
Standing waves in stretched, elastic string

I. THEORETICAL BACKGROUND

In the measurement we will investigate the propagation
of waves in a string with both end fixed. We assume that
the propagation is one dimensional (along the string),
the wave is transverse (the displacement vectors of the
points of the string is perpendicular to the string), in-
plane polarized (the displacement vectors lie in the same
plane). It follows that displacement of a point from its
equilibrium can be described with only one scalar value.
Assuming the string is parallel to the x axis, the wave
can be described with
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the dimensional wave-equation, where x is the coordi-
nate, t is the time, Ψ(x, t) is the wave-function, which
describes the displacement as a function of place and
time, i.e. the propagation of the wave, and c is the speed
of the propagation. Deriving the wave-equation for the
case of a simple, one-dimensional string, the speed of the
propagation, c only depends only on the stretching force,
T and the linear mass-density of the string, µ:

c =

√
T

µ
. (2)

The waves formed by an external excitation in the
string are generally very complicated. Although it is
know that exciting at given frequencies stationary, so
called standing waves are formed due to the reflection
from the ends of the string. A property of the standing
waves is that the points of the string are moving in-phase,
and amplitude of the oscillation is only the function of
the place. Mathematically it means that Eq. 1 has a so-
lution, which is the product of a time-dependent and a
place-dependent functions (the Eq. 1 is separable partial
differential equation). If the excitation is harmonic, the
solution can be written as

Ψ(x, t) = ϕ(x)sin(ωt+ α), (3)

where ω = 2πν is the angular frequency of the oscillation
(ν is the frequency, Hz), and α is the initial phase.

Substituting Eq. 3 into Eq. 1 the time-dependent part
cancels, and place-dependent part, which describes the
amplitude along the string, gives the following ordinary
differential equation:

d2ϕ(x)

dx2
+ k2ϕ(x) = 0, (4)

where k = ω/c, the wavenumber is introduced.
The general solution of Eq. 4 is

ϕ(x) = Asin(kx) +Bcos(kx), (5)

where A and B are arbitrary constants, determined by
the boundary conditions. In this case both end of the
string is fixed, so the displacement at these points is al-
ways zero, i.e.

ϕ(0) = 0

ϕ(L) = 0, (6)

where one end of the string lies in origin of the coordinate
system, and length of the string is L.

The first condition of Eq. 6 implies that B = 0, the
solution can have form of

ϕ(x) = Asin(kx). (7)

The second condition if Eq. 6 restricts the allowed values
of the wavenumber to

kn = n
π

L
, (n = 1, 2, 3, ...) (8)

Since the wavenumber, k is in direct connection with
the λ wavelength (k = 2π/λ), Eq. 8 implies that standing
waves are only formed in case of given discrete value of
wavelenghths:

λn =
2L

n
, (n = 1, 2, 3, ...) (9)

Combining this result with the ν = c/λ formula, taking
into account that the speed of the propagation, c if fixed
(in case of fixed stretching force, see Eq. 2) results that
only given discrete values of frequency,

νn = n
c

2L
(n = 1, 2, 3, ...) (10)

are allowed. These frequencies are the resonance frequen-
cies of the string.

As it follows from the discussion above, the solutions,
which suit the boundary conditions can be written as

ϕn(x) = Ansin
(nπ
L
x
)

(n = 1, 2, 3, ...) (11)

The An constants, the maximal values of the ampli-
tudes is determined by the details of the excitation (the
initial conditions), but for the given measurement it is
not relevant. Assuming that actual standing wave only
contains one given n component, the solution of Eq. 1
can be written as

Ψn(x, t) = Ansin

(
2π

λn
x

)
sin(ωnt+ αn), (12)

where n is an arbitrary positive integer. The amplitude-
distribution (place-dependence) of the standing wave is
given by Eq. 11, some examples are shown on Fig. 1, for
n = 1, 2 and 3. As it can be seen from Fig. 1 and Eq. 11,
the solution for a given n contains n antinodes and n+ 1
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nodes (taking into account the fixed ends of the string).
From Eq. 11 the distance of two consecutive nodes,

dn =
L

n
=
λn
2
. (13)

According to Eq. 10, different n-s result in different
frequencies (pitches). The n = 1 is called fundamental
frequency, and higher n values are called higher harmon-
ics.

It is useful to note that exciting the string with an or-
dinary method (e.g. plucking or with a bow) generally
more harmonics appear at the same time. (Mathemati-
cally it means that the full solution of Eq. 1 is the sum
of Eq. 12-like solutions, with different n-s). But a string
has a well defined pitch, since usually the amplitude of
the fundamental frequency is much larger than the am-
plitude of the higher harmonics. The higher harmonics
are always present, and the ratio for the different higher
harmonics give the tone of the string. (I.e. the difference
of the sound of different musical instruments.)

