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A few famous and useful model Hamiltonians

1. spin in a B-field 
2. spin driven by square B-field pulses (=> single-qubit gates) 
3. spin resonance (=> single-qubit gates) 
4. Hubbard model and exchange interaction (=> two-qubit sqrt-of-swap) 
5. Jaynes-Cummings Hamiltonian and its dispersive regime 
6. driven Jaynes-Cummings Hamiltonian (=> single-qubit gates, readout) 
7. two-qubit Jaynes-Cummings Hamiltonian (=> two-qubit sqrt-of-iswap)

A few famous and useful concepts

1. rotating frame 
2. rotating-wave approximation 
3. perturbation theory
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Up to phase factors, this corresponds at t = ⇡�/4g2 to a
p
iSWAP operation.

Together with single-qubit gates, it forms a universal gate set.

I. EXERCISES, CONTROL QUESTIONS

1. List three areas where the performance of quantum computing could exceed that of classical computing.

2. List the three Pauli matrices.

3. Construct a classical circuit that adds two single-bit numbers, using only the NAND gate.

4. Construct a quantum circuit that adds two single-bit numbers.

Ebben a fájlban az előadás menetrendjét követve gyűjtöm össze az egyes témakörökhöz kapcsolódó gyakorló felada-
tokat. A fájl hétről-hétre frissülni fog az adott hét feladataival. A zárthelyiken ehhez hasonló feladatok várhatók.



Spin in a B-field

g-factor,  
~2 for e in vacuum

external B-field along z

Dynamics of!
polarization vector:!
Larmor precession

Hamiltonian:

Homework: calculate the dynamics of the polarization vector from the TDSE.
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I. EXERCISES, CONTROL QUESTIONS

1. List three areas where the performance of quantum computing could exceed that of classical computing.

2. List the three Pauli matrices.

3. Construct a classical circuit that adds two single-bit numbers, using only the NAND gate.

4. Construct a quantum circuit that adds two single-bit numbers.
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II. CLASSICAL BITS

• the value of a c-bit is 0 or 1

• operations, gates: a c-logical gate maps n c-bits to m c-bits; e.g., NOT, AND, OR, XOR.

• single-bit gate: n = m = 1

• there is only one non-trivial single-bit gate: NOT

• two-bit gate: n = 2, m = 1, e.g., AND, OR, XOR

• c-gates are not necessarily reversible: e.g., any n > m gate is irreversible

• c-circuit : an arrangement of "wires" and gates

• universal gate set : a set of gates that allows to construct circuits for any algorithm

• exercise: construct a c-circuit that adds two single-bit numbers using only the NAND gate

III. QUANTUM BIT

1. quantum bit, qubit, q-bit, qbit : two-level quantum system

2. state of a qubit: | i = ↵0 |0i+ ↵1 |1i

3. ↵0, ↵1 are called amplitudes; they are complex numbers

4. |0i and |1i are the qubit basis states

5. normalization condition: |↵0|2 + |↵1|2 = 1
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III. QUANTUM BIT

1. quantum bit, qubit, q-bit, qbit : two-level quantum system

2. state of a qubit: | i = ↵0 |0i+ ↵1 |1i

3. ↵0, ↵1 are called amplitudes; they are complex numbers

Precession (Larmor) frequency @ 1 Tesla:



Spin driven by square B-field pulses 

Quantum Computing Architectures - Lecture 02

Pályi András
Elméleti Fizika Tanszék, BME
(Dated: September 16, 2018)

1.

H =

1

2

gµ
B

B0�z

Bohr magneton ⇡ 60µeV/T

f
L

= gµ
B

B0/h ⇡ 28GHz

2.

H(t) =
1

2

gµ
B

B(t) · �

B(t) =

0

BB@

B
x

(t)

0

B
z

(t)

1

CCA

I. EXERCISES, CONTROL QUESTIONS

1. List three areas where the performance of quantum computing could exceed that of classical computing.
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• the value of a c-bit is 0 or 1

• operations, gates: a c-logical gate maps n c-bits to m c-bits; e.g., NOT, AND, OR, XOR.
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BxBz

time

Any rotation can be combined by an x-rotation and a z-rotation.

Caveat: fast tuning of the magnetic field is difficult.

Any single-qubit gate can be realized by x- and z-directional B-field pulses.

Homework: what is the duration of a NOT gate (`pi pulse’) if a B of 1 mT is used?



