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• Why would anyone volunteer to dive to the center of a black hole?14

• Why does everything inside the event horizon inevitably move to smaller15

r?16

• How massive must a black hole be so that 20 years pass on my wristwatch17

between crossing the event horizon and arrival at the crunch point?18

• How can I construct a local inertial frame that is valid inside the event19

horizon?20

• What do I see ahead of me and behind me as I approach the crunch21

point?22

• Is my death quick and painless?23
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C H A P T E R

7 Inside the Black Hole24

Edmund Bertschinger & Edwin F. Taylor *

Alice had not a moment to think about stopping herself before25

she found herself falling down what seemed to be a very deep26

well. Either the well was very deep, or she fell very slowly, for27

she had plenty of time as she went down to look about her,28

and to wonder what was going to happen next. First she tried29

to look down and make out what she was coming to, but it was30

too dark to see anything . . . So many out-of-the-way things31

had happened lately that Alice had begun to think that very few32

things indeed were really impossible.33

—Lewis Carroll, Alice in Wonderland34

7.1 INTERVIEW OF A DIVING CANDIDATE35

Few things are really impossible.36

So you are applying to be a member of the black hole diving research group.37

Yes.38

Have you personally had experience diving into black holes?39

This question is a joke, right?40

Why do you want to be part of this diving group, since your research results41

cannot be reported back to us outside the event horizon?42

We want to see for ourselves whether or not our carefully-studied43

predictions are correct. You know very well that 27 percent of44

qualified Galaxy Fleet personnel volunteered for this mission.45

Tell me, why doesn’t the black-hole diving group use local shell coordinates to46

make measurements inside the event horizon?47

*Draft of Second Edition of Exploring Black Holes: Introduction to General Relativity
Copyright c© 2015 Edmund Bertschinger, Edwin F. Taylor, & John Archibald Wheeler. All

rights reserved. Latest drafts at dropsite exploringblackholes.com.
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Inside the event horizon no one can build a spherical shell that48

stays at constant r in Schwarzschild coordinates. Instead we make49

measurements in a series of local inertial frames that can exist50

anywhere except on the singularity.51

Then how will you measure your r-coordinate without a spherical shell?52

We track the decreasing value of r by measuring the decreasing53

separation between us and a test particle beside us that is also54

diving radially inward.55

What clocks will you use in your experiments?56

Our wristwatches.57

When does your diving group cross the event horizon?58

As measured on whose clock?59

You are savvy. When does your diving group cross the event horizon as read60

on your wristwatches?61

Zeroing different clocks in different locations is arbitrary. The62

Astronautics Commission has a fancy scheme for coordinating the63

various clock readings, mostly for convenience in scheduling. Want64

more details?65

Not now. Is there any service that we on the outside can provide for your66

diving group once you are inside the event horizon?67

Sure. We will welcome radio and video bulletins of the latest news68

plus reports of scientific developments outside the event horizon.69

And will your outgoing radio transmissions from inside the event horizon70

change frequency during their upward transit to us?71

Another joke, I see.72

Yes. Does your personal—ah—end seem mercifully quick to you?73

The terminal “spaghettification” will take place in a fraction of a74

second as recorded on my wristwatch. Many of you outside the75

event horizon would welcome assurance of such a quick end.76

What will you personally do for relaxation during the trip?77

I am a zero-g football champion and grandmaster chess player.78

Also, my fiancé has already been selected as part of the team.79

We will be married before launch.80

[We suppress the transcript of further discussion about the ethical and moral81

status of bringing children into the diving world.]82
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Box 1. Eggbeater Spacetime?
Being “spaghettified” as you approach the center of a black

hole is bad enough. But according to some calculations, your
atoms will be scrambled by violent, chaotic tidal forces before
you reach the center—especially if you fall into a young black
hole.

The first theory of the creation of a black hole by J. Robert
Oppenheimer and Hartland Snyder (1939) assumed that the
collapsing structure is spherically symmetric. Their result is
a black hole that settles quickly into a placid final state. A
diver who approaches the singularity at the center of the
Oppenheimer-Snyder black hole is stretched with steadily
increasing force along the r-direction and compressed
steadily and increasingly from all sides perpendicular to the
r-direction.

In Nature an astronomical collapse is rarely spherically
symmetric. Theory shows that when a black hole forms, the
asymmetries exterior to the event horizon are quickly radiated
away in the form of gravitational waves—in a few seconds
measured on a distant clock! Gravitational radiation captured
inside the event horizon, however, evolves and influences
spacetime inside the black hole.

So what happens? There is no way to verify any predictions
about events inside the event horizon (Objection 1), but

that does not stop us from making them! Vladimir Belinsky,
Isaac Markovich Khalatnikov, Evgeny Mikhailovich Lifshitz,
and independently Charles Misner discovered that Einstein’s
equations predict more than one kind of singularity.

Their theory says that as a diving observer approaches the
center point, spacetime can oscillate chaotically, squeezing
and stretching the poor traveler in random directions like an
electric mixer (eggbeater). These oscillations increase in both
amplitude and frequency as the astronaut approaches the
singularity of the black hole. Any physical object, no matter
what stresses it can endure, is necessarily utterly destroyed
at an eggbeater singularity.

However, there is some theoretical evidence that eggbeater
oscillations will die away, so an astronaut who waits a while to
dive after the black hole has formed may not encounter them.
Before these eggbeater oscillations die away—if they do—
spacetime in the chaotic regions is definitely NOT described
by the Schwarzschild metric!

In the present chapter we assume the non-spinning black hole
under exploration is an ancient one and that we can ignore
possible eggbeater oscillations of spacetime. We predict (and
hope!) that as our astronaut colony approaches the center,
the “spacetime weather” is clear and calm.

Objection 1. What kind of science are these people talking about?83

Obviously nothing more than science fiction! No one who crosses the84

event horizon of a black hole can report observations to the scientific85

community outside the event horizon. Therefore all observations carried86

out inside the event horizon—and conclusions drawn from them—remain87

private communications. Private communication is not science!88

Yours is one sensible view of science, but if the “spacetime weather is89

clear and calm” inside the event horizon (Box 1), then the diving research90

group may have decades of life ahead of them, as recorded on their91

wristwatches. They can receive news and science updates from friends92

outside, view the ever-changing pattern of stars in the heavens (Chapter93

12), carry out investigations, discuss observations among themselves, and94

publish their own exciting research journal.95

We recognize that the event horizon separates two communities of96

investigators with a one-way surface or “membrane.” Outsiders cannot97

receive reports of experiments that test their predictions about life inside98

the event horizon. They must leave it to insiders to verify or disprove these99

predictions with all the rigor of a lively in-falling research community. Later100

chapters on the spinning black hole raise the possibility that an explorer101

might navigate in such a way as to reemerge from the event horizon,102

possibly into a different spacetime region.103
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FIGURE 1 Raindrop wristwatch time vs. global r-coordinate from (2) for a series
of raindrops that pass r = M, 2M, ..., 9M at τraindrop = 0 (little filled circles along the
horizontal axis). The shapes of these curves are identical, just displaced vertically with
respect to one another. Every raindrop moves smoothly across the event horizon when
clocked on its wristwatch, but not when tracked with global Schwarzschild t-coordinate
(Figure 2).

Comment 1. Wheeler’s “radical conservatism”104

John Archibald Wheeler (1911-2008), who co-author the first edition of105

Exploring Black Holes, rescued general relativity from obscurity in the 1950s and106

helped to jump-start the present golden age of gravitational physics. He was107

immensely inventive in research and teaching; for example he adopted andJohn A. Wheeler:
radical conservatism

108

publicized the name black hole (initial quote, Chapter 3). Wheeler’s professional109

philosophy was radical conservatism, which we express as: Follow110

well-established physical principles while pushing each to its extreme limits.111

Then develop a new intuition! The black hole—both outside and inside its event112

horizon—is a perfect structure on which to apply Wheeler’s radical conservatism,113

as we do throughout this book.114

Comment 2. Non-spinning vs. spinning black hole115

Chapters 2 through 13 describe spacetime around a black hole: a black hole116

that does not rotate. We call this a non-spinning black hole. The Universe is117

full of black holes that spin; many of them spin very fast, with deep118
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consequences for their structure and for spacetime around them. We call each of119

these a spinning black hole, the subject of Chapters 17 through 21.120

7.2 RAINDROP WORLDLINE121

“Raindrops keep fallin’ on my head . . .” song by Hal David and Burt122

Bacharach123

We start with the raindrop of Chapter 6. The raindrop is a stone (wearing a124

wristwatch) that drops from initial rest very far from the black hole125

(Definition 2, Section 6.4). From equation (23) of that section:126

dτraindrop = −
( r

2M

)1/2

dr (1)

In the following Queries you integrate (1) and apply the result to a raindrop127

that first falls past an Above r-coordinates rA then falls past a sequence of128

lower r-coordinates (Figure 1).129

130

QUERY 1. Raindrop wristwatch time lapse between the above rA and lower r131

A. Integrate (1) to determine the elapsed raindrop wristwatch time from the instant the raindrop132

falls past the Above coordinate rA until it passes a sequence of smaller r-coordinates. Express133

this elapsed raindrop wristwatch time with the notation [rA → r] for r-limits.134

τraindrop [rA → r] =
4M

3

[( rA

2M

)3/2

−
( r

2M

)3/2
]

(2)

Figure 1 plots this equation for a series of raindrops after each passes through a different given135

rA at τraindrop = 0.136

B. What happens to the value of the raindrop wristwatch time lapse in (2) when the initial rA137

becomes very large? Explain why you are not disturbed by this result.138

139

140

QUERY 2. Raindrop wristwatch time lapse from event horizon to crunch.141

Suppose you ride the raindrop, and assume (incorrectly) that you survive to reach the center. This142

Query examines how long (on your wristwatch) it takes you to drop from the event horizon to the143

singularity—the crunch point.144

A. Adapt your result from Query 1 to show that:145

τraindrop[2M → 0] =
4M

3
(event horizon to crunch, in meters) (3)

B. Predict: Does every curve in Figure 1 satisfy (3)?146
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C. Use constants inside the front cover to find the event horizon-to-crunch raindrop wristwatch147

time in seconds for a black hole of mass M/MSun times the mass of our Sun:148

τraindrop[2M → 0] = 6.57× 10−6 M

MSun
(event horizon to crunch, in seconds) (4)

