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1 Introduction
Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a magnetic field absorb and re-emit
electromagnetic radiation. It is a widely used method in material and food science, just as in spectroscopy, chemistry,
biology etc. It has a history of more than 70 years. NMR is also routinely used in advanced medical imaging techniques,
such as in magnetic resonance imaging (MRI).

2 Theoretical background
There are two possible ways to introduce the fundamentals of NMR: 1) phenomenological, in which we consider the
magnetization vector, as a classical physical variable, 2) quantum mechanistic description in which we consider the
individual nuclear magnetism as the eigenvalues of the Zeeman–Hamilton operator and keep track of the time evolution
of it. One can show that the above two descriptions are equivalent, but technically the former approach is easier and
more expressive, thus we will discuss NMR in that classical way.

A magnetic moment inserted into a magnetic field interacts with that field in such a way that the magnetic
moment experiences a torque due to the field. A consequence of the torque is that the magnetic moment starts to
precess around the magnetic field. This is called the Larmor-precession that has an angular frequency of ω = γ · B0,
where B0 is the magnetic field strength, and γ is the so-called giromagnetic ratio unique to the nucleus. E.g. for proton
γ(1H) = 2π · 42.576 MHz/T.

The macroscopic magnetization vector (M) is the magnetic moment in unit volume. The time evolution of M is
described by the Bloch-equations (1). These equations describe two different kind of interaction. One is due to the
vector product M×B leading to precession and the other is the exponential relaxation to the equilibrium value. We
consider the z axis pointing along the static B0 field. M0 is the equilibrium value of the magnetization vector. It is
parallel with the static magnetic field thus has no x and y component.

T1 and T2 are the relaxation times. The magnetization vector decays in the x-y plane according to T2, and relaxes
to the equilibrium value according to T1. Due to historical reasons T1 and T2 are called spin-lattice and spin-spin
relaxation times, respectively. One can also call them longitudinal and transverse relaxation times, respectively.

dMz(t)

dt
= γ · (M(t)×B(t))z −

Mz(t)−M0

T1

dMx(t)

dt
= γ · (M(t)×B(t))x −

Mx(t)
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In an NMR experiment a macroscopic sample is inserted into a homogeneous static field of several Tesla. Then
a macroscopic magnetization parallel with the field will be induced. Then we apply a much smaller magnetic field
(B1, with amplitude of several mT) that rotates about the z axis at the Larmor-frequency. B1 creates a torque on
the magnetization vector though it is much weaker than that from B0. Since B1 rotates at the same frequency as
the magnetization this will cause the magnetization to flip. It is much easier to visualize this effect when we use the
rotating frame representation. Let us designate the laboratory Cartesian axes as x, y, z and the rotating frame axes
as x′, y′ and z′. We might also use the notations X, Y and Z designating the rotating frame. This frame rotates
at the Larmor-frequency thus B1 (which is perpendicular to B0) seems to stay along let’s say X. Accordingly the
magnetization vector rotates around B1 at an angular frequency ωR = γ ·B1. This is called the Rabi-precession. Apply
this small field for a time τ . This will cause the magnetization to flip by an angle of ωR · τ . We describe the given
pulses by this angle.
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Figure 1: The basic process of pulse NMR. With a pulse one can flip the magnetization vector by an arbitrary angle
just as 90◦ or 180◦.

2.1 NMR signal
B1 is created by the transmitter coil that surrounds the sample. The rf magnetic field generated in the coil is perpen-
dicular to the static field. After the rf field B1 is turned off, the magnetization will precess freely. In a coil (that can be
the same one that was used to generate the B1 field or it could be a separate receiver coil) with its axis perpendicular
to the static field, this precessing magnetization will induce an rf current at the Larmor-frequency. This is the signal
that we can detect. But what is the magnitude of the signal? Assume that the sample fills the volume of the receiver
coil. The voltage induced in the coil is:

U = µ0MANωL,

where µ0 is the vakuum permeability, M is the magnetization of the sample, A is the area of cross-section of the coil,
N is the number of turns and ωL is the Larmor angular frequency.

What is the magnetization of the sample? According to Curie’s law it can be written:

M =
ρ0γ

2h̄2I(I + 1)

3kBT
B,

where ρ0 =
Nspin
Vsample

= 1
Vcell

is the spin density, I is the spin (which is 1/2 in the case of proton), kB is the Boltzmann-
constant and T is the temperature in Kelvin. It is easy to see that the Curie-susceptibility is

χCurie =
µ0γ

2h̄2I(I + 1)

3kBT · Vcell
.

