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1. Diffraction

1.1. Introduction

Diffraction of light at optical slits and gratings an interference phenomenon characteristic for
waves. The propagation of waves is dictated byadled¢wave equationswhich are differential
equations in time and space. The mathematicallyecbdescription of wave propagation is rather
complex but theHuygens-Fresneprinciple introduced in the next chapter offers aher
instructive alternative approach to understand obasic level interference phenomena like
refraction and diffraction.

1.2. Basic Theory

Light is an electromagnetic wave consisting of tivaeying electric and magnetic fields, which
oscillate in time and propagate in space similaatmechanical wave or sound wave. Unlike
mechanical waves electromagnetic waves require edium and travel, e.g., in vacuum with a
constant velocity d = 299792458 m/s). The fields carry both energy am@mentum. In the
following it will suffice to consider the electriteld E alone, which may be considered to play a
role similar to the deflection from equilibrium ptasn in a mechanical wave. plane wavewith
frequencyv and wavelengthh travelling in the positivex-direction the electric field is
mathematically described by a function

E(x,t) = E -sin(erv- ;X )
0 ( C) (1.2)

This equation tells us that the electric fielt{x,t) determined at a certain positianin space

oscillates in time with a frequensy and an amplitud&,. The argument of the sin-function is
often called phase. In three dimensions the pahts fixed phase in the wave of equation (1)
form yzplanes, a fact which may be understood as motivatdor the name. Note that with
increasing time the spatial positions of fixed ghasopagate into positivedirection with the
light velocity c. Because of the periodicity of the sin-functionini® separated ir-direction by
an integer multiple of ©/have the same field value. Thus the wave fiekpatially periodic with
periodA=ch whereA is the wavelength.

Plane waves, such as the one of equation (1.1nathematically very simple but by no means
describe all possible wave fields. Much more coogtéd surfaces of constant phase are possible.
In general, electromagnetic waves are generated bymber of oscillating point charges. A
single point charge is the source ad@herical wavewhich spreads with light velocity from the
point of the charge into all spatial directionseave fronts then form sphere surfaces. The field
value of such spherical waves must decrease witkasing distance from the source as indicated
in Fig. 1.1.
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Fig. 1.1: Electric field and wave fronts of a
plane wave (top) and a spherical wave
(bottom).

If the sources or the wave fronts at some instemigaven we may calculated the wave fronts at
any later time by the so-callétliygens’ principle

- Every point on a wave front serves as the soafae spherical secondary wavelet that spreads
out in all directions with a speed equal to theeshpef wave propagation.

- The new wave front at a later instant is theaeftangent to all the secondary spherical waves.

Note that only the wave front in forward directiare., in propagation direction, is considered.
The wave front simultaneously formed on the badk isadisregarded. It was about 150 years
later when Fresnel pointed out that Huygens’ ppiacican be extended in order to explain
diffraction effects showing that optical apertu@s not cast perfect shadows. This extended
version of Huygens’ Principle is therefore oftemealHuygens-Fresnel principle

- Every unobstructed point of a wave front at aegivnstant serves as a source of a spherical
secondary wavelet with the same frequency as th#teoprimary wave. The amplitude of the
wave field at any point in forward direction resultom the superposition of all these wavelets,
considering their amplitudes and relative phases.

It is important to note that superposition here mseaddition of the electric field values in contras
to addition of intensities. However, for both thenfan eye and most detectors the light intensity
is of relevance, which is proportional to the sguafrthe electric field:

Ipigr & E|? (1.2)

The intensity of the light field at the point of s#yvation arises from the square of the electric
field that results from summing up the electridd#eof all wavelets. A second crucial point is that
the extended version explicitly allows superpositaf spherical wavelets with different radii.
Considering the phasef the wavelets suffices.

In this laboratory exercise interference phenomeiiabe studied in the limit ofFraunhofer
diffraction (as opposed teresneldiffraction). This means that, firstly, the beanpimging on the
diffracting obstacle can be assumed to be a plaevand, secondly, the distance between the
diffracting object and the point of observatiorvésy large. In our experiment the first condition
is met in good approximation since we use a lasdigat source. The second condition is met if



the distance between the obstacle and the poiabsérvation is much larger than the extent of
the diffracting object, i.e., the width of the slitthe illuminated grid.

In this experiment the wave properties of lightlwi demonstrated by observing diffraction and
interference effects from a single slit, a doubiiead a series of slits. We will learn about the
properties of diffraction gratings, which are im@amt components in spectroscopic instruments
such as monochromators and spectrographs.