D The monster black hole at the center of our galaxy has mass M ≈ 4× 106MSun: its mass is149

about four million times the mass of our Sun. Assume (incorrectly) that this black hole does not150

spin. How long, in seconds on your wristwatch, will it take you—riding on the raindrop—to fall151

from the event horizon of this monster black hole to its singularity?152

E. Discussion question: How can the r-value of the event horizon r = 2M possibly be greater153

than the wristwatch time 4M/3 that it takes the raindrop to fall from the event horizon to the154

singularity? Does the raindrop move faster than light inside the event horizon? (Hint: Do global155

coordinate separations dependably predict results of our measurements?)156

157

158

QUERY 3. Mass of the “20-year black hole.”159

The black hole we feature in this chapter has a mass such that it takes 20 years—recorded on the160

wristwatch of the raindrop—to fall from event horizon to singularity.161

A. Find the mass of the “20-year black hole” (a) in meters, (b) as a multiple of the mass of our162

Sun, and (c) in light-years.163

B. An average galaxy holds something like 1011 stars of mass approximately equal to that of our164

Sun. The “20-year black hole” has the mass of approximately how many average galaxies?165

C. What is the value of the r-coordinate at the event horizon of the “20-year black hole” in166

light-years? 167

168

Now turn attention to the motion of the raindrop in global Schwarzschild169

coordinates. Equation (22) in Section 6.4 gives the Schwarzschild map velocity170

of the raindrop:171

dr

dt
= −

(
1− 2M

r

)(
2M

r

)1/2

(raindrop map velocity) (5)

=
( r

2M

)−3/2 (
1− r

2M

)
We want to find r(t), the r-coordinate of the raindrop as a function of the172

t-coordinate. This function defines a worldline (Section 3.10).173

To find the worldline of the raindrop, manipulate (5) to read:174

dt =

( r

2M

)3/2

dr

1− r

2M

=
4Mu4du

1− u2
(raindrop) (6)
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FIGURE 2 Schwarzschild worldlines of raindrops from (10), plotted on the [r, t]
slice. These particular raindrops pass tA/M = 0 at different values of rA/M (filled
dots along the horizontal axis). The curves for rA/M > 2 are identical in shape, simply
displaced vertically with respect to one another. These worldlines are not continuous
across the event horizon (compare Figure 1).

where the expression on the right side of (6) results from substitutions:175

u ≡
( r

2M

)1/2

so du =
1

4M

( r

2M

)−1/2

dr and dr = 4Mudu (7)

From a table of integrals:176 ∫
u4du

1− u2
= −u

3

3
− u+

1

2
ln

∣∣∣∣1 + u

1− u

∣∣∣∣ (8)

Integrate (6) from uA to u, where A stands for Above. The integral of (6)177

becomes:178

t− tA = 4M

[
u3

A

3
− u3

3
+ uA − u+

1

2
ln

∣∣∣∣1 + u

1− u

∣∣∣∣− 1

2
ln

∣∣∣∣1 + uA

1− uA

∣∣∣∣] (raindrop)(9)

Substitute the expression for u from (7) into (9):179

t− tA =
4M

3

[( rA

2M

)3/2

−
( r

2M

)3/2

+ 3
( rA

2M

)1/2

− 3
( r

2M

)1/2

(10)

+
3

2
ln

∣∣∣∣∣∣∣
1 +

( r

2M

)1/2

1−
( r

2M

)1/2

∣∣∣∣∣∣∣−
3

2
ln

∣∣∣∣∣∣∣
1 +

( rA

2M

)1/2

1−
( rA

2M

)1/2

∣∣∣∣∣∣∣
]

(raindrop)
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Equation (10) is messy, but the computer doesn’t care and plots the curves in180

Figure 2 for tA = 0 and rA/M = 1 through 9.181

Objection 2. Wait! The t/M versus r/M worldline in Figure 2 tells us that182

the raindrop takes an unlimited t to reach the event horizon. Do you mean183

to tell me that our raindrop does not cross the event horizon?184

Recall our “strong advice” in Section 5.6: “To be safe, it is best to assume185

that global coordinate separations do not have any measured meaning.”186

The worldlines in Figure 2 that rise without limit in t-coordinate as187

r/M → 2+ (from above) do not tell us directly what any observer188

measures. In contrast, the observer riding on the raindrop reads and189

records her wristwatch time τ as she passes each shell. At each such190

instant on her wristwatch, she also her direct reading of the r-coordinate191

stamped on the shell she is passing. When timed on her wristwatch, the192

raindrop passes smoothly inward across the event horizon (Figure 1).193

Objection 3. There is still a terrible problem with Figure 2. Why does the194

worldline of the raindrop that somehow makes it inward across r/M = 2195

run backward in the Schwarzschild t-coordinate?196

We saw this earlier in the light-cone diagram of Figure 8 in Section 3.7, in197

which the t-coordinate can run backward along a worldline. However, that198

has no measurable consequence. You cannot grow younger by falling into199

a black hole. Sorry! The global t-coordinate is not time. Does the idea of200

backward-running global t-coordinate along a worldline make you201

uncomfortable? Get used to it! In contrast, the time you read on your202

wristwatch always runs forward along your worldline, in particular along the203

raindrop worldline (Figure 1). In Section 7.4 we develop a set of global204

rain coordinates that not only labels each event—which we require of205

every set of global coordinates—but also yields predictions more206

comfortable to our intuition about the “respectable sequence” of global207

coordinates along a worldline. This (arbitrary) choice of global coordinates208

is purely for our own convenience: Nature doesn’t care!209

7.3 THE LOCAL RAIN FRAME IN SCHWARZSCHILD COORDINATES210

Carry out experiments as you pass smoothly through the event horizon211

Does passing through the event horizon disturb local experiments that we may212

be conducting during this passage? To answer this questions go step by step213

from the raindrop to the local inertial rain frame and (in Section 7.4) from the214

local frame to a new global description. Start with local shell coordinates215

outside the horizon and use special relativity to derive local rain frame216

coordinates.217

Equations (9) through (11) in Section 5.7 give us local shell coordinates218

expressed in Schwarzschild global coordinates:219
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∆tshell ≡
(

1− 2M

r̄

)1/2

∆t (from Schwarzschild) (11)

∆yshell ≡
(

1− 2M

r̄

)−1/2

∆r (12)

∆xshell ≡ r̄∆φ (13)

220

Now use the Lorentz transformation equations of Section 1.10 to find to221

the local time lapse ∆train in an inertial frame in which the raindrop is at rest.222

With respect to the local shell frame, the raindrop moves with velocity vrel in223

the −∆yshell direction. From equation (18) in Section 6.4:224

vrel = −
(

2M

r

)1/2

so γrel ≡
1

(1− v2
rel)

1/2
=

(
1− 2M

r

)−1/2

(14)

Then from the first of equations (41) in Section 1.10:225

∆train = γrel (∆tshell − vrel∆yshell) (15)

=

(
1− 2M

r̄

)−1/2
[(

1− 2M

r̄

)1/2

∆t+

(
2M

r̄

)1/2(
1− 2M

r̄

)−1/2

∆r

]
so that226

∆train = ∆t+

(
2M

r̄

)1/2(
1− 2M

r̄

)−1

∆r (16)

227

And from the second of equations (41) in Section 1.10:228

∆yrain = γrel (∆yshell − vrel∆tshell) (17)

=

(
1− 2M

r̄

)−1/2
[(

1− 2M

r̄

)−1/2

∆r +

(
2M

r̄

)1/2(
1− 2M

r̄

)1/2

∆t

]
so that229

∆yrain =

(
1− 2M

r̄

)−1

∆r +

(
2M

r̄

)1/2

∆t (18)

230

Finally, from the third of equations (41) in Section 1.10, the shell and rain231

coordinates transverse to the direction of relative motion have equal values:232

∆xrain = ∆xshell = r̄∆φ (19)

233
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The right sides of local rain frame equations (16) and (18) suffer from the234

same disease as their parent global Schwarzschild coordinates: They blow up at235

the event horizon. Nevertheless, we can use these local coordinate equations to236

derive a new set of global rain coordinates that, at long last, cures this disease237

and allows us to predict observations made in the local rain frame as we ride238

smoothly inward across the event horizon and all the way to the singularity.239

7.4 GLOBAL RAIN COORDINATES240

Convert from Schwarzschild-t to global rain T .241

Schwarzschild coordinates are completely legal, but they make us242

uncomfortable because they do not describe the motion of a stone or light243

flash inward across the event horizon in a finite lapse of the t-coordinate. So in244

this section we find a new global coordinate—that we label the245

T -coordinate—which advances smoothly along the global worldline of a246

descending stone, even when the stone crosses the event horizon.247

The result is a new set of global coordinates with the old global248

coordinates r and φ but a new T -coordinate. We call this new set of249

coordinates global rain coordinates. They are often calledGlobal rain
coordinates or
“Painlevé-Gullstrand
coordinates.”

250

Painlevé-Gullstrand coordinates after Paul Painlevé and Alvar Gullstrand251

who independently developed them in 1921 and 1922, respectively. The present252

section develops global rain (Painlevé-Gullstrand) coordinates. Section 7.5 uses253

these new global coordinates to derive the global rain metric254

Objection 4. Hold on! How can we have two different global coordinate255

systems for the same spacetime?256

For the same reason that a flat Euclidean plane can be described by either257

Cartesian coordinates or polar coordinates. More than one global258

coordinate system can describe the same spacetime. Indeed, an unlimited259

number of global coordinate systems exist for any configuration of260

mass-energy-pressure (Box 3).261

Objection 5. I am awash in arbitrary global coordinates here. What makes262

practical sense of all this formalism? What can I hang onto and depend263

upon?264

The answer comes from invariant wristwatch time and invariant ruler265

distance. These direct observables are outputs of the global metric. In266

John Wheeler’s words, “No phenomenon is a real phenomenon until it is267

an observed phenomenon.” Spacetime is effectively flat on a local patch;Primary goal:
Predict result of
local measurements

268

on that flat patch we use the approximate global metric to derive local269

coordinates that we choose to be inertial (Section 5.7). The observer270

makes a measurement and expresses the result in those local271
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coordinates. Every set of global coordinates must lead to the same272

predicted result of a given measurement. That is what makes sense of273

the formalism; that is what you can hang onto and depend on.274

The troublemaker in Schwarzschild coordinates is the t-coordinate, which275

Figure 2 shows to be diseased at the event horizon. The cure is a new global276

rain coordinate which we call capital T . The other two global rain coordinates,277

r and φ remain the same as the corresponding Schwarzschild coordinates.278

Comment 3. Why conversion from Schwarzschild to global rain?279

Most often in this book we simply display a global metric with its global280

coordinate system without derivation. In what follows, we make a “conversion” of281

Schwarzschild coordinates to global rain coordinates that leads to the global rain282

metric. Why this conversion? Why don’t we simply display the global rain metric283

and its coordinate system? We do this to show that there are two ways to derive284

a valid global metric. The first way is to submit the (almost) arbitrary global285

coordinates to Einstein’s equations, which return the correct global metric. The286

second way is simply to transform the already-validated global metric directly.287

That conversion does not require Einstein’s equations.288

To find the new global T coordinate we do something apparently illegal:289

We derive it from local rain coordinate ∆train in equation (16). From the290

beginning of this book we have emphatically declared that you cannot derive291

global coordinates from local coordinates. Why not? Because in considering292

any flat local inertial frame, we lose details of the global curvature of the293

spacetime region. The local ∆trainA from equation (16) is unique to Frame A294

which depends on the average value r̄A; adjacent Frame B has a different295

∆trainB which depends on a different average value r̄B. This leads to aYou cannot derive
global coordinates from
local coordinates. . . .