Spin resonance (rotating drive)
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I. EXERCISES, CONTROL QUESTIONS

1. List three areas where the performance of quantum computing could exceed that of classical computing.

2. List the three Pauli matrices.

3. Construct a classical circuit that adds two single-bit numbers, using only the NAND gate.

4. Construct a quantum circuit that adds two single-bit numbers.
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II. CLASSICAL BITS

• the value of a c-bit is 0 or 1

• operations, gates: a c-logical gate maps n c-bits to m c-bits; e.g., NOT, AND, OR, XOR.

• single-bit gate: n = m = 1
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Larmor frequency drive strength drive frequency
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Spin resonance (rotating drive)
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5.1. ábra. Bloch gömb. A felcsavarodás ⌦ fekvenciával történik. Ha � 6= 0, azaz nem
teljesen pontosan a rezonancián gerjesztjük a rendszert a felcsavarodás csak részleges
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Ekkor nem fog teljesen
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Ha c" = 1
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Spin resonance (rotating drive)
How to solve the time-dependent Schrodinger equation?

Using the “transformation to the rotating frame”.
That is a time-dependent unitary transformation applied on the TDSE:
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I. EXERCISES, CONTROL QUESTIONS

1. List three areas where the performance of quantum computing could exceed that of classical computing.

2. List the three Pauli matrices.

3. Construct a classical circuit that adds two single-bit numbers, using only the NAND gate.

4. Construct a quantum circuit that adds two single-bit numbers.

Ebben a fájlban az előadás menetrendjét követve gyűjtöm össze az egyes témakörökhöz kapcsolódó gyakorló felada-
tokat. A fájl hétről-hétre frissülni fog az adott hét feladataival. A zárthelyiken ehhez hasonló feladatok várhatók.

This is the “Hamiltonian in the rotating frame”. 
It is a time-independent Hamiltonian.  

Hence the dynamics is exactly solvable.

Larmor precession  
around x



We describe qubit dynamics in the rotating frame
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• a drive pulse rotates the polarization vector 
• rotation axis depends on the phase of the drive pulse 
• rotation angle depends on the product of the amplitude and duration 

of the pulse 
• any rotation can be composed from x and y rotations 
• any single-qubit gate can be performed with spin resonance



Power broadening

If driving is `off-resonant’ or `detuned’, then the spiral-like polarization 
dynamics is only partial, it doesn’t reach the north pole.
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If the initial state is the ground state, then the excited-state probability is:
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Spin resonance (linear drive)
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I. EXERCISES, CONTROL QUESTIONS

1. List three areas where the performance of quantum computing could exceed that of classical computing.

2. List the three Pauli matrices.

3. Construct a classical circuit that adds two single-bit numbers, using only the NAND gate.

4. Construct a quantum circuit that adds two single-bit numbers.

Ebben a fájlban az előadás menetrendjét követve gyűjtöm össze az egyes témakörökhöz kapcsolódó gyakorló felada-
tokat. A fájl hétről-hétre frissülni fog az adott hét feladataival. A zárthelyiken ehhez hasonló feladatok várhatók.

II. CLASSICAL BITS

• the value of a c-bit is 0 or 1

• operations, gates: a c-logical gate maps n c-bits to m c-bits; e.g., NOT, AND, OR, XOR.

• single-bit gate: n = m = 1

5.1. ábra. Bloch gömb. A felcsavarodás ⌦ fekvenciával történik. Ha � 6= 0, azaz nem
teljesen pontosan a rezonancián gerjesztjük a rendszert a felcsavarodás csak részleges
lesz.
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Ekkor nem fog teljesen
”
felforogni” a Bloch gömbön, mint az leolvasható az (5.6),

(5.7) egyenletletekről.
Ha c" = 1

2 , akkor jut el csak az egyenĺıtőig a Bloch gömbön. Ezt a � = ⌦ kitéŕıtéssel
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c" (! ± ⌦) :=
⌦2

⌦2 + ⌦2
=

1

2
(5.8)

Tehát, eme Lorenz görbe félértékszélessége a ⌦ lesz.
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for weak driving, the qubit dynamics 
is approximately the same as with 

rotating drive
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weak driving:

most experiments use linear drive (simpler)



From exchange interaction to sqrt-of-swap gate

• reminder: sqrt-of-swap + single-qubit gates = universal gate set

x

V(x)

4

IX. 2-QUBIT QUANTUM GATES

1. 2-qubit gate example: controlled-NOT or CNOT
with the basis-state ordering |00i, |01i, |10i, |11i, it is represented by

