Quantum Computing Architectures

Budapest University of Technology and Economics 2018 Fall

Lecture 7: Superconducting qubits Basic architectures 2 Flux and charge qubits cQED

RF SQUID

Similarly to DC squid the phase difference equals the flux inside the loop
12
Φ

$$
\frac{\Phi_{0}}{2 \pi}\left(\phi_{1}-\phi_{2}\right)=\int_{1}^{2} \vec{A} \overrightarrow{d l}
$$

$$
\delta=\phi_{1}-\phi_{2}=\frac{2 \pi \Phi}{\Phi_{0}}
$$

The flux inside the loop will be partially screened by and induced circulating current
L loop inductance

$$
\Phi=\Phi_{e x t}-L I_{c i r c}
$$

Equation of motion, with the calculated current:

$$
\begin{array}{r}
0=C \frac{\Phi_{0}}{2 \pi} \frac{d^{2} \delta}{d t^{2}}+\frac{\Phi_{0}}{2 \pi} \frac{1}{R} \frac{d \delta}{d t}-I_{c} \sin (\delta)-\frac{1}{L}\left(\delta-\Phi_{\text {ext }}\right) \\
U(\delta)=\frac{\Phi_{0}}{2 \pi} I_{c}(1-\cos (\delta))+\frac{1}{2 L}\left(\frac{\hbar}{2 e} \delta-\Phi_{\text {ext }}\right)^{2} \\
\quad \text { Potential - junction + magnetic energy }
\end{array}
$$

For half integer quantum, two minima:
two persistent current states, circulating in different direction

RF SQUID

12
Φ
Single-junction loop: rf-SQUID / Flux qubit
L loop inductance

$$
U(\delta)=\frac{\Phi_{0}}{2 \pi} I_{c}(1-\cos (\delta))+\frac{1}{2 L}\left(\frac{\hbar}{2 e} \delta-\Phi_{e x t}\right)^{2}
$$

Two wells \rightarrow two levels - for symmetric
potential for half integer flux bias

$\Phi_{\text {ext }}\left(\Phi_{0}\right)$

Hard to fabricate, big loop is needed for inductance matching (large noise pickup possible big decoherence) $\rightarrow 3 \mathrm{JJ}$-s qubit (effectively the same). potential degenerate flux states The two states correspond to oppositely circulating persistent current If tunneling is possible between the two wells (Δ), states hybridize and split up and the macroscopic tunneling determines
 the separation

The expectation value of the current as a function of the flux
Away from half flux quanta, pure flux states

$$
U=-E_{j}\left[\cos \left(\varphi_{1}\right)+\cos \left(\varphi_{2}\right)+\alpha \cos \left(\varphi_{1}-\varphi_{2}-2 \pi \Phi_{e x t} / \Phi_{0}\right)\right]
$$

Caspar H. van der Wal et al., Science 290, 773 (2000)

(20)

Other design: squid is directly coupled to achieve higher sensitivity $\mathrm{T}_{1} \sim 900 \mathrm{~ns}, \mathrm{~T}_{2} \sim 20-30 \mathrm{~ns}$
Dephasing: likely flux noise \rightarrow changes the qubit frequency randomly

Ideal opeation would be at $\Phi=\pi$, however this did not work for this devices.
There $\delta \mathrm{E}^{\sim} \Phi^{2}$, less sensitive to flux noise \rightarrow sweet spot

$S_{1} \quad I \quad S_{2}$

$$
\delta=\phi_{2}-\phi_{1}
$$

Neglect damping. SC state. $\mathrm{R}=0$

$$
\begin{array}{rlr}
\mathrm{E}=\mathrm{K}+\mathrm{U} & K & \frac{1}{2} C V^{2}=\frac{Q^{2}}{2 C}=\frac{1}{2} C\left(\frac{\hbar}{2 e}\right)^{2}\left(\frac{d \delta}{d t}\right)^{2} \quad \begin{array}{c}
\text { or using } \\
U
\end{array} \\
& =E_{J 0}(1-\cos (\delta)) & E_{J 0}=I_{C} \frac{\hbar}{2 e} \\
\text { Josephson energy }
\end{array}
$$

Charging energy

$$
\hbar \omega_{p l}=\sqrt{8 E_{C} E_{J 0}}
$$

Classical treatment valid: Oscillation only in the bottom of the potential well

Homework: How to enter the quantum regime? Investigate scaling with the junction area. Suppose $\mathrm{d}=1 \mathrm{~nm}, \varepsilon=10, \mathrm{I}_{\mathrm{c}}=100 \mathrm{~A} / \mathrm{cm}^{2}$. What is the temperature range where the measurement should be done?