296

discontinuity at the boundary between these two local frames. The local frame297

with its local coordinates is useful for us because it allows us to apply special298

relativity to an experiment or observation made in a limited spacetime region299

in globally curved spacetime. But the local frame does have this major300

drawback: We cannot connect adjacent flat frames smoothly to one another in301

curved spacetime. That keeps us from generalizing from local frame302

coordinates to global coordinates.303

But there is an exception. To understand this exception, pause for a quick304

tutorial in the mathematical theory of calculus (invented in the late 1600s by305

both Isaac Newton and Gottfried Wilhelm Leibniz). In calculus we use306

differentials, for example dt and dr. The technical name for the kind of307

differential we use in this book is exact differential, sometimes called a. . . except when
local coordinates
lead to an exact
differential.

308

perfect differential. Formally, an exact differential (as contrasted with an309

inexact differential or a partial differential) has the form dQ or dT , where Q310

and T are differentiable functions. What is a differentiable function? It is311

simply a function whose derivative exists at every point in its domain.312

Question: Are global coordinates differentiable? Answer: We choose global313

coordinates ourselves, then submit them to Einstein’s equations which areGlobal coordinates
are differentiable.

314

differential equations that return to us the global metric. So if one of our315

chosen global coordinates is not differentiable, it is our own fault. Conclusion:316
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For a global coordinate to be useful in general relativity, it must be317

differentiable and thus have an exact differential (except at a physical318

singularity).319

So we purposely choose a set of global coordinates that are differentiable.320

If we then make a transformation between sets of global coordinates, the321

transformed global coordinate is also a differentiable function and therefore322

has an exact differential.323

A close look at equation (16) shows that we can turn it into an exact324

differential, as follows:325

lim
∆t→0

∆train = dt+
df(r)

dr
dr = d[t+ f(r)] ≡ dT (20)

where, from (16), T = t+ f(r) is a differentiable function with326

df(r)

dr
=

(
2M

r

)1/2(
1− 2M

r

)−1

(21)

Equation (20) is immensely significant. It tells us that there is an exact327

differential of what we call a new global T -coordinate. This means that T is a328

differentiable function of global rain coordinates. This coordinate T = t+ f(r)329

is global because (a) Schwarzschild’s t and r (along with φ) already label every330

event for r > 0, and (b) Schwarzschild coordinates and metric satisfy331

Einstein’s equations. From (20) and (21):332

dT = dt+ d[f(r)] = dt+

(
2M

r

)1/2(
1− 2M

r

)−1

dr (22)

To validate the new global rain coordinate T , we need to express it in the333

already-validated Schwarzschild coordinates. To start this process integrate334

(21):335

f(r) ≡
∫ r

0

(
2M

r

)1/2(
1− 2M

r

)−1

dr = −(2M)1/2

∫ r

0

r1/2dr

2M − r
(23)

A table of integrals helps us to integrate the right side of (23). The result is:336

f(r) = 4M
( r

2M

)1/2

− 2M ln

∣∣∣∣∣1 + (2M/r)
1/2

1− (2M/r)
1/2

∣∣∣∣∣ (24)

Finally, from (22) and (24):337

T = t+ f(r) = t+ 4M
( r

2M

)1/2

− 2M ln

∣∣∣∣∣1 + (2M/r)
1/2

1− (2M/r)
1/2

∣∣∣∣∣ (25)

338

where we have arbitrarily set some constants of integration equal to zero.339

Equation (25) is the final proof that the new global rain T is valid, since it340

transforms directly from valid Schwarzschild t and r global coordinates.341
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Objection 6. I still think that your definition of T derived from a local342

coordinate increment ∆train in equations (22) through (25) violates your343

own prohibition in Section 5.7 of a local-to-global transformation.344

No, we do not transform from local rain coordinates to global rain345

coordinates, which would be illegal. Instead, we start with the global346

Schwarzschild expression for ∆train in (16), take its differential limit in347

(20), which converts it to the global rain differential dT . The key step in348

that conversion is to recognize that equation (20) contains an exact349

differential in global Schwarzschild coordinates. Note that this does not350

happen for shell time in Schwarzschild coordinates:351

lim
∆t→0

∆tshell →
(

1− 2M

r

)1/2

dt (26)

The right side of (26) cannot be expressed as d[T (r, t)], the exact352

differential of a coordinate T (r, t).353

The exact differential in (20) allows us to complete the derivation and354

validation of the global rain T -coordinate in equation (25). Is this magic?355

No, but it does require sophisticated use of calculus.356

357

QUERY 4. Differentiate T (Optional)358

Take the differential of (25) to show that the result is (22).359

360

We worked in Schwarzschild coordinates to find a function361

T (t, r) = t+ f(r) whose differential matches local rain frame time. We can free362

this T of its origin and regard it as a new label for each spacetime event. But363

after that addition there is no need to use both T and t to label events. WeCoordinate
transformation
to global rain
coordinates

364

can now eliminate t from the list, because we can always find it if we know the365

value of T (along with r) through t = T − f(r). So we perform the coordinate366

transformation (25), in which we replace one set of global coordinates367

(t, r, φ) with a new set of global coordinates (T, r, φ). We call the result global368

rain coordinates—or historically, Painlevé-Gullstrand coordinates.369

Why go to all this bother? In order to derive (in the next section) a global370

rain metric that describes the motion of a stone or light flash across the eventPayoff: “Intuitive”
global rain metric

371

horizon in a manner more comfortable to our intuition. The global rain metric372

encourages our unlimited, free exploration of all spacetime outside, at, and373

inside the event horizon.374

An immediate payoff of global rain coordinates is local shell coordinates375

expressed in global rain coordinates (Box 2).376

Comment 4. Global T is defined everywhere.377

Although we started from local shell coordinates which exist only for r > 2M ,378

our new T coordinate is defined everywhere, even at and inside the event379
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Box 2. Local shell coordinates expressed in global rain coordinates
We now derive local shell coordinates as functions of global

rain coordinates. Equation (11) gives ∆tshell as a function of
the Schwarzschild t-coordinate increment:

∆tshell ≡
(

1 −
2M

r̄

)1/2

∆t (27)

The Schwarzschild t-coordinate does increase without limit
along the worldline of a stone that approaches r = 2M , but
shells exist only outside this event horizon, where (27) is well-
behaved. Write equation (22) in approximate form:

∆t ≈ ∆T −
(

2M

r̄

)1/2 (
1 −

2M

r̄

)−1

∆r (28)

Substitute (28) into (27) to yield:

∆tshell ≡
(

1 −
2M

r̄

)1/2

∆T (29)

−
(

2M

r̄

)1/2 (
1 −

2M

r̄

)−1/2

∆r

Equations for ∆yshell and ∆xshell do not depend on ∆t, so
we copy them directly from (12) and (13).

∆yshell ≡
(

1 −
2M

r̄

)−1/2

∆r (30)

∆xshell ≡ r̄∆φ (31)

Note: Expressions for ∆tshell and ∆yshell are real only for
r > 2M , consistent with the conclusion that no shell can
exist inside the event horizon.

horizon, because its defining equation (25) contains only global Schwarzschild380

coordinates, which span all of spacetime.381

Should we worry that the last term on the right side of (25) blows up as382

r → 2M? No, because Schwarzschild t in (25) blows up in the opposite383

direction in such a way that T is continuous across r = 2M . Our only legitimate384

worry is continuity of the resulting metric, which (32). Section 7.5 shows this385

metric to be continuous across r = 2M .386

7.5 THE GLOBAL RAIN METRIC387

Move inward across the event horizon.388

Section 7.4 created a global T -coordinate, validated it by direct transformation389

from already-approved global Schwarzschild coordinates, and installed it in a390

new set of global rain coordinates. To derive the global rain metric, solve391

the dT -transformation (22) for dt, substitute the result into the Schwarzschild392

metric, and collect terms to yield:393

dτ2 =

(
1− 2M

r

)
dT 2 − 2

(
2M

r

)1/2

dTdr − dr2 − r2dφ2 (32)

−∞ < T < +∞, 0 < r <∞, 0 ≤ φ < 2π (global rain metric)

394

Metric (32), with its connectedness (topology), provides a complete395

description of spacetime around a non-spinning black hole, just as the396
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Schwarzschild metric does. In addition, all Schwarzschild-based difficulties397

with worldlines that cross the event horizon disappear.398

399

QUERY 5. Global rain metric400

Substitute dt from (22) into the Schwarzschild metric to verify the global rain metric (32).401

402

403

QUERY 6. Flat spacetime far from the black hole404

Show that as r →∞, metric (32) becomes the metric for flat spacetime in global coordinates T, r, φ.405

406

Comment 5. USE THE GLOBAL RAIN METRIC FROM NOW ON.407

From now on in this book we use the global rain metric—and expressionsUse global
rain metric
from now on.

408

derived from it—to analyze events in the vicinity of the non-spinning black409

hole.410

Question: When all is said and done, which set of coordinates is the411

“correct” one for the non-spinning black hole: Schwarzschild coordinates or412

rain coordinates or some other set of global coordinates? Answer: Every global413

coordinate system is valid provided it is either (a) submitted to Einstein’s414

equations, which return a global metric or (b) transformed from an415

already-validated global coordinate system. This reflects a fundamentalPrinciple of
General Covariance

416

principle of general relativity with the awkward technical name Principle of417

General Covariance. In this book we repeat over and over again that no418

single observer measures map coordinates directly (back cover). To overlook419

the Principle of General Covariance by attaching physical meaning to global420

coordinates is wrong and sets oneself up to make fundamental errors in the421

predictions of general relativity.422

EVERY GENERATION MUST LEARN ANEW423

One of the fundamental principles of general relativity (the principle of424

general covariance) states that all [global] spacetime coordinate systems425

are equally valid for the description of nature and that metrics that are426

related by a coordinate transformation are physically equivalent. This427

principle sounds simple enough, but one repeatedly finds in the literature428

arguments that amount to advocacy for the interpretation based on one429

set of [global] coordinates to the exclusion of the interpretation that is430

natural when using another set of [global] coordinates for the same set of431

events. It has been said that each generation of physicists must learn432

anew (usually the hard way) the meaning of Einstein’s postulate of433

general covariance.434

—Richard C. Cook and M. Shane Burns435
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Box 3. An Unlimited Number of Global Coordinate Systems
General relativity uses two methods to derive a global metric:
Method 1: Choose an arbitrary set of global coordinates and
submit them to Einstein’s equations, which return the global
metric expressed in those coordinates. Karl Schwarzschild
did this to derive the Schwarzschild metric. Method 2:
Transform an already-validated set of global coordinates to
another set, then substitute the new coordinates into the
already-verified metric of Method 1 to yield a metric in the new
global coordinates. In the present chapter we use Method 2
to go from the Schwarzschild metric to the global rain metric.