UCNOT =

0

B@

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1

CA

it could be represented by a ‘classical’ truth table

2. 2-qubit gate example:
p

SWAP:
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SWAP =

0

BB@

1 0 0 0

0

1�i

2
1+i

2 0

0

1+i

2
1�i

2 0

0 0 0 1

1
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cannot be represented by a classical truth table

3. 1-qubit gates together with CNOT form a unversal q-gate set

4. 1-qubit gates together with
p

SWAP form a universal q-gate set

X. DEUTSCH-ALGORITHM

1. A simple oracle problem: f : {0, 1} ! {0, 1} is an unknown function; i.e., it is one of the following 4 functions:

constant (value = 1) constant (value = 0)
0!1 0! 0
1!1 1! 0

balanced (NOT) balanced (id.)
0!1 0! 0
1!0 1! 1

2. task: figure out, by evaluating f a few times, whether f is constant or balanced

3. solution: one has to evaluate f twice, for input 0 and for input 1, and the results will tell if f is constant or
balanced

4. a single evaluation of f is not sufficient to complete the task
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2. task: figure out, by evaluating f a few times, whether f is constant or balanced

3. solution: one has to evaluate f twice, for input 0 and for input 1, and the results will tell if f is constant or
balanced

4. a single evaluation of f is not sufficient to complete the task

• high/low barrier => tunneling off/on
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HHubbard = Hon-site +Htun +HCoulomb (12)
Hon-site = "LnL + "RnR (13)

Htun = tH
⇣
a†L"aR" + a†L#aR# + h.c.

⌘
(14)

HCoulomb = U(nL"nL# + nR"nR#) (15)

nL" = a†L"aL", etc.

I. EXERCISES, CONTROL QUESTIONS

1. List three areas where the performance of quantum computing could exceed that of classical computing.

2. List the three Pauli matrices.

3. Construct a classical circuit that adds two single-bit numbers, using only the NAND gate.

4. Construct a quantum circuit that adds two single-bit numbers.

Ebben a fájlban az előadás menetrendjét követve gyűjtöm össze az egyes témakörökhöz kapcsolódó gyakorló felada-
tokat. A fájl hétről-hétre frissülni fog az adott hét feladataival. A zárthelyiken ehhez hasonló feladatok várhatók.

II. CLASSICAL BITS

• the value of a c-bit is 0 or 1

• operations, gates: a c-logical gate maps n c-bits to m c-bits; e.g., NOT, AND, OR, XOR.

• single-bit gate: n = m = 1

• there is only one non-trivial single-bit gate: NOT

• two-bit gate: n = 2, m = 1, e.g., AND, OR, XOR

• c-gates are not necessarily reversible: e.g., any n > m gate is irreversible

• c-circuit : an arrangement of "wires" and gates

• universal gate set : a set of gates that allows to construct circuits for any algorithm

• exercise: construct a c-circuit that adds two single-bit numbers using only the NAND gate

III. QUANTUM BIT

1. quantum bit, qubit, q-bit, qbit : two-level quantum system

2. state of a qubit: | i = ↵0 |0i+ ↵1 |1i

3. ↵0, ↵1 are called amplitudes; they are complex numbers

4. |0i and |1i are the qubit basis states

5. normalization condition: |↵0|2 + |↵1|2 = 1

• setup: two electrons in a double well (dot)

• simple description:  
two-site Hubbard model
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2. state of a qubit: | i = ↵0 |0i+ ↵1 |1i

3. ↵0, ↵1 are called amplitudes; they are complex numbers

4. |0i and |1i are the qubit basis states

5. normalization condition: |↵0|2 + |↵1|2 = 1

• tunable tunnel amplitude
• on-site energies = zero

• strong Coulomb repulsion
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The statement

time

tH
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The proof
• 2 electrons in the Hubbard model => 6 states: (2,0), (1,1)x4, (0,2)
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basis: |2, 0i, |#, #i, |#, "i, |", #i, |", "i, |0, 2i

HHubbard = Hon-site +Htun +HCoulomb (12)
Hon-site = "LnL + "RnR (13)

Htun = tH
⇣
a†L"aR" + a†L#aR# + h.c.

⌘
(14)

HCoulomb = U(nL"nL# + nR"nR#) (15)

nL" = a†L"aL", etc.

tH ⌧ U

A =

Z t1

t0

dt t2H(t)

If 4A
~U =

3⇡
2 then  (t1) = Up

SWAP (t2).