Energy terms

Why JJ, not a simple inductor?

LC - oscillator

$$
\begin{array}{rlrl}
H=\frac{1}{2} C V^{2}+\frac{1}{2} L I^{2} & V & =L \frac{d I}{d t} & \\
I & =L I \\
I & =C \frac{d V}{d t} & Q & =C V
\end{array}
$$

Josephson junction
Josephson junctions is a non-linear inductance: the energy spectra is anharmonic. The qubit can be separated from excited states

$\mathrm{U}_{\mathrm{Lc}}(\Phi)$
for small Φ
$L_{J}=\frac{\Phi_{0}}{2 \pi I_{c}} \quad I \simeq \frac{\Phi}{L_{J}}$
$H=\frac{1}{2} C V^{2}+\frac{1}{2} L_{J} I^{2}=\frac{Q^{2}}{2 C}+\frac{1}{2 L_{J}} \Phi^{2}$

Why else superconductors?
-Single non-degenerate macroscopic ground state - no low energy excitations

Quantization of EM circuits

$H=E+K=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega_{p l}^{2}=\frac{Q^{2}}{2 C}+\frac{1}{2 L_{J}} \Phi^{2} \quad$ Energy of a harmonic oscillator
$H=E+K=\frac{1}{2} C\left(\frac{\hbar}{2 e}\right)^{2}\left(\frac{d \delta}{d t}\right)^{2}+E_{J 0}(1-\cos (\delta)) \quad \mathrm{JJ}:$ nonlinear Harmonic oscillator
$p=m v=C\left(\frac{\hbar}{2 e}\right)^{2} \frac{d \delta}{d t} \quad$ Knowing the mass, identify momentum $\quad M=\left(\frac{\hbar}{2 e}\right)^{2} C$
Quantization - using the momentum and position operators

$$
\hat{p}_{\delta}=\frac{\hbar}{i} \frac{d}{d \delta} \quad \hat{x}=\hat{\delta} \quad\left[\hat{\delta}, \hat{p}_{\delta}\right]=i \hbar
$$

$$
\hat{H}=-4 E_{c} \frac{d^{2}}{d \delta^{2}}+E_{J 0}(1-\cos (\delta))
$$

Quantized JJ Hamiltonian
Phase representation (analogous to coordinate repr.)

Charge, Cooper pair number, flux basis
Homework:

1) Phase regime $\quad \hbar \omega_{p l} \ll E_{J 0} \quad$ and $\quad E_{C} \ll E_{J 0}$
phase is well localized in one of the minima, large charge fluctuations are possible (small E_{c})
2) Charge regime $\quad \hbar \omega_{p l} \gg E_{J 0}$ and $E_{C} \gg E_{J 0}$
e.g. a small island tunnel coupled, number of states well localized (Coulomb blockade), phase fluctuations are large

Charge qubits

$$
\begin{aligned}
& \hat{H}=\frac{\hat{Q}^{2}}{2 C}+E_{J 0}\left(1-\cos \left(\frac{2 \pi \hat{\Phi}}{\Phi_{0}}\right)\right)=E_{c} \hat{N}^{2}+E_{J 0}(1-\cos (\hat{\delta})) \\
& \hat{H}=-4 E_{c} \frac{d^{2}}{d \delta^{2}}+E_{J 0}(1-\cos (\delta)) \\
& |\delta\rangle=\sum_{N=-\infty}^{\infty} e^{i N \delta}|N\rangle \longleftrightarrow|N\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i N \delta}|\delta\rangle
\end{aligned}
$$

$$
\text { Homework to show: } \quad e^{i \hat{\delta}}|N\rangle=|N-1\rangle
$$

$$
\hat{H}_{J} \approx E_{J} \cos (\delta)=-\frac{E_{J}}{2} \sum_{N}|N\rangle\langle N+1|+|N+1\rangle\langle N|
$$

Josephson term in number basis (neglecting constant offset)

$$
\hat{H}=E_{c} \sum_{N}\left(N-N_{g}\right)^{2}|N\rangle\langle N|-\frac{E_{J}}{2} \sum_{N}|N\rangle\langle N+1|+|N+1\rangle\langle N|
$$

