Name :
Neptun id. number:

"Nobel-prize physics in ..."

Short Test 7.

1. A particle with the rest of mass m_{o} is moving at a speed of v. The energy of the particle is:
a. $m_{o} c^{2}$
b. $\frac{m_{o} c^{2}}{1-\frac{v^{2}}{c^{2}}}$
c. $\frac{m_{o} c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
$\frac{m_{o} c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}-m_{o} c^{2}$
e. none of them
2. A particle with the rest of mass m_{o} is moving at a speed of v. The linear momentum of the particle is:
a. $\frac{m_{o} c}{1-\frac{v^{2}}{c^{2}}}$
b. $\frac{m_{o} v}{1-\frac{v^{2}}{c^{2}}}$
c. $\frac{m_{o} v}{1+\frac{v^{2}}{c^{2}}}$
d. $\frac{m_{o} v}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
e. none of them
3. A particle with the rest of mass m_{o} is moving at a speed of $v \& v>c / 2$. The linear momentum of a particle: p . The energy of the particle is:
a. $E=\frac{p^{2}}{2 m}$
b.
c.
$E=\sqrt{m_{o}^{2} c^{4}+p^{2} c^{2}}$
$E=\sqrt{m_{o}{ }^{2} c^{4}+p^{2} c^{2}}-m_{o} c^{2}$
d. $E=\frac{p}{c}$
e. none of
4. A particle with the rest of mass m_{o} is moving at a speed of $v \& v>c / 2$. The kinetic energy of the particle is:
a. $\frac{m_{o} c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}-m_{o} c^{2}$
b. $\frac{m_{o} v^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}-m_{o} c^{2}$
c. $\frac{m_{o} v^{2}}{2}$
d. $\frac{d p}{d \tau} c$
e. none of them
5. Calculate the mass increase for a completely inelastic head-on collision of two $5.0-\mathrm{kg}$ balls each moving toward the other at $450 \mathrm{~m} / \mathrm{s}$ (the speed of a fast jet plane).
a. $1.1 * 10^{-11} \mathrm{~kg}$
b. $2.4 * 10^{-24} \mathrm{~kg}$
c. $3.7^{*} 10^{-10} \mathrm{~kg}$
d. $6.5 * 10^{-13} \mathrm{~kg}$
e. none of them

Show your work!

