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From a high-Tc: Phys. Rev. Lett. 58, 908 (1987). 

Comm. Phys. Lab. Univ. Leiden, No. 120b (1911) 

Heike Kamerlingh Onnes 
1911: discovery of superconductivity 
1913: Nobel prize in Phyics 

Superconductivity –zero resistance 

Below a certain temperature the resistance  
becomes zero – SC phase 



1933 by 
Walter Meissner 
Robert Ochsenfeld 

Wikipedia 

Superconductivity – Meissner effect 

Below a certain temperature the 
magnetic field is expelled from 
the sample even in the field 
cooled case due to screening 
currents (perfect diamagnet) – SC 
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Also claim for RT SC or above 
Contraversial yet 

Superconductivity – matierials 



cT T

Meissner 
SC phase 

SC – diamagnetism, phase diagram 

T

χ

cT

510−<χ1−
SC phase 

N phase 

susceptibility 

H

B

cH

SC phase 

N phase 

Magnetic induction M-

H
cH

magnetism 

normal 
metal 

SC phase 

N phase 

( ) ( )( )2
ccc T/T1)0(HTH −≈

Phase diagram (Type 1) 
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Superconductivity – BCS microscopic theory 
•Microscopic BCS theory (Bardeen, Cooper, Schrieffer):  

 

• The electron-phonon coupling can introduce an attractive interaction between the electrons which may 
overcome Coulomb repulsion. The phonon mediated attraction is a local interaction, Ve-ph=-(2λ/ν)δ(r1-r2).  

• The ground state of two electrons with attraction is a bound state with E=-2∆, where ∆=ħωDexp(-1/λ) is 
the superconducting energy gap. (∆(T=0)≈1.76kBTC, approaching TC it vanishes by (TC-T)1/2. ) In the SC state 
bound states of electron pairs with k↓ and -k↑ are formed (Cooper pairs) 

• The superconducting order parameter is a complex number with the absolute value equal to the gap, and 
the phase φ. 

Naive picture: an electron moving in the lattice attracts the 
ions, which will than attract the next electron passing by. 

Energy gap in the excitation spectra 
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Electron-hole pair 
excitations in a 
Fermi liquid 
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Cooper-pairs 
Pairing of electrons 
on the FS 
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Bogoliubov quasi-
particles: electron hole – 
excitations of SC 
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ξ
V describes the attractive 
interaction, ξ is measured from 
the Fermi energy. 
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Macroscopic wavefunction 

The SC state can be described using a macroscopic wave 
function: 
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( ) ( )rr sn== ψψψ *2 Denisty of SC charge carriers 

The phase of the macroscopic wave 
function is important e.g. for Josephson 
effect  
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Current operator and the calculated current (driven by 
phase gradient): 



Flux quantization 
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The flux threading the  Г contour: 

Integral along the loop – ϕ should be single valued –  
same as Bohr-Sommerfeld quantization of momentum 
Inside the loop (further than the penetration depth) js=0, 
therefore the integral along contour  Г is zero: 
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Josephson effect (traditional approach) S1 S2 I 

1
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φρψ ie= 2
22

φρψ ie= Macroscopic wave functions. |ψ|2~ particle density (ρ)  
+ phase difference (δ=φ2−φ1) 

We apply a voltage of eV on the junction! 
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Dividing by eiφ1 (or eiφ2) and writing the equations separately for the real and imaginary part: 
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The current is proportional to dρ1/dt=-dρ2/dt: 
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Subtracting the equations for the phase: 
Josephson  
equations 



Josephson effect (traditional approach) S1 S2 I 
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Supercurrent  tunelling of Cooper pairs 

Quasiparticle tunneling 

δsin0II =

Remark: This is for a tunnel junction (could 
be different for large transmission) 

Applying a constant bias voltage: 
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An AC current with ω=2eV/ħ is flowing. 
The DC current averages to zero. 

