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I. Graphene 
Outline:
‐ Introduction (Making graphene, Applications, etc.)
‐ Band structure
‐ Physics of Dirac electrons (Barry phase, Klein tunneling)
‐ Half‐Integer Quantum Hall Effect
‐ Mobility in Graphene
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Graphene Graphene –– Nobel Prize in Physics 2010Nobel Prize in Physics 2010

Andre Geim  Kostya Novoselov

“for groundbreaking experiments regarding 
the two dimensional material graphene”

Surprising, since growth of macroscopic 2D 
objects is strictly forbidden due to phonons 
(Mermin Wagner)
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How to make graphene?How to make graphene?

5 µm

a) Mechanical exfoliationa) Mechanical exfoliation

For proper SiO2 thickness interference makes it 
visible by optical microscope
+ Even size of 1mm, + high quality, ‐ low yield

+
M

anchester, Science 2004; PN
A

S 2005
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b) Mechanical or Chemical extractionb) Mechanical or Chemical extraction

sonication + centrifugation,  often intercalation

Submicrometer crystallites
+ Mass production, industrial scale
‐ Small falke size
‐Remaining attached chemicals (oxide)

Good for polycrystalline films and composite 
materials. Suspension can be printed resulting highly 
conductive bendable film 

Intercalation

Ruoff, Nature 2006, Manchester, Nanolett ’08,Coleman et al, Nature Nano ’08

b) Epitaxial growth of a monolayerb) Epitaxial growth of a monolayer

Grow a monolayer of C and 
chemically remove the substrate

1)SiC substrate: (upper figs.)
SiC is insulator, Graphene layers grow as a
carpet on the  surface. Layers are electrically
well isolated (different stacking).  Possible to grow 1,2 layers.
‐ Difficult growth process
2) CVD on Cu, Ni (Lower figs.) “Easy” to do: T + gas flow.  Self terminating 
process.  Result: single layer, ‐ polycrystalline, it follows the crystallites of the 
metal surface, Use HCl to remove substrate. (commercial available)
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Identification
Raman spectroscopy measure the energy 
difference of reflected laser light 
e.g. layer thickness can be determined from 

the 2D peak

STM e.g. exfoliated 
on metal substrate

TEM
e.g. crystalite boarder SiC 

AFM e.g. possible
to determine thickness

Optically 
Contrast of graphene
at diff.  SiO2 thickness.

Properties, applicationsProperties, applications
Electronic properties:

transistor @ 300 GHz
Nature 467, 305 (2010)

‐ Truly 2D electron gas on the surface. New possibilities: SC, Ferro, high dielectrics,
use local probes.
‐ Massless Dirac electrons 
‐Good electronic quality: submicrons without scattering @RT although adsorbates etc. 
Due to weak e‐ph coupling  mobility > 200000 cm2/Vs @ RT   (Si: <1500 cm2/Vs)
‐ Quantum effect at RT

Applications:
1) Ultra High Frequency Transistors
‐ Ballistic transport
‐ high velocity
‐ great electrostatics
‐ scales to nm size
2009: 100 GHz (IBM & HRL)
2010: 300 GHz (UCLA & Samsung)
scaling >1THz
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Properties, applicationsProperties, applications
Electronic properties:
‐ Truly 2D electron gas on the surface. New possibilities: SC, Ferro, high dielectrics,
use local probes.
‐ Massless Dirac electrons 
‐Good electronic quality: submicrons without scattering @RT although adsorbates etc. 
Due to weak e‐ph coupling  mobility > 200000 cm2/Vs @ RT   (Si: <1500 cm2/Vs)
‐ Quantum effect at RT

Applications:
2) Electrode for liquid crystals
‐ transparent ~97%
‐ conductive ρ <100Ω/□
‐flexible: strain >15%
‐chemically inert
‐ reasonable chip 50$/m2

‐Bendable, wearable
Samsung’s Graphene Road 
Map: first products in 2012

Flexible transparent electronics
Nature 457, 706 (2009) Hong, Nature Nano 2010

Properties, applications

Thermal, mechanical properties

Strongest material, 
Due to strong sp2 bonds
ρ = 0.77 mg/m2

Heat conductivity 5000 Wm−1K−1

(Cu 400 Wm−1K−1 )

Nano Lett. 8, 902 (2008)

Science 321, 385 (2008)

Most stretchable material 
up  to 20% 

Impermeable to gases (also He)
When wafers will be available

It will be ideal for biomolecular and
ion transport membranes

Other possible applications: Ultrafast photo 
detectors, Strain sensor, TEM membranes, high 
sensitive sensors, DNA sequencing etc.