N_{g} : offset charge from gate electrode Enchance Ec: make a small SC insland

Charge qubit/Cooper pair box small SC island connected with a single lead to an large SC, and to a gate electrode. The island has large charging energy. Using a SQUID loop E_{J} is flux tunable
$\hat{H}=E_{c} \sum_{N}\left(N-N_{g}\right)^{2}|N\rangle\langle N|-\frac{E_{J}}{2} \sum_{N}|N\rangle\langle N+1|+|N+1\rangle\langle N|$

If $E_{c} \gg E_{J}$: well defined charge states. The Josephson term connect neigbouring charge occupations (measured in 2 e - Cooper pair tunneling!)

Good ground state: good for inicialization, charge states are far
Good qubit: degeneracy points: 2 levels close by next level far away

$$
N_{g}=\frac{1}{2}+\Delta_{g}
$$

To check. Up to contant terms:

$$
H=E_{C} \Delta_{g} \sigma_{z}-\frac{E_{J}}{2} \sigma_{x}=\left(\begin{array}{cc}
E_{C} \Delta_{g} & -E_{J} / 2 \\
-E_{J} / 2 & E_{C} \Delta_{g}
\end{array}\right) \longrightarrow E= \pm \frac{E_{J}}{2} \sqrt{1+\frac{4 E_{C}^{2} \Delta_{g}^{2}}{E_{J}^{2}}}
$$

Around the splitting the spectrum is quadratic:

$$
\frac{4 E_{C}^{2} \Delta_{g}^{2}}{E_{J}^{2}} \ll 1 \quad \Delta E=E_{J}+O\left(\Delta_{g}^{2}\right)
$$

Charge qubits
Experiments

- First the qubit is prepared in state $\mid 0>$ by relaxation at $\mathrm{N}_{\mathrm{g}}=0\left(\sigma_{\mathrm{z}}\right.$ eigenstate)
- Fast DC pulse to the gate to $\mathrm{N}_{\mathrm{g}}=0.5 \rightarrow$ not adiabatic, it remains in $|0\rangle$. This is not an eigenstate (eigenstates are of σ_{x})
- It starts Rabi-oscillating between |+> and |->, and evolves during the pulse length (t). After time t, bring it back to $\mathrm{N}_{\mathrm{g}}=0$
- In Larmor language: $N_{g}=0, B_{z}$ field, and a \downarrow is prepared. Than B rotated fast to B_{γ}. Larmor precession in the $x-z$ plane. Then measurement again at B_{Z} basis.
- Detection: If after the pulse, the qubit is in $|1\rangle$ decays to probe electrode (properly biased) through 2 quasi particle tunneling events

- single shot readout

- By adjusting t, the length of the pulse Rabi oscillation is seen
- Relaxation <5 ns, probably due to charge fluctuations

Other readout for charge qubit: with SET

Julia Love, PhD Thesis
SETs are capacitively coupled to the CPB. The change of the number of electrons on the CPB shifts the levels of the dot. The transport through the dot is measured. Or, SET coupled to RF circuit, and frequency shift of the resonator is measured.
Decoherence: limited by charge noise $-1 / \mathrm{f}$ noise. This gives fluctuation in gate voltage (not stable instruments, fluctuations in tunnel barriers, nearby trap charges), which changes the qubit energy splitting a lot \rightarrow leads to small T_{2} (high frequency noise enters T 1). The least sensitive to noise at degeneracy point. Here $\delta \mathrm{E}^{\sim} \mathrm{n}_{\mathrm{g}}{ }^{2}$, only quadratically sensitive to noise: sweet spot

K. Bladh et al, New J. Phys. 7180
(2005)

Best numbers:
$T_{1} \sim 7 \mu \mathrm{~s}$
$T_{2} \sim 500$ ns @ sweet spot
A. Wallraff et al., Phys. Rev. Lett. 95,

060501 (2005)

Anharmonicity -decreases linearly

$$
\alpha_{r}=\frac{E_{12}-E_{10}}{E_{10}}=\sqrt{\frac{E_{c}}{8 E_{J}}}
$$

Charge dispersion - decreases exponentially (m : band index)
$\epsilon_{m}=E_{m}\left(n_{g}=1 / 2\right)-E_{m}\left(n_{g}=0\right) \sim e^{-\sqrt{8 E_{J} / E_{c}}}$
$\mathrm{E}_{\mathrm{J}} / \mathrm{E}_{\mathrm{c}} \sim 50$ ideal
J. Koch et al., Phys. Rev. A., 76, 042319 (2007)