I. EXERCISES, CONTROL QUESTIONS

1. List three areas where the performance of quantum computing could exceed that of classical computing.

2. List the three Pauli matrices.

3. Construct a classical circuit that adds two single-bit numbers, using only the NAND gate.

4. Construct a quantum circuit that adds two single-bit numbers.

Ebben a fájlban az előadás menetrendjét követve gyűjtöm össze az egyes témakörökhöz kapcsolódó gyakorló felada-
tokat. A fájl hétről-hétre frissülni fog az adott hét feladataival. A zárthelyiken ehhez hasonló feladatok várhatók.

II. CLASSICAL BITS

• the value of a c-bit is 0 or 1

• operations, gates: a c-logical gate maps n c-bits to m c-bits; e.g., NOT, AND, OR, XOR.

• single-bit gate: n = m = 1

• there is only one non-trivial single-bit gate: NOT

Exercise: calculate these matrices.



The proof (contd.)
• unitary transformation to Singlet-Triplet (S-T) basis + reordering the basis
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I. EXERCISES, CONTROL QUESTIONS

1. List three areas where the performance of quantum computing could exceed that of classical computing.

2. List the three Pauli matrices.

3. Construct a classical circuit that adds two single-bit numbers, using only the NAND gate.

4. Construct a quantum circuit that adds two single-bit numbers.

Ebben a fájlban az előadás menetrendjét követve gyűjtöm össze az egyes témakörökhöz kapcsolódó gyakorló felada-
tokat. A fájl hétről-hétre frissülni fog az adott hét feladataival. A zárthelyiken ehhez hasonló feladatok várhatók.

II. CLASSICAL BITS

• the value of a c-bit is 0 or 1

• operations, gates: a c-logical gate maps n c-bits to m c-bits; e.g., NOT, AND, OR, XOR.

• single-bit gate: n = m = 1

• there is only one non-trivial single-bit gate: NOT

• two-bit gate: n = 2, m = 1, e.g., AND, OR, XOR

• c-gates are not necessarily reversible: e.g., any n > m gate is irreversible

• c-circuit : an arrangement of "wires" and gates

• universal gate set : a set of gates that allows to construct circuits for any algorithm

• exercise: construct a c-circuit that adds two single-bit numbers using only the NAND gate

III. QUANTUM BIT

1. quantum bit, qubit, q-bit, qbit : two-level quantum system

2. state of a qubit: | i = ↵0 |0i+ ↵1 |1i

3. ↵0, ↵1 are called amplitudes; they are complex numbers

4. |0i and |1i are the qubit basis states

• solve the dynamics for this (approximate Hamiltonian):
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• transform back to product basis:

S 
T0 
T- 
T+
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IX. 2-QUBIT QUANTUM GATES

1. 2-qubit gate example: controlled-NOT or CNOT
with the basis-state ordering |00i, |01i, |10i, |11i, it is represented by
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0

B@

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1

CA

it could be represented by a ‘classical’ truth table

2. 2-qubit gate example:
p
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cannot be represented by a classical truth table

3. 1-qubit gates together with CNOT form a unversal q-gate set

4. 1-qubit gates together with
p

SWAP form a universal q-gate set

X. DEUTSCH-ALGORITHM

1. A simple oracle problem: f : {0, 1} ! {0, 1} is an unknown function; i.e., it is one of the following 4 functions:

constant (value = 1) constant (value = 0)
0!1 0! 0
1!1 1! 0

balanced (NOT) balanced (id.)
0!1 0! 0
1!0 1! 1

2. task: figure out, by evaluating f a few times, whether f is constant or balanced

3. solution: one has to evaluate f twice, for input 0 and for input 1, and the results will tell if f is constant or
balanced

4. a single evaluation of f is not sufficient to complete the task

• it gives sqrt-of-swap if:
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Q.E.D.

Exercise: do the calculations that were omitted here.
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Jaynes-Cummings Hamiltonian

Blais et al., Phys. Rev. A 69, 062320 (2004)

H = !"r!a†a + 1
2
" + !#

2
$z + !g#a†$− + $+a$ + H% + H&.