1.3. Diffraction from a single dlit

Here we consider a monochromatic plane wave intidena long narrow slit. According to
geometric ray optics the transmitted beam woulcelthe same cross section as the slit, but what
we indeed observe is a drastically different ddfran pattern. The main properties of the
diffraction pattern can be understood with the afdFig. 1.2. For the case of Fraunhofer
diffraction, where the distanaebetween the slit and the point of observation Reig/ large
compared to the slit widtdl, all rays origination from the slit can be cons@tketo be parallel in
good approximation. To calculate the resultantnsity with Huygens’ principle we consider the
optical path length differencé between wavelets originating at two different psintand x,

dsina

within the slit. The difference in path length teetpoint P isg = whered is the slit width

anda the angle between the optical axis of the slig(lformal to the aperture) and a line from the
slit to the point of observation P.

[l P (Photodiode)

X

(In

Fig. 1.2: 1) Interference of wavelets originatirrgrh different positions within a single slit. Thistdnce of the
point of observation P is so far that the rays banconsidered parallel. The numbers indicate wésseleat
interfere destructively at P. 1) Geometry of aricgl slit. The positions; andx, of two wavelet source points
within the slit are marked. The lines connectingsth points with the photodiode denote the radivafelets
interfering at the detector.

A simple geometrical argument explains compellinglily we observe far behind the slit a
number of parallel stripes with different intensiti As indicated in Fig. 1.2. (I) we divide the
wave front within the slit into two partsandb of the same width. At a certain angle each wavelet
of the second half will have a partner waveletha first half with precisely a half-wavelength
optical path difference. This, however, means #élhdhe point of observation all wavelets from the



slit add with their partner wavelets to zero beeaoktheir 180° phase difference. As a result at
this angle the intensity must be at a minimum. &me will occur at any angle, at which we may
divide the slit into an even number of slices vatth having half a wavelength path difference to
the wavelets of the next neighbouring slice. Thiglly, results into the condition for angles at
which stripes of with vanishing intensity are ohss

A
Sin @, = m= with m =+1,+2, .-

(1.3)

If, on the other hand, the number of slices withvetats of 180° phase shift is odd, one slice
remains unextinguished and an intensity maximunuiscc

1\ 4
SIN Aoy — (m +E)E with m=+1,+42,.. (1.4)

The integer numbem is often calledorder of the maximum. Mathematically the electric field a
the point of observation results from a sum ofaalelets originating from any location of a wave
front within the slits. This sum turns into an igtal since the sources of the wavelets are
arbitrarily close to each other. Finally, the irgiy at point P is obtained by taking the square of
the sum:

(1.5)

Here |, is the intensity of the maximum observed at angle 0. Note that the intensity of
equation (1.5) indeed vanishes whenever the angleets equation (1.3). Furthermore, according
to equation (1.5), we expect an intensity maximimgq(ite good approximation foP'S/']ﬂ >1

whenever the argument of the sin-function is anmddtiple ofz/2 which is in correspondence to
equation (1.4).
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Fig. 1.3. Angular dependence of the intensity pattesulting from interference at an optical slihe dashed
line depicts the intensity ten times enlarged glesbeyonck.
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In Fig. 3 the intensity is depicted as functiontloé entity A large main maximum is

observed at zero deflection. The intensity of thecimweaker side maxima decreases with
increasing ordem according to

Iy
Imax = »
m2(|m| + 1/2)2 (1.6)

1.4. The Diffraction Grating

A diffraction grating consists of a large numibeof identical slits each of widtth and separated
from the next by a distand®, as shown in Fig. 1.4.
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Fig. 1.4: Geometry of an optical grating.




We will first consider the interference of waveletiginating from the slit centers. Of course, the
result will then be only a good approximation iétslits widths are extremely small. But we will
find an easy way to extend the result to the cdsgrids with slits of realistic widths. If we
assume that the incident light is planar and petigeitar to the grid, the optical path difference of
wavelets in neighboring slits 8=D sino where the angle is again taken between the normal to
the grating and the line joining the grating anel ploint of observation P. If this path differense i
equal to an integral multiple of wavelengths thdirttee slits will constructively interfere with
each other and a bright spot will be measured at P:
Sin Qpax = m%, m=20,+1,4+2,....

(1.7)

These maxima are called principal maxima, becauseuperposition of the wavelets according
to Huygens’ principle will turn out to result in ditonal maxima, which are much weaker
though. Mathematically the superposition resulta sum of the fields in the wavelets from Ml
slits in the grating. To obtain the intensity tlesult is squared again, which results in:

sin (N.;r.psina) i
le =1Is ( (T -‘D . )
sin ( T—sin (x) (1.8)

Extinction occurs at angles,i, with

?