Idea: flatten the dispersion relation such, that the it becomes a sweet spot everywhere
Increase E_{J} / E_{C} ratio - technically done by make a large parallel capacitance (than E_{J} is not tuned) - increase C, decrease E_{C}
How does this change the

- Charge dispersion? - decreases, becomes flat
- Anharmonicity? - decreases

Charge becomes localized, phase compact in $[0,2 \pi]$ Energies flux tunable

Measurement of charge dispersion on transmon qubits: follow well the expectation (doubling: Quasi-particle poisoning)

Charge and phase wave functions

Charge and phase wave functions

Cooper pair box+ large shunt capacitor to decrease E_{c} Island volume ~1000 times bigger than conventional CPBs $E_{\text {J }}$ flux tunable
Readout - coupling to microwave resonator - RC circuit

SC circuits

Fabry - Perot cavity for optics - using mirrors

Central conductor and ground plane essentially a coax

Superconducting circuit to minimize losses (white - SC material, black etched away) Capacitors: voltage antinodes - zero current good for electrical dipole coupling Current antinode (voltage node) - maximal current - good for inductive coupling

Fabry - Perot cavity for MW photons - capacitive mirrors
R.J. Schoelkopf et al., Nature 451, 664 (2009)
M. Göppl, : J. Appl. Phys. 104, 113904 (2008)

Readout: circuit QED

$$
\hat{H}=4 E_{c}\left(N-N_{g}\right)^{2}-E_{J} \cos \delta+\hbar \omega_{r} \hat{a}^{\dagger} \hat{a}+\underbrace{2 \frac{C_{g}}{C_{\Sigma}} e V_{R M S}^{0} \hat{N}\left(\hat{a}^{\dagger}+\hat{a}\right)}
$$

Coupling term - electrical coupling to charge (dipole)

$$
\omega_{r}=\frac{1}{\sqrt{L_{r} C_{r}}} \quad V_{r m s}^{0}=\sqrt{\frac{\hbar \omega_{r}}{2 C_{r}}}
$$

Can be mapped to J-C Hamiltonian
$\hat{H}=\frac{\hbar \omega_{q}}{2} \sigma_{Z}+\hbar \omega_{r} \hat{a}^{\dagger} \hat{a}+\hbar g\left(\hat{a}^{\dagger} \sigma_{-}+\hat{a} \sigma_{+}\right)+H_{\kappa}+H_{\gamma}$

Jaynes Cummings Hamiltonian

$$
\hat{H}=\frac{1}{2}\left(\hbar \omega_{q}+\hbar \frac{g^{2}}{\Delta}\right) \sigma_{Z}+\left(\hbar \omega_{r}+\hbar \frac{g^{2}}{\Delta} \sigma_{Z}\right) \hat{a}^{\dagger} \hat{a}
$$

Lamb-shift Qubit-state dependent resonance shift

$$
\Delta=\omega_{q}-\omega_{r}
$$

CP-box coupled (capacitively) to a MW cavity
External B field tunes E_{J}
In the circuit model the qubit is a tunable capacitance which shifts the resonator

Many circuit elements are at low T (amplifier, circulator etc.)

Resonator: Lorentz-like resonance curve with high Q . Phase response is more sensitive Simulation: shifted curves for the two different qubit states. Idea: measurement at fixed frequency measure phase response
Reminder: $\quad \hat{H}=\frac{1}{2}\left(\hbar \omega_{q}+\hbar \frac{g^{2}}{\Delta}\right) \sigma_{Z}+\left(\hbar \omega_{r}-\hbar \frac{g^{2}}{\Delta} \sigma_{Z}\right) \hat{\hbar}^{\dagger} \hat{a}$

Here Qubit is in the ground state, and resonator is probed for different parameters 2 different flux biases: for one it goes through the resonance with the resonator (green), for the other not (orange). Phase shift decreases by increasing detuning from resonance

Strong coupling -
Spectroscopy measurement

$\begin{array}{cc}|n\rangle----\overline{2 g \sqrt{n} \downarrow} & ----\mid n \\ \vdots & \underline{2} \\ |2\rangle----\overline{2 g \sqrt{2} \downarrow} & ----|1\rangle\end{array}$

b

Far away from crossing pure resonator states. Close to resonance an avoided crossing is seen. Bonding and anti-bonding states - entangled states with both photon and qubit character - „phobit" and „quton".