How many different global coordinate systems are there for
the non-spinning black hole? An unlimited number! Any one-
to-one transformation from one valid set of global coordinates
to another set of global coordinates makes the second
set valid as well, provided it meets the usual criteria of
uniqueness and smoothness (Section 5.8).

As a simple case, make the transformation:

T † ≡ KT (33)

where K is any real number—or even a simple minus sign!
With this substitution, global rain metric (32) becomes

dτ2 =

(
1 −

2M

r

)(
dT †

K

)2

(34)

− 2

(
2M

r

)1/2 dT †

K
dr − dr2 − r2dφ2

If K is negative, then global T † runs backward along
the worldline of every stone. This does not bother us;
Schwarzschild t does the same along some worldlines
(Figure 2). Equations for local shell and local rain coordinates
are similarly modified, which does not change any prediction
or the result of any measurement in these local frames.

In a similar manner we can let r† ≡ Qr and/or φ† ≡ −φ.
You can write down new metrics with any one or any pair of
these new coordinates. These changes may seem trivial, but
they are not. For example, choose K = Q = M−1. The
result is the variables T/M and r/M , so-called unitless
coordinates, in which curves are plotted in many figures of
this book. Plots with unitless coordinates are correct for every
non-spinning black hole, independent of its mass M .

Result: Global rain metric (32) is only one of an unlimited
set of alternative, equally-valid global metrics for the non-
spinning black hole, each one expressed in a different global
coordinate system. The examples in this box may be no
more useful than the original global rain metric, but there are
other global metrics that highlight some special property of
the non-spinning black hole. Look up Eddington-Finkelstein
coordinates and Kruskal-Szekeres coordinates and their
metrics.

In particular: Fixation on an interpretation based on one set of arbitrary436

coordinates can lead to the mistaken belief that global coordinate differences437

correspond to measurable quantities (Section 2.7).Reminder of
Einstein’s error

438

Comment 6. You know some relativity that Einstein missed!439

Chapter 5 says that Einstein took seven years to appreciate that global440

coordinate separations have no measurable meaning. But even then he did not441

fully understandd this fundamental idea. At a Paris conference in 1922—seven442

years after he completed general relativity—Einstein worried about what would443

happen at a location where the denominator of the dr2 term in the444

Schwarzschild metric, namely (1− 2M/r), goes to zero. He said it would be “an445

unimaginable disaster for the theory; and it is very difficult to say a priori what446

would occur physically, because the theory would cease to apply.” (In 1933 the447

Belgian priest Georges Lemaı̂tre recognized that the apparent singularity in448

Schwarzschild coordinates at r = 2M is “fictional.”) Einstein was also baffled by449

the dTdr cross term in the global rain metric (32) presented to him by Paul450

Painlevé and rejected Painlevé’s solution out of hand. This led to the eclipse of451

this metric for decades.452

Congratulations: You know some relativity that Einstein did not understand!453
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454

QUERY 7. Map energy in global rain coordinates455

A. Use the global rain metric and the Principle of Maximal Aging to derive the map energy of a456

stone in global rain coordinates. You can model the procedure on the derivation of the457

Schwarzschild-coordinate expression for E/m in Section 6.2, but will need to alter some of the458

notation. Demonstrate this result:459

E

m
=

(
1− 2M

r

)
dT

dτ
−
(

2M

r

)1/2
dr

dτ
(global rain coordinates) (35)

460

B. Substitute for dT from (22) and show that the result yields the Schwarzschild expression for461

map energy, equation (8) in Section 6.2.462

C. Show that the map energy equation (35) applies to a stone in orbit around the black hole, not463

just to one that moves along the r-coordinate line.464

D. Find an expression for dr/dT of the raindrop in rain map coordinates? Start with the first line465

of (5) and multiply both sides by dt/dT from (22). Show that the result is:466

dr

dT
=
dr

dt

dt

dT
= −

(
2M

r

)1/2

(raindrop) (36)

E. Show that the map worldline of a raindrop is given by the equation:467

T − TA =
4M

3

[( rA

2M

)3/2

−
( r

2M

)3/2
]

(raindrop) (37)

where (rA, TA) locates the initial event on the plotted curve (Figure 3).468

469

Objection 7. Wait! The right side of (37) is identical to the right side of (2).470

The two equations are both correct if and only if the left sides are equal:471

T − TA = τraindrop[rA → r] (38)

But these two quantities are completely different—apples and oranges!472

The left side is the difference in a global coordinate, while the right side is473

the lapse of wristwatch time of a particular falling stone.474

For our own convenience, we chose global rain coordinates so that475

equation (38) is valid. This is playing with fire, of course, because it is476

dangerous to assume that any given global coordinate corresponds to a477

measurable quantity (Section 5.8). But we are adults now, able to see the478

pitfalls of mature life. The goal, as always, is correct prediction of479

measurements and observations.480
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Raindrop equation (36) for dr/dT looks quite different from raindrop481

equation (5) for dr/dt, but the two must predict the same raindrop wristwatch482

time from rA to a smaller r-coordinate given by (2). Let’s check this: For a483

raindrop, set E/m = 1 in (35) and multiply through by dτraindrop:484

dτraindrop =

(
1− 2M

r

)
dT −

(
2M

r

)1/2

dr (39)

Solve (36) for dT and substitute into (39).485

dτraindrop = −
(

1− 2M

r

)(
2M

r

)−1/2

dr −
(

2M

r

)1/2

dr (40)

= −
( r

2M

)1/2

dr

which is the same as equation (1), so its integral from rA to r must be (2), as486

required. This is an example of an important property of different global487

metrics: Every global metric must predict the same result of a given488

measurement or observation (Objection 5).489

Box 4 carries out a Lorentz transformation from local shell coordinates in490

Box 2 to local rain coordinates, then verifies that local rain coordinates are491

valid everywhere, not just outside the event horizon.492

Comment 7. An observer passes through a sequence of local frames.493

The rain observer rides on a raindrop (Definition 4, Section 7.7). In curved494

spacetime, local inertial frames are limited in both space and time. During her495

fall, the rain observer passes through a series of local rain frames as shown in496

Figure 3. Equations (42) through (44) contain an r̄, assumed to have the same497

value everywhere in that local frame. Although absent from the equations, similar498

average T̄ and φ̄ are implied by all three local rain coordinate equations. Result:499

Each rain observer passes through a sequence of local inertial frames. Similar500

statements also apply to, and may seem more natural for, local shell frames with501

local coordinates (29) through (31).502

Box 4 derives local rain coordinates expressed in global rain coordinates.503

This simplifies local rain coordinates compared with those expressed in504

Schwarzschild coordinates in equations (16) through (19).505

Figure 3 displays several rain observer worldlines on the [r, T ] slice. We506

surround one worldline with a worldtube—shown in cross section—that507

contains local rain frames through which this rain observer passes in sequence.508

With ∆train = ∆T = 0, equation (43) tells us that ∆yrain coordinate lines are509

horizontal in this figure. Finally, ∆xrain coordinate lines, which are510

perpendicular to both ∆train and ∆yrain coordinate lines, project outward,511

perpendicular to the page in Figure 3.512

We could cover the worldtube in Figure 3 with adjacent or overlapping513

local rain frames. The resulting figure would be analogous to Figure 5 in514

Section 2.2, which places overlapping local flat maps along the spatial path515

from Amsterdam to Vladivostok along Earth’s curved surface.516
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Box 4. Local rain coordinates expressed in global rain coordinates

Apply the Lorentz transformation to local shell coordinates
in Box 2 to derive local rain coordinates. Relative velocity in
the Lorentz transformation lies along the common ∆yshell

and ∆yrain line. With this change, Lorentz transformation
equations of Section 1.10 become:

∆train = γrel (∆tshell − vrel∆yshell) (41)

∆yrain = γrel (∆yshell − vrel∆tshell)

∆xrain = ∆xshell

Substitute vrel and γrel from (14), along with local shell
coordinates from Box 2, into equations (41) to obtain
expressions for local rain coordinates as functions of global
rain coordinates:

∆train ≡ ∆T (42)

∆yrain ≡ ∆r +

(
2M

r̄

)1/2

∆T (43)

∆xrain ≡ r̄∆φ (44)

Coefficients on the right sides of these equations remain real
inside the event horizon, so local rain coordinates are valid
there (Figure 3).

Wait! How can we justify our derivation of rain coordinates
from local shell coordinates, which are valid only outside the
event horizon? To do so, we need to show that local rain
coordinates lead back to the global rain metric, which is valid
everywhere outside the singularity.

∆τ2 ≈ ∆t2rain − ∆y2
rain − ∆x2

rain (45)

Substitute into (45) from (42) through (44):

∆τ2 ≈ ∆T 2 −
[

∆r +

(
2M

r̄

)1/2

∆T

]2

(46)

− r̄2∆φ2

Multiply out:

∆τ2 ≈
(

1 −
2M

r̄

)
∆T 2 (47)

− 2

(
2M

r̄

)1/2

∆T∆r − ∆r2 − r̄2∆φ2

In the calculus limit, equation (47) becomes the global rain
metric (32). The global rain metric is valid everywhere down
to the singularity; therefore local rain coordinates can be
constructed down to the singularity.

