar system. For the major planets and the moon, JPLComputer analysis
of precessions.

324

maintains a database and set of computer programs known as the Solar System325

Data Processing System. The input database contains the observational data326

measurements for current locations of the planets. Working together, more327

than 100 interrelated computer programs use these data and the relativistic328

laws of motion to compute locations of planets at in the past and the future.329

The equations of motion take into account not only the gravitational330

interaction between each planet and the Sun but also interactions among all331

planets, Earth’s moon, and 300 of the most massive asteroids, as well as332

interactions between Earth and Moon due to nonsphericity and tidal effects.333

To help us with our project on perihelion advance, Myles Standish,334

Principal Member of the Technical Staff at JPL, kindly used the numericalJPL multi-program
computation.

335

integration program of the Solar System Data Processing System to calculate336

orbits of the four inner planets over four centuries, from A.D. 1800 to A.D.337

2200. In an overnight run he carried out this calculation twice, first with the338

full program including relativistic effects and second “with relativity turned339

off.” Standish “turned off relativity” by setting the speed of light to 1010 times340

its measured value, making light speed effectively infinite.341

For each of the two runs, the perihelia of the four inner planets were342

computed for the four centuries. The results from the nonrelativistic run were343

subtracted from those of the relativistic run, revealing advances of the perihelia344

per Earth-century accounted for only by general relativity. The second column345

of Table 1 shows the results, together with the estimated computational error.346

347

QUERY 11. Approximate advances of the perihelia of the inner planets348

Compare the JPL-computed advances of the perihelia of Venus, Earth, and Mars in Table 10.1 with349

approximate results calculated using equation (23).350

351
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10.9 CHECK THE STANDARD OF TIME352

Whose clock?353

We have been casual about whose time tracks the advance of the perihelion of354

Mercury and other planets; we even treated the global T -coordinate as a time,355

which is against our usual rules. Does this invalidate our approximations?356

357

QUERY 12. Difference between shell time and Mercury’s wristwatch time.358

Use special relativity to find the fractional difference between planet Mercury’s wristwatch time359

increment ∆τ and the time increment ∆tshell read on shell clocks at the same average r0 at which360

Mercury moves in its orbit at the average velocity 4.8 × 104 meters/second. By what fraction does a361

change of time from ∆τ to ∆tshell change the total angle covered in the orbital motion of Mercury in362

one century? Therefore by what fraction does it change the predicted angle of advance of the perihelion363

in that century? 364

365

366

QUERY 13. Difference between shell time and global rain map T .367

Find the fractional difference between shell time increment ∆tshell at r0 and global map increment ∆T368

for r0 equal to the average r-value of the orbit of Mercury. By what fraction does a change from ∆tshell369

to a lapse in global T alter the predicted angle of advance of the perihelion in that century?370

371

372

QUERY 14. Does the time standard matter?373

From your results in Queries 12 and 13, say whether or not the choice of a time standard—wristwatch374

time of Mercury, shell time, or map t—makes a detectable difference in the numerical prediction of the375

advance of the perihelion of Mercury in one Earth-century. Would your answer differ if the time were376

measured with clocks on Earth’s surface?377

378

DEEP INSIGHTS FROM MORE THAN THREE CENTURIES AGO379

Newton himself was better aware of the weaknesses inherent in his380

intellectual edifice than the generations that followed him. This fact381

has always roused my admiration.382

—Albert Einstein383

We agree with Einstein. In the following quote from the end of his great work384

Principia, Isaac Newton summarizes what he knows about gravity and what385

he does not know. We find breathtaking the scope of what Newton says—and386

the integrity with which he refuses to say what he does not know. In the387

following, “feign” means “invent,” and since Newton’s time “experimental388

philosophy” has come to mean “physics.”389
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“I do not ‘feign’ hypotheses.”390

Thus far I have explained the phenomena of the heavens and of our391

sea by the force of gravity, but I have not yet assigned a cause to392

gravity. Indeed, this force arises from some cause that penetrates as393

far as the centers of the sun and planets without any diminution of394

its power to act, and that acts not in proportion to the quantity of395

the surfaces of the particles on which it acts (as mechanical causes396

are wont to do) but in proportion to the quantity of solid matter,397

and whose action is extended everywhere to immense distances,398

always decreasing as the squares of the distances. Gravity toward399

the sun is compounded of the gravities toward the individual400

particles of the sun, and at increasing distances from the sun401

decreases exactly as the squares of the distances as far as the orbit402

of Saturn, as is manifest from the fact that the aphelia of the403

planets are at rest, and even as far as the farthest aphelia of the404

comets, provided that those aphelia are at rest. I have not as yet405

been able to deduce from phenomena the reason for these properties406

of gravity, and I do not “feign” hypotheses. For whatever is not407

deduced from the phenomena must be called a hypothesis; and408

hypotheses, whether metaphysical or physical, or based on occult409

qualities, or mechanical, have no place in experimental philosophy.410

In this experimental philosophy, propositions are deduced from the411

phenomena and are made general by induction. The412

impenetrability, mobility, and impetus of bodies, and the laws of413

motion and the law of gravity have been found by this method. And414

it is enough that gravity really exists and acts according to the laws415

that we have set forth and is sufficient to explain all the motions of416

the heavenly bodies and of our sea.417

—Isaac Newton418
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