Here the photon number is small $\mathrm{n} \ll 1$. Vacuum Rabi oscillation with frequency 2 g . Continous photon emission and absorbtion.

Spectroscopy

Phase shift: opposite for the two states. If ω_{s} excites cavity than reduction in phase shift (red arrows). For high power, both states are equally populated and the shift averages to zero.
6.125 GHz- no resonance with qubit, just phase shift observed
6.15 GHz - at $\mathrm{N}_{\mathrm{g}}=1$ the qubit is driven. Reduction in the phase shift is seen. Similarly at 6.2 GHz .

For Rabi etc. pulsing at ω_{s} is needed (see later).
a)

b)

Back-action

Stark-shift

probe power, $\mathrm{P}_{\mathrm{RF}}[\mu \mathrm{W}]$

$$
\begin{aligned}
& \hat{H}=\frac{1}{2}\left(\hbar \omega_{q}+\hbar \frac{g^{2}}{\Delta}\right) \sigma_{Z}+\left(\hbar \omega_{r}+\hbar \frac{g^{2}}{\Delta}\right) \hat{a}^{\dagger} \hat{a} \\
& \downarrow \\
& \hat{H}=\frac{1}{2}\left(\hbar \omega_{q}+\hbar \frac{g^{2}}{\Delta}+\hbar \frac{g^{2}}{\Delta} \hat{a}^{\dagger} \hat{a}\right) \sigma_{Z}+\hbar \omega_{r} \hat{a}^{\dagger} \hat{a}
\end{aligned}
$$

Stark shift

By increasing the resonator power, hence the average photon number, the qubit frequency shifts.
$\hat{H}=\frac{1}{2}\left(\hbar \omega_{q}+\hbar \frac{g^{2}}{\Delta}+\hbar \frac{g^{2}}{\Delta} \hat{a}^{\dagger} \hat{a}\right) \sigma_{Z}+\hbar \omega_{r} \hat{a}^{\dagger} \hat{a} \quad \chi=\frac{g^{2}}{\Delta}$
In the strong dispersive regime $(\chi \gg \gamma, \kappa)$ individual photon states resolved:
Populate resonator at wrf. Than sweep ws (qubit frequncy). If there were n photons in the cavity the resonance will be at $2 n \chi$. If the qubit gets excited can be seen from the resonator frequency shift.
Individual photon states resolved.
Under usual drive close to coherent states observed.
Addig large thermal noise - thermal distribution.

Transmon cQED

Strong coupling
Flux bias current, $I(\mu \mathrm{~A})$

Mostly the same, gate voltage not a useful parameter

Using the transmon wave function, RWA only the following relevant terms remain:
$\hat{H}=\hbar \sum_{j} \omega_{j}|j\rangle\langle j|+\hbar \omega_{r} \hat{a}^{\dagger} \hat{a}+\left[\hbar \sum_{i} g_{i, i+1}|i\rangle\langle i+1| \hat{a}^{\dagger}+\mathrm{H} . \mathrm{C}.\right]$
Multi level Jaynes Cummings Hamiltonian, where

$$
\hbar g_{i, i+1}=2 e \frac{C_{g}}{C_{\Sigma}} e V_{r m s}^{0}\langle i| \hat{N}|i+1\rangle \quad\langle i| \hat{N}|i+1\rangle \sim\left(\frac{E_{j}}{8 E_{C}}\right)^{1 / 4}
$$

g - coupling term is large, even increases with increasing E_{J}

$$
\begin{gathered}
\hat{H}=\frac{1}{2}\left(\hbar \omega_{01}+\hbar \chi_{01}\right) \sigma_{Z}+\left(\hbar \omega_{r}-\hbar \chi_{12}+\hbar \chi \sigma_{Z}\right) \hat{a}^{\dagger} \hat{a} \\
\chi=\chi_{01}-\chi_{12} / 2 \quad \chi_{i j}=\frac{g_{i j}}{\omega_{i j}-\omega_{r}}
\end{gathered}
$$

Higher levels matter a bit, otherwise the same

Strong coupling achieved
For 0-1 state 2 g Rabi frequency
For 1-2 state $\sqrt{ } 2^{*} 2 \mathrm{~g}$ as J-C says