#1$

Here H% describes the coupling of the cavity to the con-
tinuum which produces the cavity decay rate %="r /Q, while
H& describes the coupling of the atom to modes other than
the cavity mode which cause the excited state to decay at rate
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transition dipole moment d and the rms zero-point electric
field of the cavity mode. Strong coupling is achieved when
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oscillator = resonator = cavity = one mode of a microwave resonator
qubit = e-charge, e-spin, superconducting qubit
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7. ‘strong coupling’ regime: �, ⌧ g

I. EXERCISES, CONTROL QUESTIONS

1. List three areas where the performance of quantum computing could exceed that of classical computing.

2. List the three Pauli matrices.

3. Construct a classical circuit that adds two single-bit numbers, using only the NAND gate.

4. Construct a quantum circuit that adds two single-bit numbers.

Ebben a fájlban az előadás menetrendjét követve gyűjtöm össze az egyes témakörökhöz kapcsolódó gyakorló felada-
tokat. A fájl hétről-hétre frissülni fog az adott hét feladataival. A zárthelyiken ehhez hasonló feladatok várhatók.

II. CLASSICAL BITS

• the value of a c-bit is 0 or 1

• operations, gates: a c-logical gate maps n c-bits to m c-bits; e.g., NOT, AND, OR, XOR.

• single-bit gate: n = m = 1

• there is only one non-trivial single-bit gate: NOT

• two-bit gate: n = 2, m = 1, e.g., AND, OR, XOR

• c-gates are not necessarily reversible: e.g., any n > m gate is irreversible

• c-circuit : an arrangement of "wires" and gates

• universal gate set : a set of gates that allows to construct circuits for any algorithm

• exercise: construct a c-circuit that adds two single-bit numbers using only the NAND gate

oscillator frequency 
(`resonator frequency’)

qubit-oscillator coupling strength

many back-and-forth oscillations of an energy quantum between qubit 
and oscillator are possible
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tinuum which produces the cavity decay rate %="r /Q, while
H& describes the coupling of the atom to modes other than
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Figure 1(b) shows the spectrum of these dressed states for

the case of zero detuning, (=0, between the atom and cavity.
In this situation, degeneracy of the pair of states with n+1
quanta is lifted by 2g'n+1 due to the atom-photon interac-
tion. In the manifold with a single excitation, Eqs. (2) and (3)
reduce to the maximally entangled atom-field states %± ,0&
= #%↑ ,1&± %↓ ,0&$ /'2. An initial state with an excited atom and
zero photons %↑ ,0& will therefore flop into a photon %↓ ,1& and
back again at the vacuum Rabi frequency g /). Since the
excitation is half atom and half photon, the decay rate of
%± ,0& is #%+&$ /2. The pair of states %± ,0& will be resolved in
a transmission experiment if the splitting 2g is larger than
this linewidth. The value of g=Ermsd /! is determined by the
transition dipole moment d and the rms zero-point electric
field of the cavity mode. Strong coupling is achieved when
g*% ,& [15].

FIG. 1. (Color online) (a) Standard representation of a cavity
quantum electrodynamic system, comprising a single mode of the

electromagnetic field in a cavity with decay rate % coupled with a
coupling strength g=Ermsd /! to a two-level system with spontane-

ous decay rate & and cavity transit time ttransit. (b) Energy spectrum
of the uncoupled (left and right) and dressed (center) atom-photon
states in the case of zero detuning. The degeneracy of the two-

dimensional manifolds of states with n−1 quanta is lifted by

2g'n+1. (c) Energy spectrum in the dispersive regime (long-
dashed lines). To second order in g, the level separation is indepen-
dent of n, but depends on the state of the atom.
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Table I. from Blais et al., Phys. Rev. A 69, 062320 (2004)

Typical parameter values in!
`cavity/circuit quantum electrodynamics’

strong coupling achieved in circuit QED

we assume strong coupling from now on
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In the dispersive regime, the resonator acquires  
a qubit-state dependent shift of its eigenfrequency.
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qubit-oscillator detuning:

For large detuning, g /!"1, expansion of Eq. (4) yields
the dispersive spectrum shown in Fig. 1(c). In this situation,
the eigenstates of the one excitation manifold take the form
[15]

!− ,0" # − $g/!%!↓ ,0" + !↑ ,1" , $7%

!+ ,0" # !↓ ,0" + $g/!%!↑ ,1" . $8%

The corresponding decay rates are then simply given by

#− ,0 & $g/!%2$ + % , $9%

#+ ,0 & $ + $g/!%2% . $10%

More insight into the dispersive regime is gained by mak-
ing the unitary transformation

U = exp' g
!

$a&+ − a†&−%( $11%

and expanding to second order in g (neglecting damping for
the moment) to obtain

UHU† ) ''(r + g2! &z(a†a + '2') + g2! (&z. $12%

As is clear from this expression, the atom transition is ac
Stark/Lamb shifted by $g2 /!%$n+1/2%. Alternatively, one
can interpret the ac Stark shift as a dispersive shift of the
cavity transition by &zg2 /!. In other words, the atom pulls
the cavity frequency by ±g2 /%!.

