Physics

The magnetic field

8. lecture

The magnetic field

Symbol: **B**

Unit: Tesla = Ns/Cm

The magnetic field of the Earth (at equator) appr. 3*10⁻⁵ T

Magnitude of Lorentz-force:

$$F = qvB\sin\alpha$$

The right-hand's rule

E
$$\neq$$
 0: Lorentz-force: $\vec{F} = q \left[\vec{E} + \vec{v} \times \vec{B} \right]$

Charged particles in uniform electric and magnetic field I.

 $\mathsf{E} = \mathsf{0}$

B : uniform

$$qvB = m\frac{v^2}{R}$$

$$R = \frac{mv}{qB}$$

Period:
$$T = \frac{2R\pi}{v} \longrightarrow T = \frac{2\pi m}{qB}$$

Charged particles in uniform electric and magnetic field II.

Charged particles in uniform electric and magnetic field III.

Charged particles in uniform electric and magnetic field IV.

The cyclotron

The cyclotron-frequency: f = 1/T

$$f = \frac{qB}{\pi m}$$

Charged particles in uniform electric and magnetic field V.

Electron-mycroscope:

If θ is small (< 5°) $\rightarrow cos(\theta) \approx 1 \rightarrow$ the beam focused

Charged particles in uniform electric and magnetic field VI.

Force acting on the current (wire):

$$\vec{F} = q\vec{v} \times \vec{B} \implies d\vec{F} = dq\vec{v} \times \vec{B} = dq\frac{d\vec{s}}{dt} \times \vec{B} = \frac{dq}{dt}d\vec{s} \times \vec{B}$$

$$\vec{F} = I \int_{s} d\vec{s} \times \vec{B}$$

Special case:

B uniform, the lenght of the wire: *e*

$$\vec{F} = \vec{I\ell} \times \vec{B}$$

Current loop in magnetic field, magnetic moment

Force acting on wire(s): *F* = *IbB*

$$M = 2\frac{a}{2}F\cos\varphi = IabB\cos\varphi \implies M = IAB\cos\varphi$$
$$\vec{M} = I\vec{A} \times \vec{B}$$
$$\vec{M} = \vec{\mu} \times \vec{B}$$

The potential energy of magnetic moment in magnetic field:

$$U = -\vec{\mu}\vec{B}$$

Electrostatics (analogy):

$$U = -\vec{p}\vec{E}$$

Charged particles in uniform electric and magnetic field VII.

Hall effect:

$$\vec{F} = q\vec{v} \times \vec{B}$$

 $E = V_d B$

Hall-potential: $V_H = Ew = v_d Bw$

$$V_H = \frac{BI}{nq_e t}$$

Measurement of $B \rightarrow Hall detector$

Magnetic field of a magnet

Analogy \rightarrow electric dipole

The magnetic Gauss's law

The magnetic field of Earth

The Van-Allen belt