Box 5 derives the global rain embedding diagram, Figure 4, from the517

global rain metric (32) and compares it with the embedding diagram for518

Schwarzschild coordinates.519

7.6 TETRAD FORMS OF THE GLOBAL RAIN METRIC520

A difference of squares hides the cross term.521

Global rain metric (32) has a cross term. The metric for any local inertial522

frame derived from this global metric does not have a cross term. For example:523

∆τ2 ≈ ∆t2shell −∆y2
shell −∆x2

shell (49)

∆τ2 ≈ ∆t2rain −∆y2
rain −∆x2

rain (50)

Why this difference between global and local metrics? Can we use a set of524

local inertial coordinates to create a form of the global metric that consists of525

the sum and difference of squares? Try it! From expressions for local shell and526
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FIGURE 3 Raindrop worldlines plotted on an [r, T ] slice. Note that these worldlines
are continuous through the event horizon (compare Figure 2). All these worldlines have
the same shape and are simply displaced vertically with respect to one another. Around
one of these worldlines we construct a worldtube (shown in cross section on this slice)
that bounds local rain frames through which that rain observer passes.

rain coordinates in Boxes 2 and 4, respectively, simply write down two527

differential forms of the global metric. From local shell coordinates (Box 2):528

dτ2 =

[(
1− 2M

r

)1/2

dT −
(

2M

r

)1/2(
1− 2M

r

)−1/2

dr

]2

(51)

−
(

1− 2M

r

)−1

dr2 − r2dφ2 (global rain metric)

−∞ < T < +∞, 0 < r <∞, 0 ≤ φ ≤ 2π

529

And from local rain coordinates (Box 4):530

dτ2 = dT 2 −

[
dr +

(
2M

r

)1/2

dT

]2

− r2dφ2 (global rain metric) (52)

−∞ < T < +∞, 0 < r <∞, 0 ≤ φ ≤ 2π

531
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FIGURE 4 Figure for Box 5. Compare the embedding diagram outside the event
horizon for Schwarzschild coordinates (the funnel) in Figures 11 through 13 in Section
3.9 with the flat embedding diagram of global rain coordinates (the flat surface shown
in perspective across the top). The function Z(r) is the fictional dimension we add in
order to visualize these surfaces.

Box 5. Embedding diagrams for Schwarzschild and global rain coordinates.

Set dT = 0 in global rain metric (32), which then retains
terms that include only r and φ:

dσ2 = ds2 = dr2 + r2dφ2 (dT = 0) (48)

Surprise! The differential ruler distance dσ obeys Euclidean
flat-space geometry, which leads to the flat embedding
diagram at the top of Figure 4 (point at r = 0 excluded).
Because the global rain embedding diagram is flat, we can
simply sum increments dσ to draw arbitrary lines or curves
with measured lengths σa, σb, and σc (for simplicity, drawn
as parallel straight lines in Figure 4).

Figure 4 also repeats the embedding diagram outside the
event horizon in Schwarzschild global coordinates from
Figures 11 through 13 in Section 3.9.

Outside the event horizon both embedding diagrams are valid
for what they describe. And the flat global rain embedding
diagram is valid inside the event horizon as well.

What’s going on here? Is space flat or funnel-shaped around
this black hole? That depends on our choice of global
coordinates! Spacetime as a unity is curved; but Nature
does not care how we share the description of spacetime
curvature among the terms of the global metric. In global rain
coordinates the dT 2 and dTdr terms describe spacetime
curvature, which leaves the [r, φ] embedding diagram to
show flat space. In contrast, for the Schwarzschild metric the
dt2 term and the dr2 term share the description of spacetime
curvature, which yields a funnel outside the event horizon on
the [r, φ] embedding diagram. Each embedding diagram and
global light cone diagram is a child of our (arbitrary!) choice
of global coordinates in which they are expressed.

Recall Herman Minkowski’s declaration (Section 2.7):
“Henceforth space by itself and time by itself are doomed to
fade away into mere shadows, and only a kind of union of the
two will preserve an independent reality.” Each global metric
displays that union in a different way.

Are (51) and (52) valid global metrics? Yes! In Query 8 you multiply out532

these global metrics to show that they are algebraically equivalent to the533

original global rain metric (32).534

535
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QUERY 8. The same global metric536

Expand the right side of (51) and the right side of (52). Show that in both cases the result is equal to537

the right side of the original global rain metric (32).538

539

Conclusion: All three forms of the global rain metric, (32), (51), and (52)540

are simply algebraic rearrangements of one another. So what? Why bother?541

Here’s why: Suppose we are first given either metric (51) or metric (52). In542

that case we can immediately write down the expressions ∆tframe, ∆yframe,543

and ∆xframe for some local inertial frame. (We may not know right away which544

local inertial frame it is.)545

A metric of the form (51) or (52) is called the tetrad form of the global546

metric. “Tetra” means “four,” in this case the four dimensions of spacetime. A547

tetrad form rearranges the global metric in a form more useful to us.548

DEFINITION 1. A tetrad form of a global metric549

A tetrad form of a global metric consists of a sum and difference of550

squares, with no additional terms.551

DEFINITION 2. Tetrad552

A tetrad is a set of four differential expressions, each of which is553

squared in a “tetrad form” of a global metric.554

Example: Equation (52) is the global rain metric in the tetrad form that leads555

to the local rain frame coordinates in Box 4.556

Objection 8. You said the tetrad consists of four differential expressions. I557

see only three.558

You’re right. In most of this book we use only two global space dimensions,559

those on a slice through the center of the black hole. A third global space560

dimension would add a fourth ∆zrain component to the tetrad. We retain561

the professional terminology tetrad in spite of our simplification.562

Comment 8. Tetrad as link563

A tetrad is the link between a global metric and a local inertial frame. To specify564

a particular tetrad, give both the local inertial frame and the global metric. The565

local inertial frame stretches differentials d in the global metric to deltas ∆ in the566

local inertial frame. This stretch creates elbow room to make measurements in567

the local inertial frame.568

The global metric in tetrad form immediately translates into569

expressions for local inertial coordinates (Box 6). The remainder of570

this book will make primary use of such global tetrad metrics.571
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Box 6. A Brief History of Tetrads
The concept of a tetrad originates from the “repère mobile”

(moving frame), introduced by Élie Cartan in the 1930s.
Cartan showed that a sequence of local inertial coordinate
systems, grouped along a set of curves such as worldlines,
can provide a complete global description of a curved
spacetime. He did so by introducing new calculus concepts on
curved spaces, which extended the foundations of differential
geometry laid by Bernhard Riemann in 1854.

Cartan’s moving-frame theory was incomprehensible to
Einstein, but later physicists found it useful and even
necessary to study elementary particle physics in curved
spacetime.

In this book we simplify the moving frame, or tetrad, to its
most basic element: a set of local inertial frames in which
motion is described using local inertial coordinates, with each
frame and each local coordinate system related to the global
coordinates provided by the metric. The tetrad is the bridge
between the global metric and the local inertial metric in which
we carry out all measurements and observations.

Because this metric is the sum and difference of the squares
of the tetrad—such as in equations (51) and (52)—general
relativists sometimes call the tetrad the square root of the
metric.

7.7 RAIN WORLDLINES OF LIGHT572

The light flash is ingoing or outgoing—or “outgoing.”573

In the present chapter we consider only r-motions, motions that can be either574

ingoing or outgoing along r-coordinate lines. (Chapter 11 analyzes the general575

motion of light in global coordinates.) The r-motion of light is easily derived576

from global rain metric (53), which you show in Query 8 to be equivalent to577

global rain metric (32).578

579

QUERY 9. Light r-motion in global rain coordinates580

A. Multiply out the right side of (53) to show that it is equivalent to the global rain metric (32):581

dτ2 = −

[
dr +

{
1 +

(
2M

r

)1/2
}
dT

][
dr −

{
1−

(
2M

r

)1/2
}
dT

]
− r2dφ2 (53)

(global rain metric)

582

B. For light (dτ = 0) that moves along the r-coordinate line (dφ = 0), show that (53) has two583

solutions for the rain map velocity of light, which are summarized by equation (54):584

dr

dT
=−

(
2M

r

)1/2

± 1 (light flash that moves along the r-coordinate line) (54)

(−= incoming light; + = outgoing or “outgoing” light)

C. Look separately at each element of the plus-or-minus sign in (54). Show that the solution with585

the lower sign (−) describes an incoming flash (light moving inward along the r-coordinate line).586

Then show that the solution with the upper sign (+) describes an outgoing flash (light moving587

outward along the r-coordinate line) outside the event horizon, but an “outgoing” flash inside588

the event horizon (Definition 3).589
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590

DEFINITION 3. “Outgoing” light flash.591

The “outgoing” light flash—with quotes—is a flash inside the event592

horizon whose r-motion is described by (54) with the plus sign. Inside593

the event horizon dr is negative as T advances (positive dT ), so that594

even the “outgoing” light flash moves to smaller r-coordinate. The light595

cone diagram Figure 5 shows this, and Figure 6 displays longer596

worldlines of light flashes emitted sequentially by a plunging raindrop.597

Compare the global rain worldline in Figure 6 with the Schwarzschild598

worldlines in Figure 2.599

We want to plot worldlines of incoming and outgoing (and “outgoing”)600

light flashes. Rewrite (54) to read601

dT =
dr

−
(

2M

r

)1/2

± 1

=
r1/2dr

−(2M)1/2 ± r1/2
(r-moving flash) (55)

We carry the plus-or-minus sign along as we integrate to find expressions602

for light that moves in either r-direction. Make the substitution:603

u ≡ −(2M)1/2 ± r1/2 (56)

From (56),604

r1/2 = ±[u+ (2M)1/2] and dr = +2
[
u+ (2M)1/2

]
du (57)

With these substitutions, equation (55) becomes605

dT = ±2

[
u+ (2M)1/2

]2
du

u
(r-moving flash) (58)

= ±2

[
u+ 2 (2M)

1/2
+

2M

u

]
du

Integrate the second line of (58) from an initial u0 to a final u. The result606

is:607

±(T − T0) = u2 − u2
0 + 4(2M)1/2 (u− u0) + 4M ln

∣∣∣∣ uu0

∣∣∣∣ (r-moving flash)(59)

To restore global rain coordinates in (59), reverse the substitution in (56).608

(Hint: To save time—and your sanity—replace ± in (59) with a symbol such609

as Q.) There are two cases: First case: an incoming flash from a larger610

r-coordinate r0 = rA at coordinate T0 = TA to a lower r at coordinate T . For611
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this incoming flash, take the lower minus signs in (56) and (59). Multiply bothIncoming flash 612

sides of the result by minus one to obtain:613

T − TA = (rA − r)− 4M

[( rA

2M

)1/2

−
( r

2M

)1/2
]

(60)

+ 4M ln

[
1 + (rA/2M)1/2

1 + (r/2M)1/2

]
(incoming flash)

614

QUERY 10. Horizon-to-crunch global T -coordinate lapse for light615

A. Verify that for r = rA in (60), the elapsed global T -coordinate T − TA is zero, as it must be for616

light. 617

B. Show that from the event horizon rA = 2M to the crunch point r = 0, the elapsed T -coordinate618

T − TA = 0.773M.619

C. Compare the result of Item B with the event-horizon-to-crunch wristwatch time620

τraindrop = (4/3)M in equation (3). Why is the result for a light flash in (60) less than the result621

for the raindrop? Are the plots in Figure 6 consistent with this inequality?622

623

Second case: the outgoing and “outgoing” light flashes from an initialOutgoing flash 624

r-coordinate r0 = rL at coordinate TL to a final r at coordinate T . In this case625

we must take the upper, plus signs in (56) and (59). The result is:626

T − TL = (r − rL) + 4M

[( r

2M

)1/2

−
( rL

2M

)1/2
]

(61)

+ 4M ln

[
1− (r/2M)1/2

1− (rL/2M)1/2

]
(outgoing flash)

What does equation (61) predict when rL < 2M? Worldlines of light thatInside event horizon,
“outward” means
worldline with dr < 0.