AC-Josephson effect 



DC SQUID Superconducting quantum interferometer device (SQUID):  

Two Josephson junctions in parallel in a "loop" geometry. The loop encloses a magnetic flux of Φ 

B A 

1 
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The superconductor has a well-defined phase at every position. -> The pase 
difference between A and B is constant for all trajectories. 
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The maximal value of the critical current is tuned by the magnetic flux:  ( )/cos2 0max Φ= eII

Source: Wikipedia 

Here we neglected the self-inductance of the ring 

Measurement: current bias at treshold 
Measure switching voltage 



RCSJ model S1 S2 I 
12 φφδ −=

Similar to the motion of a particle in 
potential, with friction 

In case of a harmomic 
oscillator 

U(δ) 

Quality factor 

Resonancy frequency  
without  
 
with damping 

I 



U(δ) 

δ 

„washboard potential” 

For no extenal current and weak damping oscillations in the 
potential well 

The equation decribes the motion of the phase in a 
potential 
If the particle manages to get out of a minimum of the 
potential, (happens for I>Ic, when the potential have an 
inflection) the phase changes, and DC voltage appears 
on the junction (Josephson relation) 

I> Ic: part of the current must flow as IN or ID -> finite junction voltage |V| > 0 time varying Is   IN + 
ID is varying in time  complicated non-sinusoidal oscillations of Is 
I » Ic – almost all current flows on the resistor V is ~ constant  sinusoidal oscillation with time 
average 0 



I 

eV 

overdamped 
small R and C 
Q<<1 

Overdamped: Q<<1  -- second derivative can be 
omitted. 
Viscous drag dominates – velocity proportional 
slope of washboard 
For I>Ic  , δ=sin-1(I) solution, V=0  
If I>Ic it escapes the potential, however, at I<Ic 
retraped immediately, no hysteresis 

Switching at the critical current! I 

eV 
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underdamped 
large R and C 
Q >>1 

Underdamped Q>>1  --  if I goes over Ic than the 
inertia is bigger than the damping, it will roll down 
continuously. Hysteresis – only traps at smaller 
current when kinetic energy=damping. For zero 
damping only traps at 0 current. 
Large C  shunt oscillating part of V  <I>=0 
Down to ωRC 
  

Sinusoidal supercurrent  averages to zero 
Normal current flows  hysteretic behaviour 



Josephson junctions 
Fabrication 

Fabrication: e-beam lithography and shadow evaporation 

evaporation 

evaporation oxidation 

Shadow, not used structures remain 

T Niemczyk et al., Supercond. Sci. Technol. 22, 034009 (2009) 
Wu Yu-Lin et al., Chin. Phys. B. 22, 060309(2013) 

Real JJ measurement 



Thermal  escape: Due to the phase motion at higher 
temperature and/or larger current particle can escape: 

Here U0(EJ0, I/Ic) 
This is a stochastic process, the switching current varies. 
The distribution of Ic can be known. 
For low temperatures the phase particle can tunnel out: 
macroscopic quantum tunneling – finite voltage 
appears on the junctions (if it is underdamped enough) 

δ 

Nb JJs 
At high T, thermal 
escape, at low T, 
macroscopic 
quantum tunneling 
dominates 

Walfraff et al., Rev. of Sc. Instr, 7, 3740 (2003) 

RCSJ model 
Thermal or quantum escape 

B~1 



By tuning the potential of a single Josephson junction (washboard potential) , such, 
that it is asymmetric, close to the critical current 
 
If, I≈Ic and it only houses 2-3 levels, the lowest two forms a qubit 

Operation: 
Anharmonic oscillator, qubit states are separated 
Make transitions with microwave pulses ω01 and 
prepare state – AC current pulses 
Readout: A pulse with frequency ω12 is applied. 
As the barrier for state 2 is small, the state can tunnel 
out  changing phase  finite voltage appears 
 
If the qubit was in state 1 it will be resonant for the 
readout pulse ω12, if in state 0 not. 
 