KomplexNano 

Graphene

Graphite

Three dimensional layered 
material with hexagonal 2D 
layers [shown here with 
Bernal (AB) stacking]

Monolayer

Two dimensional material;
zero gap semiconductor;
Dirac spectrum of electrons

Bilayer

BANDSTRUCTURE OF GRAPHENE

1 Tight binding model of monolayer graphene
1.1 sp2 hybridisation
Carbon has 6 electrons: 2 are core electrons,  4 are valence 
electrons – one 2s and three 2p orbitals

sp2 hybridisation
- single 2s and two 2p orbitals 
hybridise forming three “σ
bonds” in the x-y plane

- remaining 2pz orbital [“π” orbital] exists perpendicular to 
the x-y plane

only π orbital relevant for 
energies of interest for transport 
measurements – so keep only 
this one orbital per site in the 
tight binding model
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1 Tight binding model of monolayer graphene
1.2 lattice of graphene

2 different atomic sites – 2 triangular sub-lattices 

1 Tight binding model of monolayer graphene
1.3 reciprocal lattice

triangular reciprocal lattice

– hexagonal Brillouin zone 
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1 Tight binding model of monolayer graphene
1.4 Bloch functions
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sum over all type 
B atomic sites
in N unit cells

atomic 
wavefunction

We take into account one π orbital per site, so there 
are two orbitals per unit cell.

1 Tight binding model of monolayer graphene
1.4 Bloch functions
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−=Φ ∑ ϕ.1,

sum over all type 
j atomic sites
in N unit cells

atomic 
wavefunction

We take into account one π orbital per site, so there 
are two orbitals per unit cell.

Bloch functions : label with j = 1 [A sites] or 2 [B sites]
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1 Tight binding model of monolayer graphene
1.5 Secular equation
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Eigenfunction Ψj (for j = 1 or 2) is written as a linear 
combination of Bloch functions:

Eigenvalue Ej (for j = 1 or 2) is written as :

liilliil SHH ΦΦ=ΦΦ= ;

substitute 
expression in terms 
of Bloch functions

defining transfer 
integral matrix 

elements

and overlap 
integral matrix 

elements

1 Tight binding model of monolayer graphene
1.5 Secular equation
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1 Tight binding model of monolayer graphene
1.5 Secular equation
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Explicitly write out sums:

jjj SCEHC =

( ) 0det =− ESH

Write as a matrix equation:

Secular equation gives the eigenvalues:

1 Tight binding model of monolayer graphene
1.6 Calculation of transfer and overlap integrals
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1 Tight binding model of monolayer graphene
1.6 Calculation of transfer and overlap integrals
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Every A site has 3 B nearest neighbours:
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1 Tight binding model of monolayer graphene
1.6 Calculation of transfer and overlap integrals
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1 Tight binding model of monolayer graphene
1.7 Calculation of energy
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1 Tight binding model of monolayer graphene
1.7 Calculation of energy
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2 Expansion near the K points
2.1 Exactly at the K point
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At the corners of the Brillouin zone (K points), 
electron states on the A and B sub-lattices 
decouple and have exactly the same energy
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K points also referred to as “valleys”

2 Expansion near the K points
2.1 Exactly at the K point

6 corners of the Brillouin zone (K points),  
but only two are non-equivalent
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We consider two K points with the 
following wave vectors:
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2 Expansion near the K points
2.2 Linear expansion
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Consider two non-equivalent K points:

and small momentum near them:p

2 Expansion near the K points
2.2 Linear expansion
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smav /10
2
3 60 ≈=
h

γ

p



KomplexNano 

Graphene

2 Expansion near the K points
2.2 Linear expansion
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components on A 
and B sites

2 Expansion near the K points
2.3 Dirac-like equation
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For one K point (e.g. ξ=+1) we have a 2 component wave function,

with the following effective Hamiltonian:

Bloch function amplitudes on 
the AB sites (‘pseudospin’) 
mimic spin components of  
a relativistic Dirac fermion.

Pseudospin is an index that indicates on which of the two
sublattices a quasi-particle is located



KomplexNano 

Graphene

2 Expansion near the K points
2.3 Dirac-like equation
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To take into account both K points (ξ=+1 and ξ=-1) we can use a 4 
component wave function,

with the following effective Hamiltonian:

Isospin K and K’ valleys are also called isospin.

2 Expansion near the K points
2.3 Dirac-like equation
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Chiral electrons
pseudospin direction  
is linked to an axis 

determined by 
electronic momentum.

for conduction band 
electrons,

valence band (‘holes’)
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It is due to 
symmetry of the 
honeycomb lattice

smcvF
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Nature 438, 201 (2005)

 =  ,

 , ,     

Measurement of Hall resistance allows to  determine n. 
Combining it with ρ, μ can be derived. 

Measurement:
Graphene (blue) is etched to a Hall bar shape  and 
contacted by metal leads (yellow). Si layer is doped,
used as a backgate (G) . By applying voltage on G the 
chemical potential of graphene can be varied.

Drude model:

 

 

R vs. Vg characteristics

Basic transport characteristics

Effect of gate voltage, Vg? 

               

x
y

Fig. a: longitudinal resistance vs. Vg,  ΔR≈ 100 times!
Fig. b: mobility and charge carrier density vs. Vg 
‐ At Vg=0, RH (and n) changes sign boarder between e 
and h bands
‐ If Vg 0 R↗, however R is finite (≈4kOhm) at Dirac 
point  although n=0. (No real OFF state.)
‐ mobility largest at Dirac point  (Vg = 0).

holes electrons
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Solution:

Making a loop around 
k=0 induces a phase shift 
of π.
Similar to the 360°
rotation of an 1/2 e spin.

