Physics laboratory for MSc students

Presenting: Gergő Fülöp

BME TTK Physics Department 2023/2024 Autumn semester

Copyright © 2008-2022 Gergő Fülöp, András Magyarkuti, Attila Geresdi, András Halbritter

Outline

Day 1

- Setting the goal
- Basics of C# programming
 - Making a GUI
 - Syntax, flow control, etc.
 - Debugging in Visual Studio
 - File I/O

Day 2

- Connecting instruments via serial port
 - Communication with instrument
 - Display acquired data
- Solving complex measurement control and data analysis tasks
 NI myDAQ data acquisition device

	🔜 Form1	
Start		
Text		

What is still missing...

What is still missing...

Real-time plotting

Plot axis labeled properly

- Name of the quantity
- Units of the quantity

Chart

Inserting a Chart control: Toolbox \rightarrow Data \rightarrow Chart

Components of the Chart

using System.Windows.Forms.DataVisualization.Charting;

Chart Area Tit	le	
Titles[0]		
Properties		
.Text	Title of the plot	

Warning: the Titles collection is empty by default. Add a Member either in the Properties editor, or programmatically (e.g. chart1.Titles.Add("Title");)

Components of the Chart: x and y axis

using System.Windows.Forms.DataVisualization.Charting;

chart1.ChartAreas[0].AxisX

Axis	
.Title	Axis label
.Minimum	Minimum value of the axis (Double.NaN – autoscale)
.Maximum	Maximum value of the axis (Double.NaN – autoscale)
.IsLogarithmic	Log / Lin scale
.LabelStyle.Format	Number format (e.g. "0.00" for fixed 2 digits after decimal)

https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-numericformat-strings?redirectedfrom=MSDN

Warning: setting a *Minimum* value higher than the *Maximum* value results in an *Exception*.

Components of the Chart: Series

using System.Windows.Forms.DataVisualization.Charting; Chart1.Series[0]

Methods:	
.Points.AddXY(X, Y)	Add a data point to the plot specified by x and y coordinates
Properties:	
.ChartType	Appearance of the plot, e.g. SeriesChartType.Line

Software timing with a Timer object

Timer:	773 timer 1	
using	System.Windows.Forms;	
Properties		
Interval	Time between two ticks in milliseconds	
Enabled	Tells whether the timer is running	
Events		
Tick	The method which runs repeatedly	

Example for plotting with the Chart control

```
private void Form1 Load(object sender, EventArgs e)
           chart1.Titles.Add("Sine wave");
           chart1.ChartAreas[0].AxisX.Title = "Time (sec)";
           chart1.ChartAreas[0].AxisY.Title = "Amplitude (V)";
           chart1.ChartAreas[0].AxisX.LabelStyle.Format = "0.##";
           chart1.ChartAreas[0].AxisY.LabelStyle.Format = "0.##";
           chart1.Legends[0].Docking = Docking.Top;
           chart1.Series[0].ChartType = SeriesChartType.Line;
       }
       private void buttonPlot Click(object sender, EventArgs e)
           double x,y;
           for(int i=0; i<1000; i++)</pre>
           {
               x = (double) i/1000*2*Math.PI;
               y = Math.Sin(x);
               chart1.Series[0].Points.AddXY(x,y);
           }
```

Accessing data points of the Chart

n*th* point pair

DataPoint P = chart1.Series[0].Points.ElementAt(n);

X value:

P.XValue

Y value:

P.Yvalues[0]

NI myDAQ

- Digital input/outptut
- Analog input/output
 - Range: ±10 V or ±2 V
 - Resolution: 16 bits
 - Max. sampling rate: 200 kS/s
 - Input: differential or single-ended
- Digital multimeter
 - Voltage, current, resistance