For superpositions, it will tunnel out with a 
probability corresponding to state 1. To measure 
these probabilities, multiple measurements on the 
qubit prepared in the same way is needed. 
 T1 measurement 

Populate state 1 and wait before readout 
The measured signal will decay as the waiting time increased – measure of T1 

Phase qubit – current biased JJ S1 S2 I 
12 φφδ −=

J. Martinis et al., Phys. Rev. Lett., 89, 117901 (2002)  



RF SQUID 

δ 

U(δ) 

Φ 

1 

integer bias flux 
half-integer bias flux 

For half integer quantum, two minima: 
two persistent current states, circulating in different direction 

2 
Similarly to DC squid the phase difference equals the flux inside the loop 

L loop inductance 
The flux inside the loop will be partially screened by and induced circulating current 

Equation of motion, with the calculated current: 

Potential – junction + magnetic energy 

At half quanta the circulating current changes 
sign and a flux quanta jumps into the loop 



Two wells  two levels – for symmetric 
potential degenerate flux states 
The two states correspond to oppositely 
circulating persistent current 
If tunneling is possible between the two 
wells (∆), states hybridize and split up and 
the macroscopic tunneling determines 
the separation 
 
 
 

δ 

potential for half integer flux bias 

0.5 

Flux qubit 
Φ 

1 2 

Φ 

The expectation value of the current 
as a function of the flux 
Away from half flux quanta, pure flux 
states 

Φext [Φ0] 

the potential is parabolic on the white 
intersection α tunes the macroscopic 
quantum tunneling. 

Hard to fabricate, big loop is 
needed for inductance matching 
(large noise pickup possible big 
decoherence) 3 JJ-s qubit 
(effectively the same). 



Readout – by DC squid measuring 
the opposite supercurrents in the 
qubit. Measurement with squid – 
measure the switching currents 
 

Caspar H. van der Wal et al.,  Science 290, 773  (2000) 

During the sweeping of the 
magnetic field, microwave applied. 
transition causes supercurrent 
flowing opposite direction  
change in field measured by squid 
(change in switching current) 
- the resonance seen for different 
frequencies at different flux points.  
- peaks indicate switching between 
flux states 
-the excitation spectra is nicely 
reproduced 
- at zero detuning the avoided 
crossing of the two levels is 
extrapolated 



I. Chiorescu et al., Science 299, 1869 (2003) 

Other design: squid is directly 
coupled to achieve higher sensitivity 
T1~900ns, T2~20-30 ns 
Dephasing: likely flux noise  
changes the qubit frequency 
randomly 
 
Ideal opeation would be at Φ=π, 
however this did not work for this 
devices. 
There δE~ Φ2, less sensitive to flux 
noise sweet spot 



RCSJ model – energy terms S1 S2 I 
12 φφδ −=

I 
Neglect damping, SC state, R=0 
 
E=K+U 

or using 

Josephson energy 

δ 

Charging energy 

Classical treatment valid: 
Oscillation only in the bottom of the 
potential well 

Homework: How to enter the quantum regime? Investigate scaling with 
the junction area. Suppose d=1nm, ε=10, Ic= 100 A/cm2. What is the 
temperature range where the measurement should be done? 

d A 



Josephson junctions is a non-linear 
inductance: the energy spectra is 
anharmonic. The qubit can be 
separated from excited states 

for small Φ 

LC - oscillator 

Josephson junction 

Why else superconductors? 
 
-Single non-degenerate macroscopic ground state 
- no low energy excitations 
 

Energy terms 
Why JJ, not a simple inductor? 



Quantization of EM circuits 

Energy of a harmonic oscillator 

JJ: nonlinear Harmonic oscillator 

Knowing the mass, identify momentum 

Quantization – using the momentum and position operators 

Quantized JJ Hamiltonian 

Charge, Cooper pair number, flux basis 

Homework: 

charge 

CP number 

Flux 

Either phase (flux) or number of 
Cooper pairs (charge) is well defined 
 Phase or charge regime 



1) Phase regime and 

phase is well localized in one of the minima, large charge fluctuations are 
possible (small Ec) 

2) Charge regime and 

e.g. a small island tunnel coupled, number of states well localized 
(Coulomb blockade), phase fluctuations are large  

R. Gross, A. Marx, Applied Superconductivity, Lecture notes (Walter-Meissner Institute) 

Analogous to the problem of 
electrons in a periodic potential 
 
Strong phase potential  
localized states (in phase) 
 
Weak phase potential  
extended states in phase space 
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