3 Consequences of Dirac like spectrum 3.1 Berry’s phase π

Massless Dirac fermions 
with Berry’s phase π
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Consider Quasi Classical Dynamics of  Dirac electrons 

,   

thus ,   

Speed of e is constant independent of 
momentum, like photons (vF↔c) 

What is m, effective mass? 

 

For quadratic dispersion: ,  

For Dirac electrons, where   ? 

Naively 1/m= 0, but NOT. To calculate 1/m: 

     

    Effective mass depends on k 

 

 

3.2 Massless Dirac Fermions?

Beenakker, Reviews of Modern Physics,  80, 1337 (2008)

Evolution of group velocity: 

 

In linear electrostatic potential (e.g. slope in Figure) :  
 

At normal incident:      

backscattering is avoided. Electron can propagate 
through an infinite high potential barrier. 

   

Effect of the potential profile, U (see figure): 

‐ k decreases and changes sign (**) 

‐ based on (*),  stays constant, i.e. . 

 e ends up in the valence band 
 

N‐P junction:
Potential profile with 
a step of U0 at a distance d

Klein scattering: 
perfect transmission 

at normal incident

3.3 Klein tunneling and backscattering
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Beenakker, Reviews of Modern Physics,  80, 1337 (2008) Geim, Kim, Sci.Am. 298,  90 (2008)

3.3 Klein tunneling and backscattering

Transmission probability T 
through a 100‐nm‐wide 
barrier as a function of the 
incident angle, two 
different barrier height

Katsnelson et al Nature Physics, 2, 620 (2006)

Transmission probability vs. D
of normally incident electrons
‐ in single‐ and bi‐layer graphene (red and 
blue curves,respectively) and in a non‐chiral 
zero‐gap semiconductor (green curve)

Difficult to measure whether it 
is 100%, since e‐s out of normal 
incident also arrive

Result of proper calculation
Wave function matching

Klein tunneling and backscattering
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Shytov et al. PRL 101, 156804 (2008)

Interferences on P‐N‐P junction
When incident angle, α is varied from positive to 
negative, phase of the reflection amplitude (R) 
jumps π. Its sign changes. (At α=0, R=0).

If α<>0 R>0, several scatterings in P‐N‐ P 
interference pattern
Accumulated phase in one circle:

Δθ= 2θWBK+Δθ1+Δθ2 

where θWBK phase from travelling in N
Δθ1,Δθ2  Klein back reflection phase of the 

interfacesAt B=0 (see Fig. a) the incident angles 
Δθ1(2) at P‐N and N‐P have opposite signs jumps in  Δθ1, Δθ2 cancels

At B>0 (see Fig. b), trajectories are curved, incident angles at P‐N and N‐P can be equal
In this case one can show that Δθ1+Δθ2 = π (It is the Barry phase previously derived!) 
Thus for B=0 ↗ and trajectories with small py π shift is expected (i.e. sign change)  
transmission amplitude 

(Fig.c) one can show, it is robust against barrier roughness

Klein backscattering & Fabry‐Perot Interferences

Shytov et al. PRL 101, 156804 (2008)

Remark (Barry‐phase):

Trajectory in Fig.a  corresponds to 1
Trajectory in Fig.b  corresponds to 3
The main difference that during one 
circle between P‐N and N‐P:
the k vactor of 3 goes around k=0
while for 1 NOT.
This generates the Barry phase:
Due to the chiral symmetry, topological singularity
at degenerecy point of the band structure k=0.

Klein backscattering & Fabry‐Perot Interferences
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Young et al. Nature Physics 5, 222 (2009)

N‐P‐N device
Separate gating by backgate  and topgate 
Topgate width=20nm! ballistic

G vs. VTG vs. VBG

• Conductance is lower when N‐
P‐N setting instead of N‐N‐N
•Oscillations at N‐P‐N 
configuration:

‐ VTG varies pot. barrier 
δθWBK oscillations
‐Oscillatory G is induced by 
trajectories with incident 
angle where neither T, nor 
R is large (i.e. α not too 
small)

Klein backscattering & Fabry‐Perot Interferences

~VTG

B=0

Young et al. Nature Physics 5, 222 (2009)

G oscillations vs. B (Dots experiment, line theory)
At different B fields (B=0, 200, 400, 600, 800mT from 
bottom to top) the oscillations of G. 
In this B range ≈ π shift is induced in the interference 
pattern.

N‐P‐N device
Separate gating by backgate  and topgate 
Topgate width=20nm! ballistic

Klein backscattering & Fabry‐Perot Interferences
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Integer Quantum Hall effect 
in a 2d semiconductor

Each filled Landau level 
with additional degeneracy 
g contributes conductance 
quantum ge2/h towards the 
Hall conductivity

Novoselov et al, Nature 438, 197 (2005);
Zhang et al, Nature 438, 201 (2005).

Monolayer
Quantum 
Hall effect: 
4e2/h steps

3 Integer quantum Hall effect
Graphene monolayer

In graphene the electron 
density can be easily varied.  
QHE investigated as a 
function of n, not only B.