Manual (pdf): https://www.ni.com/pdf/manuals/373061g.pdf

DAQmx workflow

Create Task \rightarrow Set up the Task \rightarrow Create Reader/Writer

Read/Write samples

Dispose of the Task

- Type of input
 - Analog
 - Digital
- Number of channels:
 - Single
 - Multi
- Number of samples:
 - Single \rightarrow software timing (with a Timer)
 - − Multi → hardware timing

Programming the myDAQ

Add reference manually in the solution explorer Add the using directive below to the top of your code

using NationalInstruments.DAQmx;

Example: analog input (single sample)

Declarations:

```
NationalInstruments.DAQmx.Task InTask;
AnalogSingleChannelReader analogReader;
```

Creating the task and the reader object:

InTask = new NationalInstruments.DAQmx.Task();

analogReader = new AnalogSingleChannelReader(InTask.Stream);

Reading a single sample:

```
MeasuredValue = analogReader.ReadSingleSample()
```

Disposal:

```
InTask.Dispose();
```

Example: analog output (single sample)

Declarations:

```
NationalInstruments.DAQmx.Task OutTask;
AnalogSingleChannelWriter analogWriter
Creating the task and the writer object:
OutTask = new NationalInstruments.DAQmx.Task(); Check NI MAX
OutTask.AOChannels.CreateVoltageChannel("myDAQ1/ao0", "",
-10, 10, AOVoltageUnits.Volts);
analogWriter = new AnalogSingleChannelWriter(OutTask.Stream);
```



```
OutTask.Dispose();
```

Programming the myDAQ: reading/writing multiple samples

Input and output sampling with hardware timing:

Writing multiple values:

analogWriter.WriteMultiSample(true, outData);

Reading multiple values:

```
InTask.Start();
double[] inData = new double[numPnts];
inData = analogReader.ReadMultiSample(numPnts);
```

Using the SerialPort

Add a SerialPort object in the Designer view from the Toolbox.

Set up the communication parameters (instrument-specific, do only once):

```
serialPort1.PortName = "COM1";
serialPort1.BaudRate = 9600; Check
serialPort1.DataBits = 8;
serialPort1.StopBits = System.IO.Ports.StopBits.One;
serialPort1.Parity = System.IO.Ports.Parity.None;
```

Open the port:

```
serialPort1.Open();
```

Send a command to the instrument:

```
serialPort1.WriteLine("*idn?");
```

Read the answer from the instrument:

```
ValuetextBox.Text = serialPort1.ReadLine();
```

Close the port:

```
serialPort1.Close();
```


https://fizipedia.bme.hu/index.php/DMM

ComboBox

- Populate the options:
 - Through the GUI, or
 - Items Collection (e.g. comboBox1.Items)

- DropDownStyle
 - DropDown
 - Simple
- Get selected item

string selected = comboBox1.GetItemText(comboBox1.SelectedItem);

NumericUpDown

- Properties
 - Value
 - Minimum
 - Maximum
 - DecimalPlaces
 - Increment
- Note: type is decimal

Programming exercises

Read and plot the (x,y) point pairs in the file suruasd.txt with a Chart control. Set the type to SeriesChartType.Point. Set the color to green. (Download the data file from Fizipedia.)

Download and open the two-panel template project ("*kétpaneles*") from Fizipedia. Use it for the exercises below, in 3 separate projects.

- 2. Create a **Timer** object with an interval of 100 ms. Upon each tick, read a **single sample** using the analog input of the simulated myDAQ. Use a chart to visualize the data real-time.
- 3. Create a function generator using the analog output of the myDAQ with **hardware timing**. The user selects a waveform (sine, triangle, square), a frequency and an amplitude. Display the generated waveform in a Chart.
- 4. Using the analog input of the myDAQ with **hardware timing**, create an oscilloscope (read **multiple samples** at once). Display the measured waveform on a **Chart**.

Creating a simulated myDAQ

Using the .NET library for the myDAQ

- 1. Start a new project in Visual Studio.
- 2. In the Solution explorer, right click on References \rightarrow Add reference.

3. Search for DAQ, select and add National Instruments DAQmx.