It is a very small susceptibility. Consider an example! Let’s calculate the magnetization of 100 µl water inserted
into a static field of B = 7 T. First calculate the spin density! That is, the number of protons (hidrogen nuclei) in unit
volume. The density of water and its molar mass is known (ρw = 1000 kg

m3 , Mw = 18 g
mol ) and we know that every

water molecule contains two hidrogen atoms. The spin density is:

ρ0 =
2N

V
=

2NA · m
Mw

V
=

2NA · ρw
Mw

=
2 · 6 · 1023 1

mol · 1000 kg
m3

0, 018 kg
mol

= 6, 7 · 1028
1

m3
.

Assume the temperature is 300 K thus the magnetization:

M =
6, 67 · 1028 1

m3 · (2π · 42, 58 MHz
T )2 · (1, 05 · 10−34 Js)2 · 12 · (

1
2 + 1)

3 · 1, 38 · 10−23 J
K · 300 K

· 7 T = 0, 022
A
m
,

The magnetic moment of this sample is µv = M · V = 0, 022 A
m · 10−7 m3 = 2, 2 · 10−9 Am2. What amount of iron

corresponds this magnetic moment? Since iron is ferromagnetic the magnetic moment in a unit cell is gµB . To have
the same magnetic moment, the number of iron atoms:

NFe =
µw

gµB
=

2, 2 · 10−9 Am2

1, 855 · 10−23 Am2 = 1, 186 · 1014
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The mass of this amount of iron:

mFe = MFe ·
NFe

NA
= 55, 85

g
mol
· 1, 186 · 1014

6 · 1023
= 11 ng

It is an immensely small amount of iron! You can see now how small magnetizations can we detect! Let the number
of turns be N = 10, and the diameter of the cross-section of the coil is 5 mm, the Larmor-frequency is 300 MHz. The
induced voltage is:

U = µ0MANωL = 4π · 10−7
Vs
Am
· 0, 022

A
m
· (2, 5 · 10−3 m)2π · 10 · 2π · 300 · 106

1

s
= 10 mV

2.2 FID
A B1 field of the correct amplitude and duration to produce a rotation of 90◦ is called a 90◦ (or a π/2) pulse. Consider
now this pulse. Immediately following it, the magnetization lies along the rotating y’ axis, and relaxes due to several
mechanisms. This is called a FID (Free Induction Decay). Now the measured voltage decays exponentially only if the
frequency of the transmitter was exactly the same as the Larmor-frequency of the irradiated spins. In general we see
an oscillating signal that has an exponential envelope. On the other hand the time constant of the exponential decay
of the envelope is not T2 from the Bloch-equations since the magnetic field B0 is not perfectly homogen. Thus, some
nuclei precess faster than others and the magnetization dephases in the x′-y′ plane. The decay of the signal will be
exponential with a time constant of T ∗2 , called the reversible relaxation time. (The T2 is also called as irreversible
relaxation time.) Between experiments one should wait at least 10 ·T1 in order to let the magnetization to relax to the
equilibrium value. There are cases when they intentionally wait less then 10 · T1, e.g. in MRI experiments to produce
image with T1 contrast.

Figure 2: The scheme of FID. After a π/2 pulse the frequency of the detected signal is (ωL−ω)/2π (where ω/2π is the
frequency of the transmitter). The signal decays exponentially with a time constant of T ∗2 due to field inhomogenity.
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2.3 FT-NMR
In NMR technique the measured signal is the function of time. Thus the Fourier transform of the signal gives the
spectrum in the frequency-domain. It is important to understad the concept of complex Fourier transformation (or
double-channel Fourier transform).

The definition of the Fourier-transform:

x̂(ω) =
1√
2π

∫ ∞
−∞

x(t) · e−iωtdt

(where x̂(ω)) is the Fourier transform of the signal x(t). Even if x(t) is a real signal the transformed one is complex
in general. Thus we have two functions, the real and the complex part of the transformed signal. We will see later that
the frequency of the measured signal can be negative. Strictly speaking, it is important to detect a signed frequency
which is signed according to the Larmor-frequency (if it is less then the Larmor-frequency, it will be negative). If the
original signal is real, then the real part of the transformed signal is even and the imaginary part of that is odd. So
we can write that x̂(−ω) = x̂(ω)∗, where * denotes the complex conjugate. This shows that if we had only one real X
channel then the sign of the frequency can not be determined1.