KomplexNano 

Graphene

yxyx

z

ippipp

lBArotA
c
eip

−=+=

=−∇−=

+ππ ;

,
rrr

h
r

Landau levels and QHE

00 =ϕπ

εψψ =

0
0

0 =⇒







ε

ϕ

( )

( )
( ) 




















−
−
+
+





















−
− +

+

A
B
B
A

~
~

0
0

0
0

π
π

π
π

valley
index

also, two-fold real 
spin degeneracy

2D Landau levels 
of chiral electrons

J=1 monolayer
J=2 bilayer



KomplexNano 

Graphene

↑↓

4-fold degenerate zero-energy 
Landau level for electrons 

with Berry’s phase π
J.McClure,  Phys. Rev.  104, 666 (1956)
F.Haldane,  PRL 61, 2015 (1988) 
Y.Zheng and T.Ando,

Phys. Rev. B 65, 245420 (2002)
V.P. Gusynin and S.G. Sharapov,

Phys. Rev. Lett 95, 146801 (2005)
N.M.R. Peres, F. Guinea and A.H. Castro Neto, 

PRB 73, 125411 (2006)

QHE in graphene

monolayer bilayer
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Unconventional Quantum Hall Effect and Berry’s Phase of 2π in Bilayer Graphene
K.Novoselov, E.McCann, S.Morozov, V.Fal’ko, M.Katsnelson, U.Zeitler, D.Jiang, F.Schedin, A.Geim 

Nature Physics 2, 177-180 (2006)

Carbon Nanostructures – Part II 

I. Graphene 
Outline:
‐ Introduction (Making graphene, Applications, etc.)
‐ Band structure
‐ Physics of Dirac electrons (Barry phase, Klein tunneling)
‐ Half‐Integer Quantum Hall Effect
‐ Mobility in Graphene (ways to improve…)
References: 
‐ E. McCann Graphene monolayers Lancaster University, UK Tight‐binding 

model, QHE
‐ C. Beenakker, Reviews of Modern Physics,  80, 1337 (2008)
‐ L. Tapaszto & J. Cserti talks, MAFIHE Teli Iskola a Grafenrol 2011, ELTE
‐ A. Geim talk, TNT Conference 2010 

http://www.tntconf.org/2010/Presentaciones/TNT2010_Geim.pdf
‐ N.Peres, F. Guinea and A.H. Castro Neto, PRB 73, 125411 (2006)



KomplexNano 

Graphene

Half Integer Quantum Hall effect in graphene
Novoselov et al, Nature 438, 197 (2005)

Graphene in Hall geometry
Sample width of 200nm

Longitudinal and Hall measurements vs B field
Conventional way of QHE measurement

QHE vs. density (gate voltage)

a

b

c

‐In magnetic field Shubnikov‐de Haas oscillations are 
presented. (b) At large B field, ρxx gets zero as for QHE.
‐ Great advantage of graphene,  that the charge density  (n) 
can be varied by gate voltage. QHE effect can be studied as 
a function of  n. 
‐Figure c: QHE measurement at 14T, 4K. 

Half‐Integer Quantum Hall effect
Properties:
‐ Height of the Hall plateaus is 4e2/h
‐ First e (h) plateau is at 2e2/h
‐ ρxx is zero at the place of the plateaus.

σxy =  4e2/h(n+1/2)

(Inset: same for multilayer graphite. The first plateau has 
the same height as the rest)

ρxx has maximum at n=0 There is Landau level at zero 
energy.  Electrons or holes contribute? 

‐ Sample: Hall geometry is etched from 
graphene  flakes by oxigen plasma (a)

‐In magnetic field Shubnikov‐de Haas oscillations are 
presented. (b) At large B field, ρxx gets zero as for QHE.
‐ Great advantage of graphene,  that the charge density  (n)
can be varied by gate voltage. QHE effect can be studied as 
a function of  n. 
‐Figure c: QHE measurement at 14T, 4K. 

Half‐Integer Quantum Hall effect
Properties:
‐ Height of the Hall plateaus is 4e2/h
‐ First e (h) plateau is at 2e2/h
‐ ρxx is zero at the place of the plateaus.

σxy =  4e2/h(n+1/2)

(Inset: same for multilayer graphite. The first plateau has 
the same height as the rest)

ρxx has maximum at n=0 There is Landau level at zero 
energy.  Electrons or holes contribute? 

Half Integer Quantum Hall effect in graphene

N.Peres et al., PRB 73, 125411 (2006)

Solution of the graphene Hamiltonian in B field

Let us start with the effective Dirac Hamiltonian at the K point

,               

Hint: Besides a constant  and are the same operators as the raising and lowering 
operators of the harmonic oscillator Hamiltonian of the normal 2DEG in B field, i.e. 

( )2
1ˆˆˆ += +aaH cωh .  

In case of magnetic field:  ,      

Let us use a gauge of  :     

                            

Take the wave function ansatz,   :   

                  

Replacing  by , where    :  
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Half Integer Quantum Hall effect in graphene

N.Peres et al., PRB 73, 125411 (2006)

Solution of the graphene Hamiltonian in B field

Let us introduce ,  which fulfills the algebra of the raising and lowering operators of the harmonic 

oscillator: , , where  is the cyclotron radius . 