In the measurement sinusoidal excitation will be used,
which enables us to form standing waves with different
n by setting the proper frequencies. Since the excitation
itself is a complex process, the frequency of the standing
wave will not be the same as the excitation frequency,
furthermore higher harmonics will appear, so the reso-
nance frequency has to be determined independently by
measuring it.

II. MEASUREMENT SETUP

The measurement setup (see Fig. 2) is a stretched steel
string (2) fixed on a board (1). The ends of the string is
fixed to an aluminum block (4), which is movable with a
screw (3), and to a two-armed lever (5). The length os-
cillating section of the string can be set with two stands
(6). The oscillation is induced by an exciter (driver) coil

(8), which is driven by a function generator, via mag-
netic coupling. The excited wave is transverse, almost
in-plane polarized. The oscillation is detected by a de-
tector coil, which signal is visualized on an oscilloscope
along with the excitation signal. The stretching force can
be changed by putting weight (11) on the longer (hori-
zontal) arm of the lever (5).

Fixing the string: The copper-pieced end of the string
has to be hooked to the shorter (vertical) arm of the lever.
The loop on the other end has to be hooked to the screw
on the aluminum block. After fixing the string, it has to
be tightened by moving screw (3), so the longer arm of
the lever is horizontal.

Relevant tunable parameters of the setup

• The length of the string can be changed by moving
the stands (6).

• The stretching force can be changed by changing
the position of the weight on the longer arm of the
lever. This arm is designed so putting the weight
in the first slot, the stretching force is equal to the
weight of the weight, putting in the second slot it
is twice as large, and so on. Each time changing
the stretching force, the longer arm should be fine
tuned with the screw (3) to be horizontal.

• The linear mass density of the string can be
changed by using another string with different di-
ameter. The linear mass density has to be calcu-
lated form the diameter, which has to be measure
by a screw-micrometer (the density of steel is 7800
kg/m3).

• The shape of the standing wave can be changed by
changing the excitation frequency on the function
generator.

The function genarator has to be set to sine-wave out-
put and the exciting coil has to be positioned close to
one of the stands (about 5 cm distance), since it is most
efficient close to a node. Initially the detector coil goes
to the center of the the investigated section of the string,
then its position has to be changed according to the tasks
(the highest output signal is produced close to an antin-
ode).

To find the different standing waves, the excitation fre-
quency should be slowly increased from about 50 Hz,
while constantly checking the detector signal on the oscil-
loscope. Reaching the resonance the detector signal and
the sound of the string has a maximum. If the signal is
too small, try to change the position of the detector coil,
or increase the amplitude of the excitation. After finding
the resonance the shape of the standing wave (and so n)
can be examined by moving the detector coil along the
string.

The frequency of the standing wave has to determined
from the detector signal, either directly measuring the
period on the oscilloscope, or comparing it to the excita-
tion signal.
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III. MEASUREMENTS

1. Set the length of the string to 60 cm, and stretch it
with 60 N (e.g. by putting 2 kg to the third slot of
the lever)! Changing the excitation frequency, find
the first four (n = 1, 2, 3, 4) standing waves! For
each of them measure the coordinates (from one of
the stands) of the nodes and antinodes (by moving
the detector coil), and determine the wavelength of
the standing wave from the measured coordinates!
Make a table and check Eq. 9!

2. Plot the frequency of the standing waves (νn) as
a function of n, fit a linear function to the data!
From the slope, determine the speed of sound, c,
and compare it with value calculated from Eq. 2!

3. Find the n = 1 standing wave for 60 cm length,
and for four different lengths as well, and measure
the resonance frequency in each cases! Plot the fre-

quency as a function of the reciprocal of the length,
fit a linear function, and determine the speed of
sound from the slope! Compare this value with
previous ones!

4. Set the length back to 60 cm, and measure the res-
onance frequency and wavelength correspond to n
= 1 standing wave for five different stretching force!
Calculate the speed of the sound for each case with
the c = λν formula! Make a table about the data!
Plot the speed of sound as a function of

√
T , deter-

mine the linear mass density from the slope, and
compare it with the value calculated from the di-
ameter!

5. Measure the n = 1 resonance frequencies with 60
cm length and 60 N for the other strings as well!
Do not forget to measure the diameter of each wire!
Plot the c - µ−1/2 function, fit linear, determine the
stretching force from the slope and compare it with
the used 60 N!