A
sinapy, =—"—, f=+4+1,42,... und £+ N
N D

(1.9)

If the ¢/N is an integer number, the denominator lgfin equation (1.8) also vanishes. A
mathematical consideration leads to the resultith#lis case the intensity must M. These
maxima occur at angles in accordance with equg@prand they are much stronger as compared
to the intensity observed at any other angle. Adiogrto equation (1.9), we expect between
principal maxima il 1) intensity minima andN — 2) weak secondary maxima, which strength
relative to the principal maxima rapidly decreaséh increasing\.

If in each slit we have only one source of a wavikle factorsin equation (1.8) is the intensity of
the wavelet. In a real grid we have to considerfihiée width of the slit. If different wavelets
originating in the same slit are interfering destiwely, they will do so in a grating as well. The
finite width of the slits is considered in equat({dm8) if the factollscontains the intensity pattern
of a single slit of the grating. As a result weabhtthe interference pattern depicted in Fig. In5.
the case depicted in this figure, the width ofslieamounts to 1/8 of the grating period.
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Fig. 1.5: Intensity pattern of an optical grid with= 5 slits. The ratio between the width of thigsshnd the
period of the grating ig = 1/5. The dashed line markkgreflects the intensity pattern of a single slithie grid.

The location of the maxima does not depend on thmber of slits. However, they become
sharper and more intenseMss increased. Because of the wavelength dependdnhbe angles,

at which principal maxima are observed, light cstisg of different wavelengths can be
spectrally resolved with an optical grating: Afgffraction of the light beam at the grating the
components with different wavelength are observedifferent angles. Note that the re-solving
power of the grating, i.e., the resolution at whititierent wavelengths can be distinguished with
the grating, increases with the number of illumaégkslits because of the decreasing width of the
principal maxima at gratings with increasiNg



2. Fourier optics

2.1. Background

Ray optics is a convenient tool to determine imggiharacteristics such as the location of the
image and the image magnification. A complete dpson of the imaging system, however,
requires the wave properties of light and assodiptecesses like diffraction to be included.
It is these processes that determine the resolatiaptical devices, the image contrast, and
the effect of spatial filters. One possible waveiegb treatment considers the Fourier
spectrum (space of spatial frequencies) of theovka@d the transmission of the spectral
components through the optical system. This isrmedeto as Fourier Optics. A perfect
imaging system transmits all spectral frequencesalty. Due to the finite size of apertures
(for example the finite diameter of the lens ap®ffucertain spectral components are
attenuated resulting in a distortion of the imagpecially designed filters on the other hand
can be inserted to modify the spectrum in a preddfimanner to change certain image
features.

In this lab you will learn the principles of spatidiering to (i) improve the quality of laser
beams, and to (i) remove undesired structures fimages. To prepare for the lab, you
should review the wave-optical treatment of thegmg process (see [1], Chapters 6.3, 6.4,
and 7.3).

2.2. Spatial Fourier Transform

Consider a two-dimensional object{ a slide, fortamge that has a field transmission
functionn f(x; y). This transmission function carries the informatiof the object. A
(mathematically) equivalent description of this exdtjin the Fourier space is based on the
object's amplitude spectrum

Flu,v) = —= /ff(;r, y)e TTUE T oy
0 (2m) (2.1)

where the Fourier coordinates; (v) have units of inverse length and are called ap&iquencies.
Suppose a plane wave of amplituBeimpinges on the object. The field distribution iedately
behind the objecE(x; y) = f(x; y)E,, and the object information is impressed onto lilet wave.
There are optical processes that can produce thedrdransform oE(x; y) and the object function,
respectively.

2.3. Fourier optical approximation of diffraction

When light (or any other wave) encounters an olestacis diffracted. Diffracted waves are
in general characterized by a complicated distisloubf amplitude and phase. In certain
cases, however, analytical expressions can be neotafor the diffracted field and the
diffraction pattern that can be observed on a scrégonsider a rectangular aperture
characterized by the transmittance funcfipry) = 1 for —a/2<x<a/2 and—b/2<y<b/2 where
the ; y) plane is the plane of the aperture. It can bavshihat the intensity distribution in
the far field (Fraunhofer) diffraction pattern isen by



sin?(2mvb/2) sin?(2mua/2) .y o \
I{u,v) = I tn( l - ) = (‘ tfa’, ) = Iysinc?(2mob/2)sinc?(2mua/2),
(2mvb/2)2  (27ua/2)? ‘ ‘ / (2.2)

whereu; v are the spatial frequencies for th@ndy dimensions. For a poinks£ Yo) in the
observing plane at a distance of Rom the aperture center, the spatial frequenaies
related to the sine of the angle between the notontdile aperture and the line from aperture
center to Xo; Yo) by

x!
R\

y;f
R\

Note that Eq.(2.2) is simply the absolute valueasgd of the Fourier transform f{k; y), i.e

|F(u,v)|2 For small diffraction angle®Ry can be identified with the distance between the

diffrracting and observation plar&na =tana = a . In general, it can also be shown that the
far field or Fraunhofer diffraction pattern is tf@urier transform of the field across the

diffracting aperture.