It gives       
 

 

These two operators fulfill: . 

 is the eigenfunction of the  related harmonic oscillator, i.e.  

 

Returning to the Dirac Hamiltonian: 

 

Half Integer Quantum Hall effect in graphene

N.Peres et al., PRB 73, 125411 (2006)

Solution of the Hamiltonian of Dirac electrons in B field

Let us start with the wavefunction   where . 

 

 

Landau levels in graphene:  

There is an extra solution as well:  .                 

Degeneracy of the levels:  

Similar to normal Landau Levels.    and where  is integer. 

The degeneracy:   i.e. number of flux quantum 

 penetrating the sample. 

Solving the problem for the K’ effective Hamiltonian 
gives the same spectrum as the one for K. Therefore 
 each  energy level has a degeneracy of .  
2 from the two valleys, 2 from the real spin of the 
 electrons. 

Density of states
D

E

B=0

B>0



KomplexNano 

Graphene

k,ykk

-Ly/2 Ly/2

k

kSkS
x y

yE
eBk

y
y

yE
k

knEknv
∂

∂
=

∂
∂

∂
∂

=
∂

∂
=

)(1)(1),(1),(
hh

Elektron állapotok x irányú sebessége:
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Az élállapotoknak a minta falán pattogva előre haladó klasz-
szikus elektron mozgás felel meg, (a minta belsejében lévő e 
állapotoknak körpályát leíró e mozgás feleltethető meg)

B

Mivel Ly >> ∆y  (∆y ~ 25nm/B[T]0.5 ) a 
mintában a jobbra és balra haladó állapotok 
térben (y irányban) szeparálódnak.
Ha EF  két LL között helyezkedik el, akkor  
csak a minta szélén vannak e-k a Fermi-
felületen Szennyezők nem képesek az e-t 
az egyik irányba haladó élállapotból  a másik 
irányba haladóba átszórni 
Nincs visszaszórás

vx>0

Belső e állapotok és élállapotok
klasszikus megfelelői 

EF
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Az ebből négypont és Hall-ellenállások:

Visszaszórás nélkül vezető élállapotok 
felelősek a Kvantum Hall-effektusért 
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Half Integer Quantum Hall effect in graphene

N.Peres et al., PRB 73, 125411 (2006)

Solution of the Hamiltonian of Dirac electrons in B field

Remark: 
The edge states behave similar to the ones of QHE of normal 2DEGs. 

 

On the two sides of the sample they propagate to opposite direction. 

Half‐integer quantum Hall‐effect: 

Due to the 2 spin and 2 valley, there are 4‐fold degenerate  
Landau levels. Each degeneracy provides a conductance 

 channel with   Therefore each filled LL enhance the  

Hall conductance by . When  is placed on a LL, the 

 Hall conductance changes from a quantized plateau to the  
next one. Since there is a LL at ZERO ENERGY the first electron 

 like Hall plateau is at  and the rest are at 

 . 

The zero energy LL makes the QHE of graphene special. 
 It consist e and hole states as well.  

 

Charge density of Landau levels

Comparing to GaAs based 2DEGs

Graphene:

E1(B=1T)≈350K
E1(B=10T)≈103K
µ≈104 cm2/Vs (2006) @4K
µ≈106 cm2/Vs (2010) @4K

GaAs/AlGaAs:

ħω(B=1T)≈20K
ħω(B=10T)≈200K
µ≈105 cm2/Vs (1980)
µ≈107 cm2/Vs (2004)

E1(29T)≈1800K  >>kT
µ≈104 cm2/Vs @RT (weak T dependence)

Limitation of B, that ωCτ>>1 (τ elastic mean free 
path). 
If the amount of scattering can be further 
decreased, QHE gets visible at lower B fields. 

New possibilities for current standard, 
quantum circuits at room temperature

Bnve 2
n 2E h±=

Landau-levels

Experiment

( )21En += nCωh 2D free electrons

2D Dirac fermions (m=0)

Novoselov, Science 315, 1379 (2007)

Quantum Hall effect at room temperature
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Nature 438, 201 (2005)

Conductance in simple Drude picture: 

           

However the effective mass depends on k, thus  

one has to average 1/m for all filled states. 

Accurate calculation of , from Boltzmann 
equation (see Solyom 24.3.39.): 

  

Result:        

with relaxation length  

             

Mean free path:    

 

 
E.g. for mobility =600.000, l is ≈ 3μm

 

 

R vs. Vg Transport characteristics

Mobility and scattering mechanisms

Graphene on SiO2 substrate, UHV 
T=[20K‐500K], 4‐point

Source of 1/τ ?  

Scattering mechanisms resulting resistivity:
‐ potential scattering: impurities, defects, vacancies 
‐ Electron – phonon scattering
‐ Etc.

Usual terms: (see Solyom II.)
‐ Residual resistivity (ρ0):  T independent
‐ Longitudinal acoustic phonons (ρA):  linear in T

Measurements (see Fig. a,b)
‐ At higher T, strong deviation from linear T dependence 
‐ Dependence also on Vg

It suggests scattering on high energy phonon modes

Chen  Nature Nanotech. 3, 206, (2008)

What limits the mobility at room T? 