One can solve this problem by using the double-channel Fourier transform. The measured signal is not only one
time-dependent signal. It contains another one shifted by 90◦ in a given frequency of ωLO/2π. You can think of it as
a vector that has two components. You have to measure both components in order to get the vector. We consider the
two time-dependent signals as the real and imaginary parts of the complex signal x(t). After the Fourier transform
the sign of the frequency is unambiguous.

The figure below shows two examples. If the FID is an exponential decay in the real channel and zero in the
imaginary channel then the Fourier transform of the FID is a Lorentzian signal centered to the zero frequency. 2

This is the case when the NMR transmitter frequency (ωLO/2π) exactly matches the Larmor frequency of the nuclei
(ωL/2π). In general we see a signal that has an exponentially decaying envelope shown in the second figure below. The
phase shift between the two channels is exactly 90◦. The frequency of the oscillation is the difference between the NMR
frequency and the Larmor frequency, (ωL − ωLO)/2π. The Fourier transform of this lineshape is also a Lorentzian,
centered to the frequency (ωL−ωLO)/2π. As you can see, the center of the Fourier transform lineshape is the Larmor
frequency of the nuclei. A common practice is to consider the Larmor frequency as the zero frequency and to measure
the shift in ppm. 3

1Similar to this is when you see the projection of an orbiting object. You can not determin wheter it rotates clockwise or anticlockwise
unless you see both the x and y projections.

2This is the reason why the Lorentzian function is special.
3That is, the frequency shift in Hz devided by the Larmor frequency in MHz. ppm stands for parts per million, ie, 10−6.
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Figure 3: Fourier transforms of two different FID signals. The left side shows the time domain and the right side shows
the frequency domain. The solid black and dashed red lines show the detected signals shifted by 90◦ with respect to
each other.

We should mention here how the NMR spectrum parameters depend on the digitizing parameters. The receiver
unit of the NMR spectrometer resembles of a custom oscilloscope. It measures with a given digitizing rate, f0, and
gets N data points. The spectrum thus has frequency values from −f0/2 to f0/2. The spectral resolution is f0/N .

2.4 Spin-echo
The so-called spin-echo technique was developed to remove the effect of the applied field inhomogeneity. Suppose
that a 90◦ pulse is applied along x′ at time 0 to a spin system for which magnetic field inhomogeneity is the major
contribution to T ∗2 . Shortly thereafter, the spin isochromats will have dephased in the x′-y′ plane, although the
individual spin isochromats have not yet dephased. Suppose at a time τ later, a 180◦ pulse is applied along the x′ axis.
Any magnetization along the z direction would simply be inverted to the −z direction and be of no consequence. Of
the magnetization remaining in the x′-y′ plane each one of the spin isochromats would be rotated 180◦ about the x′
axis. As a consequence, those spin isochromats which had gotten ahead of the average spin isochromats by a certain
angle are now behind the average of the pack of spin isochromats by the same amount. Those spin isochromats which
were going slower than average and had gotten behind the rotating y′ axis are now ahead of the rotating y′ axis
by the equivalent amount. Therefore, following the 180◦ pulse, the spin isochromats begin to rephase to form a net
magnetization as the rapid isochromats catch up with the slow ones. The result is that the magnetization becomes
refocussed along the −y′ axis at time 2τ and it will cause an inverted spin echo, as shown in the sketch below. It is
also possible to get spin echoes by applying the 180◦ pulse along the y′ axis in the rotating frame. The refocussing
will then take place along the y′ axis so the echo will have the same sign as the FID. You can see a nice simulation
here: http://en.wikipedia.org/wiki/Spin_echo
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Figure 4: The spin-echo. After a π/2 pulse applied along the x′ axis we get an FID along the y′ axis. After a time
delay of τ a π pulse is applied which will cause the spins to rephase.

The gradient echo is a common method in MRI. A magnetic field gradient is created inside the magnet (the
magnetic field points to the z direction but the magnitude is space-dependent). Thus the Larmor frequency is space-
dependent and we see a much faster dephasing of the spins. After a short delay the gradient is inversed and a gradient
echo is formed analogue to the spin echo.