627

sprout upward from the raindrop worldline in Figure 6 show that after the628

diver falls through the event horizon, even the “outward” flash moves to629

smaller r in global rain coordinates.630

Figure 5 uses equations (60) and (61) to plot light cones for a selection of631

events inside and outside of the event horizon.632

633

QUERY 11. Motion to smaller r only634

Use the dashed worldline of a stone in Figure 5 to explain, in one or two sentences, why “everything635

moves to smaller r-coordinate” inside the event horizon. Hint: Think of the connection between636

worldlines of stones and future light cones.637

638

639
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FIGURE 5 Light cone diagram on the [r, T ] slice, plotted from equations (60) and (61)
for events both outside and inside the event horizon. Past and future events of each filled-
dot-event are corralled inside the past (P) and future (F) light cone of that event. At each r-
coordinate, the light cone can be moved up or down vertically without change of shape, as
shown. Inside the event horizon, light and stones can move only to smaller r-coordinate. A few
sample boxes show locally flat patches around a single event. The global rain T -coordinate
conveniently runs forward along every worldline (in contrast to the Schwarzschild t-coordinate
along some worldlines in the light cone diagram of Figure 8, Section 3.7).

QUERY 12. Detailed derivation Optional640

Show details of the derivation of equations (60) and (61) from equation (59). Recall the hint that641

follows equation (59).642

643

Time to celebrate! The raindrop worldline in Figure 6 is continuous and644

smooth as it moves inward across the horizon. Global rain coordinates yield645

predictions that are natural and intuitive for us. With global rain coordinates,646

we no longer need to reconcile the awkward contrast between the647

discontinuous Schwarzschild worldlines of Figure 2 and the smooth advance of648

raindrop wristwatch time in Figure 1 (even though both of these plots are649

valid and technically correct). The simplicity of results for global rain650

coordinates leads us to use them from now on to describe the non-spinning651

black hole. Farewell, Schwarzschild metric!652
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FIGURE 6 A raindrop passes r/M = 5 at T/M = 0 and thereafter emits both incoming
and outgoing flashes at events A through F. “Outgoing” flashes—with quotes—from events

E and F move to smaller global r-coordinates, along with everything else inside the event

horizon. Little boxes at A and B represent two of the many locally flat patches through which
the rain observer passes as she descends. When the rain diver reaches event E, her “range of

possible influence” consists of events in the shaded region, for example event F.

7.8 THE RAIN OBSERVER LOOKS—AND ACTS653

Which distant events can the rain observer see? Which can she influence?654

You ride a raindrop; in other words, you fall from initial rest far from the655

black hole. What do you see radially ahead of you? behind you? Of all events656

that occur along this r-line, which ones can you influence from where you are?657

Which of these events can influence you? When can you no longer influence658

any events? To answer these questions we give the raindrop some elbow room,659

turn her into a rain observer who makes measurements and observations in a660

series of local rain frames through which she falls. This definition specializes661

the earlier general definition of an observer (Definition 4, Section 5.7).662

DEFINITION 4. Rain observer663

A rain observer is a person or a data-collecting machine that rides aDefinition:
Rain observer

664

raindrop. As she descends, the rain observer makes a sequence of665



April 2, 2016 08:52 InsideBH160402v1 Sheet number 29 Page number 7-28 AW Physics Macros

7-28 Chapter 7 Inside the Black Hole

measurements, each measurement limited to a local inertial rain frame666

(Box 4).667

Objection 9. Wait: Go back! You have a fundamental problem that ruins668

everything. The global rain metric (32) contains the r-coordinate, but you669

have not defined the r-coordinate inside the event horizon. Section 3.3670

defined the r-coordinate as “reduced circumference,” that is, the671

circumference of a shell divided by 2π. But you cannot build a shell inside672

the event horizon, so you cannot define global coordinate r there.673

Therefore you have no way even to describe the worldline of the rain674

observer once she crosses the event horizon.675

Guilty as charged! Box 4 defined local rain coordinates and justified their676

validity inside the event horizon, but we have not formally defined the677

r-coordinate inside the event horizon, or how an observer might determine678

its value there. Here is one way (Box 7): As the rain observer drops from679

rest far from the black hole, she simultaneously releases a stone test680

particle from rest beside her and perpendicular to her direction of motion.681

Thereafter she uses radar or a meter stick to measure the distance to the682

stone. In this way she monitors her r-coordinate as she descends inside683

the event horizon.684

Box 4 introduced local rain frames in which we can carry out and record685

measurements using special relativity. Small boxes in Figures 5 and 6 represent686

effectively flat patches on which we can construct local inertial frames. In this687

chapter we allow the rain observer to look only at events that lie before and688

behind her along her worldline. She can also send light flashes and stones to689

influence (as much as possible) this limited set of events. (Chapter 11 allows690

the raindrop observer to look all around her.)691

692

QUERY 13. Observe ingoing and outgoing light flashes in a local rain frame.693

How do light flashes that we describe as ingoing, outgoing, and “outgoing” in global rain coordinates694

(Definition 3) move when observed entirely within a local rain frame? Answer this question with the695

following procedure or some other method.696

A. From (42) and (43) show that:697

∆yrain =

[
∆r

∆T
+

(
2M

r̄

)1/2
]

∆train (light flash that moves along the r-coordinate line)(66)

B. Use an approximate version of (54) to replace the square bracket expression in (66):698

∆yrain

∆train
= ±1 (light flash that moves along the r-coordinate line) (67)

C. Is equation (67) a surprise—or obvious? What does each sign mean for measurement of light699

velocity inside a rain frame?700
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Box 7. Define the Value of r Inside the Event Horizon

A

O

B
B'

C
C'

Event
horizon

A'

FIGURE 7 The rain observer measures her r-
coordinate inside the event horizon.

Question: How can a rain observer inside the event
horizon determine her current r-coordinate? Answer: To
adapt the Chapter 3 definition of the r-coordinate—reduced
circumference of the shell outside the event horizon—she
measures only a tiny arc inside the event horizon.

The rain observer takes the path ABCO in Figure 7; the stone
that accompanies her takes the converging path A’B’C’O.
Draw a circular arc AA’ and similar circular arcs BB’ and CC’.
The angle AOA’ is the same for every arc, so the length of
each arc represents the same fraction of the circumference of
its corresponding circle. In equation form,(

length of
arc AA’

)
(

circumference

of shell thru A

) =

(
length of
arc BB’

)
(

circumference

of shell thru B

)(62)

The values of r-coordinates rA and rB are stamped on
the shells outside the event horizon, so the denominators
of the two sides of the equation become 2πrA and 2πrB,
respectively, and we cancel the common factor 2π.

If the angle at the center is small enough, we can replace
the length of each circular arc with the straight-line distance
measured between, say, A and A’ shown in Figure 7. Call
this measured distance AA’. And call BB’ the corresponding
straight-line distance measured between B and B’. Then (62)
becomes,

AA′

rA
≈
BB′

rB
(63)

The rain observer monitors the distance to her accompanying
stone as she descends, with radar or—if the stone lies near
enough—directly with a meter stick. While she is outside the
event horizon, the rain observer reads the value of the r-
coordinate rA stamped on that spherical shell as she passes
it and the measured distance AA’ between the two rain
frames, and later BB’ as she passes and reads off rB. She
verifies that this direct reading with the value of rB is the
same as that calculated with the equation:

rB ≈
BB′

AA′
rA (64)

At any point C inside the event horizon, the observer
measures distance CC’ and defines her instantaneous r-
coordinate rC as:

rC ≡
CC′

AA′
rA (definition) (65)

This definition of the r-coordinate inside the event horizon is a
direct extension of its definition outside the event horizon and
is valid for any observer falling along an r-coordinate line.

D. From observations inside a rain frame, is there any difference between a light flash we describe701

as outgoing and one we describe as “outgoing”? More generally, can observations carried out702

entirely inside a rain frame tell us whether that rain frame is outside of, at, or inside the event703

horizon? 704

705

As our rain observer arrives at any of the emission points A through F in706

Figure 6, she can try—by firing an ingoing or outgoing stone or light flash—to707

influence a later event located within the region embraced by the worldlines of708

the incoming and outgoing (or “outgoing”) flashes from that event. The“Range of
possible influence”

709

farther toward the singularity the rain observer falls, the smaller is this “range710
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of possible influence.” When she arrives at event E, for example, she can711

influence only events in the shaded region in Figure 6, including event F.712

713

QUERY 14. Future events that the rain observer can still influence.714

Make four photocopies of Figure 6. On each copy, choose one emission event A through D or F.715

A. Shade the spacetime region in which a rain observer can influence future events once she has716

arrived at that emission event.717

B. Which of these emission points is the last one from which the rain observer can influence events718

that occur at r > 2M?719

720

As she crosses the event horizon, how long will it be on her wristwatch721

before she reaches the singularity? Equation (3) tells us this wristwatch time is722

4M/3 meters.723

Objection 10. Ha! I can live a lot longer inside the event horizon than your724

measly 4M/3 meters of time. All I have to do, once I get inside the event725

horizon, is to turn on my rockets and boost myself radially outward. For726

example, I can fire super-powerful rockets at event E and follow the727

“outgoing” photon flash from E that reaches the singularity at Event G (top728

left corner of that figure). That final T -value is much greater than the729

T -value where the raindrop worldline reaches the singularity.730

Be careful! You want to maximize wristwatch time, not the span of global T731

which, remember, is usually not measureable time. The wristwatch time is732

zero along the worldline of a light flash, so the closer you come to that733

worldline the smaller will be your wristwatch time during descent from734

Event E to an event just below G in Figure 6.735

Objection 11. Okay, then! I’ll give up the rocket blast, but I still want to736

know what is the longest possible wristwatch time for me to live after I737

cross the event horizon.738

Part B of Exercise 3 at the end of this chapter shows how to extend your739

lifetime to πM meters after you cross the event horizon, which is a bit740

longer than the raindrop 4M/3 meters. You will show that the way to741

achieve this is to drip from the shell just outside the event horizon; that is,742

you release yourself from rest in global coordinates at r = 2M+.743

Objection 12. Can I increase my lifetime inside the event horizon by744

blasting rockets in either φ direction to add a tangential component to my745

global velocity?746
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FIGURE 8 Worldlines of rain observers (thin curves) and incoming light flashes
(thick curves) plotted on the [r, T ] slice. All rain observer worldlines have the same
form and can be moved up and down without change in shape. Light-flash worldlines
also have the same form. A shell observer at r/M = 9 emits a signal from Event A
that a rain observer receives inside the event horizon at Event B.