Mobility and scattering mechanisms
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ρB: additional term to fit the measurements (see Fig. c,d)
Bose‐Einstein distribution  ~ population of high energy 
phonon modes, e.g. optical phonons
Very good fit of the measured curves with alfa=1.04

Optical phonons of graphene?
‐ Strong Vg dependence is not expected
‐ Mainly out of plane phonons at this energy. It is not 
expected to give strong contribution

Interfacial phonon scattering:  Surface optical phonon 
modes in SiO2 couples to e‐s in graphene
The expected phonon energies and coupling  strength 
(1:6.5) are inserted into ρB
Strong Vg dependence is also expected

Mobility and scattering mechanisms

Contributions at Room TWhat limits the mobility at room T? 
Different T dependence of ρ0, ρA , ρB allows to 
separate the three contributions. (ρB = ρ‐ρ0‐ρA)

Fig. a
ρA Vg independent
ρB ~Vg 

‐1.04 relation confirmed
Residual resistivity dominates 

Fig. b
Derive the mobility related to two e‐p processes :
μ= 1/neρ= 1/cgVge ρ

SiO2 contribution (c) dominates
The intrinsic, LA phonon scattering mobility at

n= 1012cm‐2 (technologically relevant) : μ≈ 200 000
(see blue dot) Higher than any known semiconductor!
(E.g. InSb ≈77 000 and carbon nanotubes ≈100 000). 

Mobility and scattering mechanisms
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c

T dependence 

 Σ: Problem, SiO2

is bad substrate 

What limits the mobility at room T? 
Different T dependence of ρ0, ρA , ρB allows to 
separate the three contributions. (ρB = ρ‐ρ0‐ρA)

Fig. a
ρA Vg independent
ρB ~Vg 

i‐1.04 relation confirmed
Residual resistivity dominates 

Fig. b
Derive the mobility related to two e‐p processes :
μ= 1/neρ= 1/cgVge ρ

SiO2 contribution (c) dominates
The intrinsic, LA phonon scattering mobility at

n= 1012cm‐2 (technologically relevant) : μ≈ 200 000
(see blue line) Higher than any known semiconductor!
(E.g. InSb ≈77 000 and carbon nanotubes ≈100 000). 
Fig. c
Comparision with graphites, sources of exfoliated graphene
Mobility is much smaller than for graphites. It is impurity dominated.

Residual res. not due to point defects 
but due to charge impurities in SiO2 substrate

Mobility and scattering mechanisms

Suspended flakes

N. Tombros arXiv:1009.4213Andrei, Kim & Yacoby also Manchester 

To improve mobility eliminate the substrate. Suspended graphene samples
Two techniques:

‐ Etched SiO by BHF ‐ Use an organic polimer bellow, 
expose and desolve 

PMGI based organic polymer
Possible with any metal contacts! 
spin physics, superconductivity
600.000 cm2/Vs @5.0 E9 cm‐2,77K.  L~3μm

Observation of 
condcutance quantization

PMGI based organic polymer
Possible with any metal contacts! 
spin physics, superconductivity
600.000 cm2/Vs @5.0 E9 cm‐2,77K.  L~3μm

Observation of 
condcutance quantization, 
0.7 anomaly

low‐T mobilities: few  million cm2/V·s
This high quality samples allowed to 
demonstrate Fractional QHE in graphene

At room T the mobility is 10k‐ 100k cm2/V·s ?
New flexural phonons appears in suspended 
samples, low energy out of plane vibrations 

Try to apply tension
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Suspended flakes

N. Tombros arXiv:1102.0434 (2011)

2μm

Conductance quantization in graphene
‐ PMGI based organic polimer
‐ short and wide channels, reduce the role of 
edge roughness
‐ K‐K’ valley degeneracy is lifted.

Advantages:
‐ Atomically smooth surface that is 
relatively free of dangling bonds and
charge traps. 
‐ Lattice constant similar to that of 
graphite, and has large optical phonon 
modes and a large electrical bandgap.

Dean et. al., NatureNanotech 5, 722 (2010)

room‐T mobility
close to 100,000 cm2/V·s

Better substrate – Boronnitride 

N B
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Carbon nanostructuresCarbon nanostructures

Fullerene
0D

1985
H.W.Kroto

Mass spectrometer

Nanotube
1D

1991
S Iijima

Electron microscope

Graphene
2D

2004
K. S. Novoselov

Optical microscope

Carbon Nanostructures

II. Carbon Nanotubes (CNT) 
Outline:
‐ Single walled carbon nanotubes (wrapping)
‐ Synthesis
‐ Electronic properties (metallic vs. semiconducting CNT)
‐ Quantum transport (Ballistic conductance, Fabry‐Perot 

interference)
‐ CNT Quantum dots (spin, orbital degeneracy, Orbital and SU(4) 

Kondo effect)