2.5 The CP pulse sequence
On exact resonance in an inhomogeneous field, the 90◦ pulse yields an FID with a time constant T ∗2 . Az a time τ
later, a 180◦ pulse is applied and the echo maximum occurs at time 2τ , since the time required for rephasing the spin
isochromats equals the time it took for dephasing. Because the spin echo arises from magnetization that has regrouped
along the −y′ axis, the echo will be inverted compared to the FID. Another 180◦ pulse at time 3τ will result in another
echo at time 4τ and this will be right side up. One can continue to apply 180◦ pulses with a spacing of 2τ with echoes
occurring between each of the pulses. This spin echo train is called a Carr–Purcell (CP) spin echo train (Carr and
Purcell, 1954). The echo amplitude maxima should decay with the time constant T2, the intrinsic spin-spin relaxation
time, which is the time it takes for the magnetization to decay in the x-y plane in the absence of any external field
inhomogeneity.
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Figure 5: The Carr-Purcell echo train. π pulses are applied with a spacing of 2τ . The echo amplitude decays with time
constant T2

2.6 The CPMG pulse sequence
In practice, Carr–Purcell echo trains usually result in measured T2’s that are too short because of cumulative errors
of each pulses not being exactly 180◦ pulses and of B1 inhomogeneity which spreads out the magnetization in a plane
containing B0 and B1. One way to compensate for these errors is to alternate the phase of each 180◦ pulse by 180◦

phase shifts as shown below. The first 90◦ pulse occurs with the rotating B1 field along the rotating x′ axis. The first
180◦ pulse, however, would have its rotating B1 field along the Y axis. The second 180◦ pulse would have the rotating
B1 field along the rotating −Y axis and so on. In this way, any pulse length errors are cancelled on alternate echoes.

Figure 6: The CPMG echo train. All the echoes have the same sing since the echoes are always formed along the
same direction in the rotating frame. This is a slight inconvenience compared to the bipolar CP echoes which have no
baseline ambiguity.

2.7 Inversion recovery
In order to measure the spin-lattice relaxation time T1 the nuclear spins have to be prepared in some non-equilibrium
configuration and then, after some waiting period during which the spins are allowed to relax, a pulse monitors the
state of the spins. The recovery of the nuclear spin population is monitored as a function of the waiting time.

In inversion recovery the first pulse (π pulse) inverts the spin population (and thus the magnetization) and the
recovery therefore goes from −M0 to M0 where M0 is the themal equilibrium magnetization attainable only after
waiting for a time much longer than T1. The second pulse (π/2 pulse) measures the magnetization after the waiting
period. Specifically, the magnetization after waiting for a time τ is given by

M(τ) = M0 · (1− exp(−τ/T1))
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Figure 7: The inversion recovery sequence. The first π/2 pulse prepare the nuclear spins and then, after some waiting
period during which the spins are allowed to relax, the second pulse monitors the state of the spins.

2.8 Phase cycling
There are several imperfections in the NMR circuit (Just as dead time, ringing, offset problems, etc.). To remove
some of these effects the so-called phase cycling method is used. Consider a straightforward example. The digitizer
circuit creates an offset after the pulse. This offset will distort the spectrum at the zero frequency. This component
however can be removed by systematically varying the phase of pulses in a pulse sequence and that of the receiver
coil. Consider a FID. If we measure it two times, with the first pulse points along x′ at the first experiment and −x′
in the second, after subtracting the signals from each other there will be no offset as you can see in the figure below.
In the programming language of the Bruker instrument one can write this as follows:

Φ1 = 0 2
Φ31 = 0 2

Where Φ1 is the phase of the first pulse, Φ31 is the phase of the receiver. 0, 1, 2, 3 denotes the coordinates X, Y ,
−X and −Y , respectively.

Figure 8: phase cycling in the case of a FID
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In the following example we make a spin echo experiment. We want to remove the first FID. The syntax to do this
is the following simple code:

Φ1 = 0 2
Φ2 = 0 1
Φ31 = 0 0

Φ2 is the direction of the π pulse. The disadvantage of this sequence is that although the FID was removed, the π
pulse remained just as the offset.

Figure 9: phase cycling in spin echo experiment.
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An improved version of the upper experiment is the following. We take 4 measurements thus removing the FID,
the pulses and the offset. What remains is only the echo signal.

Φ1 = 0 0 0 0
Φ2 = 0 2 1 3
Φ31 = 0 0 2 2

Figure 10: modified phase cycling for spin echo sequence.

One can show that it is worthy to permute the phases as shown below.
Φ1 = 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
Φ2 = 0 2 1 3 1 3 2 0 2 0 3 1 3 1 0 2
Φ31 = 0 0 2 2 1 1 3 3 2 2 0 0 3 3 1 1
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