The present chapter analyzes only r-motion. In the exercises of Chapter 8747

you will show that the answer to your question is no; a tangential rocket748

blast decreases your lifetime inside the event horizon. A wristwatch time749

lapse of πM is the best you can do. Sorry.750

Figure 8 displays both global worldlines of light flashes—thick curves751

derived from (60)—and worldlines of raindrops—thin curves derived from (2).752

It is evident from Figure 8 that news bulletins—incoming or outgoing753

electromagnetic radio bursts fired outside the event horizon—can be scheduled754

to catch up with the diver community at any predetermined r-coordinate.755

756

QUERY 15. Can you see a rain diver ahead of you?757

Compare Figures 6 and 8. Label as #1 the rain diver whose worldline is plotted in Figure 6. Label as758

#2 a second rain diver who falls along the same r-coordinate line in space as rain diver #1, but at a759

T -coordinate greater by ∆T . Use worldlines of Figure 8 to answer the following questions. (Optional:760



April 2, 2016 08:52 InsideBH160402v1 Sheet number 33 Page number 7-32 AW Physics Macros

7-32 Chapter 7 Inside the Black Hole

Derive analytic solutions to these questions and compare the results with your answers derived from761

the figure.) 762

A. Over what range of delays ∆T will rain diver #2 be able to see the flash from Event E emitted763

by diver #1 but not the flash from Event F?764

B. Over what range of delays ∆T will rain diver #2 be able to see the flash from Event D emitted765

by diver #1 but not the flash from Event E?766

C. Answer this question decisively: Can any later diver #2 see a flash emitted by diver #1 at say,767

r/M = 0.1, just before diver #1 reaches the singularity?768

769

770

QUERY 16. Can you see a rain diver behind you?771

Extend the results of Query 15 to analyze a third rain diver labeled #3 who falls along the same772

r-coordinate line in space as the earlier two rain divers, but at a T -coordinate that is smaller by −∆T .773

Diver #3 looks outward at light pulses emitted by diver #1. Use the worldlines of Figure 6 to answer774

the following questions. (Optional: Derive analytic solutions to these questions and compare the results775

with your answers derived from the figure.)776

A. Over what range of earlier launches −∆T will rain diver #3 be able to see the flash from Event777

D emitted by diver #1 but not the flash from Event F?778

B. Over what range of earlier launches −∆T will rain diver #3 be able to see the flash from Event779

A emitted by diver #1 but not the flash from Event D?780

C. Answer this question decisively: Can any earlier diver #3 see a flash emitted by diver #1 at say,781

r/M = 0.1, just before diver #1 reaches the singularity?782

783

784

QUERY 17. Can you see the crunch point ahead of you?785

You are the rain diver whose worldline is plotted in Figure 6. By some miracle, you survive to reach the786

center of the black hole. Show that you cannot see the singularity ahead of you before you arrive there.787

(What a disappointment after all the training, preparation, and sacrifice!)788

789

790

QUERY 18. Rain frame energy791

The rain frame is inertial. Therefore the expression for energy of a stone in rain frame coordinates is792

that of special relativity, namely Erain/m = dtrain/dτ (Section 1.7). Recall also from the differential793

version of (42) that dtrain = dT .794

A. Use (35) together with the special relativity expression for the rain frame energy of the stone795

and the above identification of global rain T with rain frame time from (42) to show that:796
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Box 8. The River Model

FIGURE 9 In the river model of a black hole, fish that
swim at different rates encounter a waterfall. The fastest
fish represents a photon. “The fish upstream can make way
against the current, but the fish downstream is swept to the
bottom of the waterfall.” The event horizon corresponds to that
point on the waterfall at which the upward-swimming photon-
fish stands still. [From Hamilton and Lisle, see references]

Andrew Hamilton and Jason Lisle created a river model
of the black hole. In their model, water “looks like ordinary
flat space, with the distinctive feature that space itself is
flowing inward at the Newtonian escape velocity. The place
where the infall velocity hits the speed of light . . . marks the
event horizon. . . . Inside the event horizon, the infall velocity
exceeds the speed of light, carrying everything with it.” At
every r-coordinate near a black hole the river of space flows
past at the speed of a raindrop, namely a stone that falls from
initial rest far from the waterfall.

Envision flat spacetime distant from a black hole as still water
in a large lake with clocks that read raindrop wristwatch time
τraindrop floating at rest with respect to the water. At one side

of the lake the water drifts gently into a river and that carries
the raindrop clocks with it. River water moves faster and faster
as it approaches and flows over the brink of the waterfall.
Each jet of falling water narrows as it accelerates downward.
Fish represent objects that move in the river/space; the fastest
fish represents a photon. At some point below the lip of
the waterfall, not even the photon-fish can keep up with the
downward flow and is swept to the bottom of the falls (Figure
9) The black hole event horizon corresponds to the point at
which the upward-swimming “photon-fish” stands still.

The river model helps us to visualize many effects observed
near the black hole. Hamilton and Lisle write, “It explains why
light cannot escape from inside the event horizon, and why no
star can come to rest within the event horizon. It explains how
an extended object will be stretched radially by the inward
acceleration of the river, and compressed transversely by
the spherical convergence of the flow. It explains why an
object that falls through the event horizon appears to an
outsider redshifted and frozen at the event horizon: as the
object approaches the event horizon, light [a photon-fish]
emitted by it takes an ever-longer global time to forge against
the onrushing current of space and eventually to reach the
outside observer.”

Hamilton and Lisle show that the river model is consistent with
the results of general relativity. In that sense the river model
is correct and complete.

The river model is a helpful visualization, but that visualization
comes at a price. It carries two misleading messages: First,
that space itself—represented by the river—is observable.
We easily observe various flows of different rivers on Earth,
but no one—and no instrument—registers or observes any
“flow of space” into a black hole. Second, the river model
embodies global rain coordinates, but we have seen that there
are an unlimited number of global coordinates for the black
hole, many of which cannot be envisioned by the river model.

Erain

m
≡ lim

∆τ→0

∆train

∆τ
≡ dT

dτ
=

(
1− 2M

r

)−1
[
E

m
+

(
2M

r

)1/2
dr

dτ

]
(68)

797

B. Is it possible for Erain/m to become negative inside the event horizon? Would any observer798

complain if it did?799

C. Same questions as Item B for E/m, the global map energy per unit mass.800

D. Perform a Lorentz transformation (Section 1.10) with vrel and γrel from (14) to obtain Eshell in801

terms of E. Compare with E and Eshell in Schwarzschild coordinates from Sections 6.2 and 6.3.802

803
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Box 9. The Planck length
General relativity is a classical—non-quantum—theory (Box

7, Section 6.7). One of its beauties is that, when applied
to the black hole, general relativity points to its own limits.
The Schwarzschild metric plus the Principle of Maximal
Aging predict that everything which moves inward across
the horizon will end up on the singularity, a point. We
know that this is does not satisfy quantum mechanics: The
Heisenberg uncertainty principle of quantum mechanics tells
us that a single electron confined to a point has unlimited
momentum. So not even a single electron—much less an
entire star gobbled up by the black hole—can be confined to
the singularity. In this book we assume that classical general
relativity is valid until very close to the singularity. How close?
One estimate is the so-called Planck length, derived from
three fundamental constants:

Planck length =

(
hG

2πc3

)1/2

= 1.616 199 × 10−35

(69)

in meters, with an uncertainty of ±97 in the last two digits.
The presence in this equation of Planck’s constant h =

1.054 571 726 × 10−34 Joule-second (±15 in the last two
digits) tells us that we have entered the realm of quantum
mechanics, where classical general relativity is no longer
valid. Cheer up! Before any part of you arrives at the Planck
distance from the singularity, you will no longer feel any
discomfort.

What happens when a single electron arrives at a Planck
length away from the singularity? Nobody knows!

7.9 A MERCIFUL ENDING?804

How long does the “terminal spaghettification” process last?805

To dive into a black hole is to commit suicide, which may go against religious,806

moral, or ethical principles—or against our survival instinct. Aside from suchIs death near
the singularity
painful?

807

considerations, no one will volunteer for your black-hole diver research team if808

she predicts that as she approaches the crunch point her death will be painful.809

Your task is to estimate the ouch time τouch, defined as the lapse of time on810

the wristwatch of the diver between her first discomfort and her arrival at the811

singularity, r = 0.812

813

QUERY 19. Preliminary: Acceleration g in units of inverse meters.814

Newton’s expression for gravitational force in conventional units:815

Fconv ≡ mconvgconv = −GMconvmconv

r2
(Newton) (70)

A. Verify the resulting gravitational acceleration in units of inverse meters:816

g ≡ gconv

c2
= −M

r2
(Newton) (71)

B. Show that at Earth’s surface the Newtonian acceleration of gravity has the value given inside817

the front cover, namely818

|gEarth| ≡ |gE| =
∣∣∣∣−MEarth

r2
Earth

∣∣∣∣ = 1.09× 10−16 meter−1 (Newton) (72)

819
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The rain observer is in free fall and does not feel any net force as a resultRain frame
observer
feels tides.