Similarly, diffraction from a circular aperture dfameter D, with a transmittance function

f (r,¢) =1 for 0<r<D/2 and 0w<2r, yields

2.1 (27p(D/2))]°?

27p(D/2) (2.3)
. . , . _ sinéd r'
whereJ; is the Bessel function of the first order. Thetgddrequency isp :T =m

for small diffraction angle®). The other variables are: D = aperture diameter rysk =
radius of Airy disk in question; R= distance from aperture to detection plane; and
wavelength. From this intensity pattern, one sedependence on the zeroes and extrema of
the Bessel function. For example, the distance ftioencentral intensity maxima to the first
minimum, kisk, gives the relation

TD7T gisk

122 = (2.4)

while the distance from the central maximum tortbgt maxima gives

T Drisk

164 = 3 (25)

Strictly speaking the far field diffraction pattecan only be observed at infinity. By placing aslen
after the diffracting aperture the plane at in istymaged onto the focal plane of the lens. This
explains why a lens can perform a Fourier transform

2.4 Optical spatial filtering



Fourier transform by a lens. Optical spatial fltering is based on the Fourigansform
property of a lens (see Fig. 2.1). It is possibe display the two-dimensional spatial
frequency spectrum of an object in such a way imditvidual spatial frequencies can be
filtered. This property is illustrated below. Théject, in the form of a transparency, is
illuminated by a collimated wave. The object isadmed by a space functid{x; y). In the
infinite lens limit, it can be shown [1] that theld distribution in the focal plane of the lens is
given by

iBy o kg
E(xs y5) = /\—fexp{?. [wt — k(S + f)]}exp z)—fz(s — )| Flu,v).
(2.6)
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Fig 1: Fourier transform by a lenk, is the collimating lensl., is the
Fourier transform lensy and v are normalized coordinates in the
transform plane.

HereSis the object distancé,is the focal length of the lens? = x°+ y{* are coordinates in
the focal planel(u; v) is the Fourier transform of the object functiars-x/Af andv =-y/Af.

2
Note, that the observable intensity pattern inftlwal plane of the Ien#E(Xf ' Vi )‘ does not

depend on the object position.

By making a Fourier transform of an image usingeas] it is possible to change the
information in amplitude and phase that is suppbh this image. For that purpose, a filter
is placed in the spatial frequency plane ). A second lens, placed after the spatial
frequency plane, is used to display the Fouriemstiam of F(u; v)T(u; v) whereT(u; v)
describes the amplitude transmission of the filtethe filter is removed, the output plane
displays an inverted version of the input transpeydobject).

The basic optical processor is shown in Fig. 2t ®bject (a transparency) is illuminated by
a coherent plane wave. Two identical lenses are.uRay tracing shows that the system
produces an inverted image of the object in thegenplane. The first lens produces the
Fourier transform of the object in its back fockne. By manipulating the information in the
Fourier transform plane, we obtain a processeg(&t) image."
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Fig. 2.2. Basic optical filtering system.

Spatial filtering: The filtering consists of altering the image @mitby placing masks in the
Fourier plane. These masks are to affect the amdelitand/or the phase of spectral
components.

1. Low pass filteringA simple kind of filter is the low pass filter fragntly used in laser
cavities to improve the beam quality. It allows Iepatial frequencies to pass through the
system while blocking components associated wighdr spatial frequencies.
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Fig. 2.3: Low pass spatial filter.

2. High pass filter (edge enhancemerthother important filter is the high pass filtexgo
known as an edge enhancer). A high pass filteristesnef a dark spot in the center of the
Fourier plane. A high pass filter is used to sharp@otographs. The high pass filter is
sketched in Fig. 2.4.
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Fig. 2.4: High pass spatial filter



3. Image correctionlIt is possible to do less trivial filtering. Coder for instance the
photograph of a video display. It is possible im&late the lines from the picture by inserting
two knife edges in the frequency plane. These tdges have to be put at aplace where they
cut the +1 and -1 diffraction orders of the gratiogmed by the lines of the screen. In this
way, the picture is passed unchanged and thedirgesliminated.

4. Image correlationMore complicated filters can be made by photolgya®ne interesting
application is the comparison of various objectthva reference one, for example, a set of
alphanumeric characters. We take one object, sagddkidered as a master. We record it on
a photographic plate. Then we take another objedtraake its FT in the plane where the
developed film is carefully placed. If the two otife are identical no light will pass through.
If there is a small difference between the two cigiesome light will reach the output plane.
It is possible this way to test the reproducibilitythe manufacturing of complex integrated
circuits.
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