Name :

Neptun id. number:

"Nobel-prize physics in ..."

Short Test 7.

1. A particle with the rest of mass m_0 is moving at a speed of v. The energy of the particle is:

a.
$$m_o c^2$$

b. $\frac{m_o c^2}{1 - \frac{v^2}{c^2}}$
c. $\frac{m_o c^2}{\sqrt{1 - \frac{v^2}{c^2}}}$
d. e. none of them
 $\frac{m_o c^2}{\sqrt{1 - \frac{v^2}{c^2}}} - m_o c^2$

2. A particle with the rest of mass m_0 is moving at a speed of v. The linear momentum of the particle is:

a. $\frac{m_o c}{1 - \frac{v^2}{c^2}}$ b. $\frac{m_o v}{1 - \frac{v^2}{c^2}}$ c. $\frac{m_o v}{1 + \frac{v^2}{c^2}}$ d. $\frac{m_o v}{\sqrt{1 - \frac{v^2}{c^2}}}$ e. none of them

3. A particle with the rest of mass m_o is moving at a speed of v & v > c/2. The linear momentum of a particle: p. The energy of the particle is:

a.
$$E = \frac{p^2}{2m}$$
 b. c. c. e. none of $E = \sqrt{m_o^2 c^4 + p^2 c^2}$ $E = \sqrt{m_o^2 c^4 + p^2 c^2} - m_o c^2$ d. $E = \frac{p}{c}$ them

4. A particle with the rest of mass m_o is moving at a speed of v & v > c/2. The kinetic energy of the particle is:

a.
$$\frac{m_o c^2}{\sqrt{1 - \frac{v^2}{c^2}}} - m_o c^2$$
 b.
$$\frac{m_o v^2}{\sqrt{1 - \frac{v^2}{c^2}}} - m_o c^2$$
 c.
$$\frac{m_o v^2}{2}$$
 d.
$$\frac{dp}{d\tau}c$$
 e. none of them

5. Calculate the mass increase for a completely inelastic head-on collision of two 5.0-kg balls each moving toward the other at 450 m/s (the speed of a fast jet plane).

a. $1.1*10^{-11}$ kg b. $2.4*10^{-24}$ kg c. $3.7*10^{-10}$ kg d. $6.5*10^{-13}$ kg e. none of them

Show your work!