820

of local acceleration. However, she does feel radially stretched due to a821

difference in acceleration between her head and her feet, along with a822

compression from side to side. We call these differences tidal accelerations.823

824

QUERY 20. Tidal acceleration along the r-coordinate line825

We want to know how much this acceleration differs between the head and the feet of an in-falling rain826

observer. Take the differential of g in (71). Convert the result to increments over a patch of average r̄.827

Show that 828

∆g ≈ 2M

r̄3
∆r (Newton) (73)

829

What does Einstein say about tidal acceleration? Section 9.7 displays the830

correct general relativistic expressions for the variation of local gravity with831

spatial separation. Surprise: The expression for tidal acceleration in any832

inertial frame falling along the r-coordinate line has a form identical to the833

Newtonian result (73), and thus for the local rain frame becomes:834

∆grain ≈
2M

r̄3
∆yrain (74)

What are the criteria for discomfort? Individual rain observers will haveDefine “discomfort.” 835

different tolerance to tidal forces. To get a rough idea, let the rain observer’s836

body be oriented along the r-coordinate line as she falls, and assume that her837

stomach is in free fall, feeling no stress whatever. Assume that the rain838

observer first becomes uncomfortable when the difference in local acceleration839

between her free-fall stomach and her head (or her feet), that stretches her, is840

equal to the acceleration at Earth’s surface. By this definition, the rain841

observer becomes uncomfortable when her feet are pulled downward with a842

force equal to their weight on Earth and her head is pulled upward with a843

force of similar magnitude. Let her height be h in her frame, and the ruler844

distance between stomach and either her head or her feet be half of this, that845

is, ∆yrain = h/2.846

847

QUERY 21. The r-value for the start of “ouch.”848

From our criteria above for discomfort, we have:849

∆grain ouch ≡ gE (stomach-to-foot distance) (75)

Show that the r-value for the start of “ouch,” namely rouch, is:850

rouch =

(
Mh

gE

)1/3

(h = head-to-foot height) (76)

851

852
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853

QUERY 22. Three cases for the start of “ouch.”854

Approximate h, the head-to-foot distance, as 2 meters. Find the value of the ratio rouch/(2M) for these855

cases: 856

A. A black hole with ten times the mass of our Sun.857

B. The “20-year black hole” in Query 3.858

C. Suppose that the ouch r-coordinate is at the event horizon. What is the mass of the black hole859

as a multiple of the Sun’s mass?860

861

862

QUERY 23. The wristwatch ouch time τouch863

A. Use equation (2) to show that the raindrop ouch time τouch (the wristwatch time between initial864

ouch and arrival at the singularity) is independent of the mass of the black hole:865

τouch =
1

3

(
2h

gE

)1/2

(raindrop wristwatch ouch time in meters) (77)

Here, recall, h is the height of the astronaut, about 2 meters, and the value of gE is given in (72).866

Show that the wristwatch ouch time in seconds, the same for all non-spinning black holes, is:867

τouch =
1

3c

(
2h

gE

)1/2

(raindrop wristwatch ouch time in seconds) (78)

B. Substitute numbers into equation (78). Show that the duration of raindrop wristwatch ouch868

time is about 2/9 of a second for every non-spinning black hole, independent of its mass M .869

Guess: Will pain signals travel from your extremities to your brain during this brief wristwatch870

ouch time? 871

872

MUTABILITY OF PHYSICAL LAWS873

By 1970, I had become convinced not only that black holes are an874

inevitable consequence of general relativity theory and that they are likely875

to exist in profusion in the universe, but also that their existence implies876

the mutability of physical law. If time can end in a black hole, if space877

can be crumpled to nothingness at its center, if the number of particles878

within a black hole has no meaning, then why should we believe that879

there is anything special, anything unique, about the laws of physics that880

we discover and apply? These laws must have come into existence with881

the Big Bang as surely as space and time did.882

—John Archibald Wheeler883



April 2, 2016 08:52 InsideBH160402v1 Sheet number 38 Page number 7-37 AW Physics Macros

Section 7.10 Exercises 7-37

7.10 EXERCISES884

1. Crossing the Event Horizon885

Pete Brown disagrees with the statement, “No special event occurs as we fall886

through the event horizon.” He says, “Suppose you go feet first through the887

event horizon. Since your feet hit the event horizon before your eyes, then your888

feet should disappear for a short time on your wristwatch. When your eyes889

pass across the event horizon, you can see again what’s inside, including your890

feet. So tie your sneakers tightly or you will lose them in the dark!” Is Pete891

correct? Analyze his argument without criticizing him.892

2. Equations of Motion of the Raindrop893

From equations in Chapter 6 we can derive the equations of motion for a894

raindrop in Schwarzschild coordinates. From the definition of the raindrop,895

E

m
= 1 and

dφ

dτ
= 0 (raindrop in Schwarzschild coordinates (79)

and in global rain coordinates)896

In addition, equation (23) in Section 6.4 tells us that897

dr

dτ
= −

(
2M

r

)1/2

(raindrop in Schwarzschild coordinates (80)

and in global rain coordinates)898

From equation (13) in Section 6.4, you can easily show that899

dt

dτ
=

(
1− 2M

r

)−1

(raindrop in Schwarzschild coordinates (81)

and in global rain coordinates)900

Now derive the raindrop equations of motion in global rain coordinates.901

First, show that both dr/dτ and dφ/dτ have the same form in global rain902

coordinates as in Schwarzschild coordinates, as stated in the labels of903

equations (80) and (81). Second, use equations (80) and (81) plus equation904

(35) to show that905

dT

dτ
= 1 (raindrop in global rain coordinates) (82)

Comment 9. Simple definition of global rain T906

Equation (82) can be used as the definition of global rain coordinate differential907

dT . In other words, we choose dT equal to the differential lapse of wristwatch908

time on a falling raindrop.909
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3. Different masses for the “20-year black hole.”910

This chapter describes a “20-year black hole,” defined as one for which the911

wristwatch on a raindrop registers a 20-year lapse between its crossing of the912

event horizon and its arrival at the singularity. But the wristwatch may be on913

a hailstone—flung radially inward from far away from the black hole—or a914

drip—dropped from rest from a shell outside the event horizon. What is the915

required mass of the “20-year black hole” in these two cases?916

A. We fling an incoming hailstone inward along the r-coordinate line917

with initial shell speed |vfar| from far away from the black hole. A918

lengthy derivation of the wristwatch time from event horizon to the919

singularity yields the result:920

τAail[2M → 0] = M

[
2

v2
farγfar

− 1

v3
farγ

3
far

ln

(
1 + vfar

1− vfar

)]
(83)

where, remember, γ ≡ (1− v2)−1/2 and we treat vfar as a (positive)921

speed. Answer questions in the following items:922

a. Guess: In the case of the hailstone, will the mass of “20-year black923

hole” be greater or less than that for the raindrop?924

b. Consider γfar = 2. What is the value of vfar?925

c. Show that for this particular value γfar = 2, the first term inside926

the square bracket in (83) alone gives the same result as the927

raindrop in equation (3).928

d. Was your guess in Item a correct or incorrect?929

e. What is the mass of the “20-year black hole” for that hailstone?930

How does it compare to the mass of the “20-year black hole” for931

the raindrop?932

B. A drip drops from rest on a shell of global coordinate r0 > 2M .933

Another lengthy derivation of the wristwatch time from event horizon934

to the singularity yields the result:935

τdrip[2M → 0] = (84)

2M

(
2M

r0

)−3/2
[
−
(

2M

r0

)1/2(
1− 2M

r0

)1/2

+ arctan

(
2M/r0

1− 2M/r0

)1/2
]

a. Guess: In the case of a drip, will the mass of “20-year black hole”936

be greater or less than that for the raindrop?937

b. Next, take the limiting case r0 → 2M . Show that in this limit938

arctan takes the value π/2.939

c. Show that in this case τdrip[2M → 0]→ πM .940

d. Was your guess in Item a correct or incorrect?941
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e. What is the mass of the “20-year black hole” for that drip? How942

does it compare to the mass of the “20-year black hole” for the943

raindrop?944

C. Fascinating but optional: The next to last paragraph in Box 8 states945

that every stone that passes inward across the event horizon at r = 2M946

moves at that r-value with shell velocity vshell = −1, the speed of light947

(as a limiting case). Since this holds for all r-diving stones, how can the948

masses of “20-year black holes” possibly differ for raindrops, hailstones,949

and drips?950

4. Map energy of a drip released from r0951

A. Derive the following expression for E/m in global rain coordinates for a952

drip released from rest with respect to the local shell frame at r0 > 2M :953

E

m
=

(
1− 2M

r0

)1/2

(drip released from rest at r0) (85)

Compare with equation (33) of Chapter 6. Are you surprised by what954

you find? Should you be?955

B. What are the maximum and minimum values of E/m in (85) as a956

function of r0? How can the minimum value possibly be less than the957

rest energy m of the stone measured in an inertial frame?958

C. Is expression (85) consistent with the value E/m = 1 for a raindrop?959

D. Is expression (85) valid for r0 < 2M? What is the physical reason for960

your answer?961

E. For r0 > 2M , is expression (85) still valid when that stone arrives962

inside the event horizon?963

5. Map energy of a hailstone964

A. Derive the following expression for E/m in global rain coordinates for a965

hailstone hurled radially inward with speed vfar from a shell very far966

from the black hole.967

E

m
= γfar ≡

(
1− v2

far

)−1/2
(hailstone) (86)

Compare this expression with results of Exercise 7 in Chapter 6. Are968

you surprised by what you find? Should you be?969

B. Is expression (86) for the hailstone consistent with expression (85) for970

the drip? consistent with E/m = 1 for a raindrop?971



April 2, 2016 08:52 InsideBH160402v1 Sheet number 41 Page number 7-40 AW Physics Macros

7-40 Chapter 7 Inside the Black Hole

6. Motion of outgoing light flash outside and at the event horizon972

Find the maximum value of r/M at which the “outgoing” flash moves to973

larger r, that is dr > 0, at each of these global map velocities:974

A. dr/dT = 0.99975

B. dr/dT = 0.9976

C. dr/dT = 0.5977

D. dr/dT = 0978

7. Motion of the “outgoing” flash inside the event horizon.979

Find the value of r/M at which the“outgoing” flash moves to smaller r, that is980

dr < 0, at each of these global map velocities:981

A. dr/dT = −0.1982

B. dr/dT = −0.5983

C. dr/dT = −1984

D. dr/dT = −9985

8. Motion of the incoming flash986

At each value of r/M found in Exercises 6 and 7, find the value of dr/dT for987

the incoming flash.988

7.11 REFERENCES989

Box 1, Eggbeater Spacetime comes in part, from Chapter 13 of Black Holes990

and Time Warps by Kip Thorne. The original description of a spherically991

symmetric collapse into an uncharged, non-spinning black hole was by J. R.992

Oppenheimer and H. Snyder, Physical Review,Volume 56, pages 455–459993

(1939). Vladimir Belinsky, Isaac Markovich Khalatnikov, Evgeny994

Mikhailovich Lifshitz, Advances in Physics, Volume 31, page 639 (1982).995

Charles W. Misner, Physical Review Letters, Volume 22, page 1071.996

Wristwatch time from event horizon to singularity: Geraint F. Lewis and997

Juliana Kwan, “No Way Back: Maximizing survival time below the998

Schwarzschild event horizon,” arXiv:0705.1029v1 [physics.ed-ph] 8 May 2007999

Box 8. The River Model: Andrew J. S. Hamilton and Jason P. Lisle, “The1000

river model of black holes,” American Journal of Physics, Volume 76,1001

Number 6, June 2008, pages 519-532.1002

Global rain coordinates and the global rain metric: Paul Painlevé, “La1003
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