References: 
‐ S Ilani and P. L. McEuen Annu. Rev. Condens. Matter Phys 1, 1–25 2010. and 

references within.
‐ P.  Jarillo‐Herrero, Quantum transport in carbon nanotubes, phd thesis 2005.
‐ Wikipedia: en.wikipedia.org/wiki/Carbon_nanotubes
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Carbon Nanotubes (CNT)Carbon Nanotubes (CNT)
CNT = Big carbon molecule,  Rolled 
up graphene with half buckyballs at 
the ends.
Diameter ~nm, length up to 15cm
Single‐walled CNT
Multi‐walled  CNT

Single walled nanotubes:
Band gap 0‐2eV, semiconductor or 
metallic
Wrapping vector (n,m) : 
determines the waist of the CNT
C= na1+ma2
Special CNT, which are not chiral:
‐ Zigzag CNT:  m=0:
‐ Armchair CNT: m=n 

Synthesis of CNTSynthesis of CNT

Nanotube
1D

1991
S Iijima

Electron microscope

‐ Arc discharge (original method)
graphite electrode + voltage, 
30% of weight could generate CNT
‐ Laser ablation
pulzed laser on graphite target in inert gas.
CNT are forming  on cold surface yield of 70%, mainly 
single wall
‐ CVD (Chemical vapor deposition)
Metal catalyst particle (Ni, Fe) on the surface, high T (700C) 
and carbon containing gases (e.g. acetylane)
Advantage: Possible to grow directly on the surface

Big challenge: controlled growth only certain chirality, or 
large scale separation
90‐95% selection of semiconducting or metallic SWCNT is 
possible

Similar good mechanic, heat conducting and electric 
properties as for graphene
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Electronic properties of CNTElectronic properties of CNT
Band structure
Metallic or semiconducting?

Starting point is the band structure of graphene 
(a). Rolling up periodic boundary condition i.e. 
quantization of the e wavenumber in the circum‐
ferencial direction,

where d is the diameter of the tube.
1D bands form from  discrete slices

of the graphene spectrum 

If a slice passes through the Dirac point
(see Fig. c) Metallic  CNT
If not Semiconducting CNT (see Fig.b)

Tk  :
Δk  πd=2π,T

a

b

c

Electronic properties of CNTElectronic properties of CNT

Tk0

Fig. d: phase of K point
wavefunction of graphene.
Due to 3‐fold symmetry A
atoms have three possible
phases: 0, 120°, 240°, color
coded by red, green, blue.

There are two ways of rolling up:
‐ Red atom rolled to an other red one (Fig. c).  

Wave function satisfies the boundary condition
i.e. wave function in K is a legitimate solution on the 
cylinder.  There is slice pass through K metallic 
CNT (Fig. c) (MCNT) 

bd

c

‐Red atom rolled to blue or green (Fig. b)
There is a phase mismatch of 2/3π at the boundaries.  This can
be solved by changing K to K+      , where  

lowest quantized wavefunction is away from K semiconducting CNT (Fig. b) (SCNT)
Consequences: ‐ 2/3 of CNTs are semiconducting

‐ with energy gap of

Tk0 πd=‐2/3 π
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Electronic properties of CNTElectronic properties of CNT
In reality usual metallic tubes also shows small 
bandgap.  Since the metallic band structure is instable 
against perturbation like e.g. mechanical deformation. 
Everything what destroys A B symmetry (i.e. 
pseudospin) generates gap. Taken into account the 
curvature of small diameter CNTs also generates gap.

Figures: measured transport characteristics @RT. 
Gate electrode is used to change the e filling.

Maximal conductance: 
In Landauer picture each ballistic subband gives a 
maximal conductance of e2/h. In CNT there are 4 
subbands, due to 2 spin and 2 isospin (valley K, K’) 
degeneracies. I.e. Gmax=4e2/h.

The conductance is also limited by contact resistances.
It has to be a clear transparent barrier. For semiconductor
tubes palladium gives Schottky‐barrier free contacts for p‐type CNTs. While Al with 
low work function gives good contact to n‐type CNTs.

Electronic properties of CNTElectronic properties of CNT
Typical numbers of mean free path and mobility:
le ~100nm (SCNT) ~1μm (MCNT) @RoomT and  
μ>100.000 cm2/Vs (SCNT), le ~10μm (MCNT) @<50K

The large mean free path has the same origin as for 
graphene. C has light mass, sp2 is a strong bonds 
high energy phonons, which are only populated at 
high T. 

Limit of maximal current
At large source drain biases, e‐s accelerate in the 
tube and can excite optical zone boundary phonons. 
This dramatically decrease le to 10nm, and thereby 
this voltage threshold limits the current:

Imax~ 4e2/h ℏω0/e~25μA
ℏω0 = 160meV.
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Quantum transport of CNTQuantum transport of CNT

Ballistic and coherent transport 
at low T (T<5K)

Fabry‐Perot cavity
Due to coherent scattering on 
the imperfect contacts 
interferences occur: periodic 
oscillations as a function of gate 
and bias. Vg or bias changes k 
and thereby the accumulated 
phase on one loop. 
Periodicity (Vc) is proportional
to L‐1, where L is the length of 
CNT segment.

G vs. Vg and BiasSample geometry with electron path
scattered  on the contact interfaces

Corresponding scattering
matrix problem

Periodicity of the oscillations vs. 
Length of the CNT segment
periodicity determined by 
arrow position in right figure

CNT Quantum dotsCNT Quantum dots
Quantum dots:
If the barrier resistance R~h/e2, e‐s are 
localized between the contacts. 

Qdot physics.
Typical charging energy:

For short segments also large level spacing, 
transport through individual quantum levels. 

Shell structure:
Graphene has three 2‐fold symmetries: 
Pseudo spin A B, Isospin (K, K’), electron spin
First generates the Dirac spectrum (e‐h symmetry)
Second two induce 4‐fold degenerate levels of Qdot with SU(4)

The K’/ K isospin corresponds to solution encircle clockwise 
/anticlockwise  around the tube. From valley degeneracy of 
graphene orbital degeneracy of Qdot levels.
In a Qdot longitudinal momentum is also quantized: 
resulting a level spacing of: 

Level spectrum and  symmetries
of CNT QDot

Dispersion relation of CNT
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CNT Quantum dotsCNT Quantum dots
Experiments:
The 4‐fold degenerate shells were observed in 
experiments. Every 4th Coulomb diamond is wider. Level 
spacing has to be paid when a new shell opens. If there 
is disorder the isospin degeneracy is lifted. (see right 
lowest Fig.) Mostly this is the case, only newest 
ultraclean CNT devices show 4‐fold degeneracy.

The 4 states in the shell can be split by applying B field 
parallel to tube axis:

B field dependence of the 4 levels

Qdot levels demonstrating the shells with 4 levels

Jespersen NaturePhys10.1038 (2011) & Physical Review B 71, 153402 (2005).

CNT Quantum dotsCNT Quantum dots

Nature 429, 389 (2004). 

1e and 1 hole state of semiconducting CNTsIn semiconducting CNTs one can access the 
single electron and single hole filling of the 
quantum dot (see right figs). Large diamond 
corresponds to the empty quantum dot.

In ultraclean CNTs (grown on top of the 
electrodes) shell structure was studied at  
single e filling (see bottom left fig.).

Evolution of the 4 states in B field Vsd=‐2mV

As B|| increased E of K states are decreasing while 
one of K’ increasing, similar to figure on previous 
slide.
Surprising that at B=0 the four states are split in two 
2‐fold degenerate levels. See also inset for zoom in. 
Reason: spin orbit coupling. E‐s on K and K’ orbitals 
induce B field, which effects the e spin

K↓ and K`↑ get lower energy. SU(4) symmetry is 
lifted.
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SU(4) and orbital Kondo effect in CNTSU(4) and orbital Kondo effect in CNT
Kondo situations in CNTKondo situations in CNT Qdot:

a)Normal Kondo: Two degenerated spin states
b) Orbital Kondo: Two orbitals have the same energy
c)Two orbitals x two spin states are degenerate

P Jarillo-Herrero Nature 434,484 (2005)

Yellow region: at finite B 
field two states with same 
spin get degenerate, 
inducing a situation of 
orbital Kondo effect
Green region: 4‐fould 
degeneracy, spin and orbital 
induces a SU(2)xSU(2)=SU(4) 
Kondo situation

SU(4) and orbital Kondo effect in CNTSU(4) and orbital Kondo effect in CNT

P Jarillo-Herrero Nature 434,484 (2005)

Yellow region: at finite B 
field two states with same 
spin get degenerate, 
inducing a situation of 
orbital Kondo effect
Green region: 4‐fould 
degeneracy, spin and orbital 
induces a SU(2)xSU(2)=SU(4) 
Kondo situation

b

Zoom in of yellow 
region: anticrossing 
δB due to coupling 
between |+> and |‐>

Orbital Kondo effect 
Fig. a)  At B=5.8T for 1e occupation of the last
shell (I) there is a conductance increase due
to Kondo effect, see yellow dotted line. 

(Orange numbers are the spin of the dot, 
green lines are boarder between charge states)
Fig. b) Bias slice at the Orbital Kondo situation 
(B=5.9T, Vg=937mV). Inset: Peak height follows 
Kondo scaling.   
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SU(4) and orbital Kondo effect in CNTSU(4) and orbital Kondo effect in CNT

P Jarillo-Herrero Nature 434,484 (2005)

b

SU(4) Kondo effect signatures
Fig. a)  Decreasing T, G increases in the 
valley of state I and III.
Fig. b) B=0 zero bias resonance appears 
in state I and III. (There is no orbital splitting 
as in previous slide due to higher Kondo 

temperature δB < TK )

Fig. c) At B=1.5T the Kondo resonance 
splits into 4 branches for state I
Fig. d) The splitting of the 4 states vs. B 
field for state I. 
Outer lines are cotunneling from |‐>  to 
|+> orbitals, while the inner lines are 
cotunneling process from|‐,↑>
to|‐,↓>. (μspin=μB , μorbital = 13μ B)
The multiple splitting provides direct 
evidence of the SU(4) Kondo 
resonance.
(For B=1.5T & III the inner two states are not split. 
Since Tk large spin‐1/2  SU(2) Kondo remains.)