III. CIRCUIT IMPLEMENTATION OF CAVITY QED

We now consider the proposed realization of cavity QED
using the superconducing circuits shown in Fig. 2. A 1D
transmission line resonator consisting of a full-wave section
of superconducting coplanar waveguide plays the role of the
cavity and a superconducting qubit plays the role of the
atom. A number of superconducting quantum circuits could
function as artificial atom, but for definiteness we focus here
on the Cooper-pair box [6,16–18].

A. Cavity: Coplanar stripline resonator

An important advantage of this approach is that the zero-
point energy is distributed over a very small effective volume
()10−5 cubic wavelengths) for our choice of a quasi-one-
dimensional transmission line “cavity.” As shown in Appen-
dix A, this leads to significant rms voltages Vrms

0 #*'(r /cL
between the center conductor and the adjacent ground plane
at the antinodal positions, where L is the resonator length and
c is the capacitance per unit length of the transmission line.
At a resonant frequency of 10 GHz $h* /kB#0.5 K% and for
a 10 +m gap between the center conductor and the adjacent
ground plane, Vrms#2 +V corresponding to electric fields
Erms#0.2 V/m, some 100 times larger than achieved in the
3D cavity described in Ref. [3]. Thus, this geometry might
also be useful for coupling to Rydberg atoms [19].

In addition to the small effective volume and the fact that
the on-chip realization of CQED shown in Fig. 2 can be
fabricated with existing lithographic techniques, a
transmission-line resonator geometry offers other practical
advantages over lumped LC circuits or current-biased large
Josephson junctions. The qubit can be placed within the cav-
ity formed by the transmission line to strongly suppress the
spontaneous emission, in contrast to a lumped LC circuit,
where without additional special filtering, radiation and para-
sitic resonances may be induced in the wiring [20]. Since the
resonant frequency of the transmission line is determined
primarily by a fixed geometry, its reproducibility and immu-
nity to 1/ f noise should be superior to Josephson junction
plasma oscillators. Finally, transmission-line resonances in
coplanar waveguides with Q#106 have already been dem-
onstrated [21,22], suggesting that the internal losses can be
very low. The optimal choice of the resonator Q in this ap-
proach is strongly dependent on the intrinsic decay rates of
superconducting qubits which, as described below, are pres-
ently unknown, but can be determined with the setup pro-
posed here. Here we assume the conservative case of an
overcoupled resonator with a Q#104, which is preferable for
the first experiments.

B. Artificial atom: The Cooper-pair box

Our choice of “atom,” the Cooper-pair box [6,16], is a
mesoscopic superconducting island. As shown in Fig. 3, the

FIG. 2. (Color online). Schematic layout and equivalent lumped
circuit representation of proposed implementation of cavity QED

using superconducting circuits. The 1D transmission line resonator

consists of a full-wave section of superconducting coplanar wave-

guide, which may be lithographically fabricated using conventional

optical lithography. A Cooper-pair box qubit is placed between the

superconducting lines and is capacitively coupled to the center trace

at a maximum of the voltage standing wave, yielding a strong elec-

tric dipole interaction between the qubit and a single photon in the

cavity. The box consists of two small $#100 nm,100 nm% Joseph-
son junctions, configured in a #1 +m loop to permit tuning of the

effective Josephson energy by an external flux -ext. Input and out-
put signals are coupled to the resonator, via the capacitive gaps in

the center line, from 50) transmission lines which allow measure-

ments of the amplitude and phase of the cavity transmission, and

the introduction of dc and rf pulses to manipulate the qubit states.

Multiple qubits (not shown) can be similarly placed at different
antinodes of the standing wave to generate entanglement and two-

bit quantum gates across distances of several millimeters.
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`large detuning regime’ or `dispersive regime’:

H = !"r!a†a + 1
2
" + !#

2
$z + !g#a†$− + $+a$ + H% + H&.

#1$

Here H% describes the coupling of the cavity to the con-
tinuum which produces the cavity decay rate %="r /Q, while
H& describes the coupling of the atom to modes other than
the cavity mode which cause the excited state to decay at rate
& (and possibly also produce additional dephasing effects).
An additional important parameter in the atomic case is the

transit time ttransit of the atom through the cavity.
In the absence of damping, exact diagonalization of the

Jaynes-Cumming Hamiltonian yields the excited eigenstates
(dressed states) [15]

%+ ,n& = cos 'n%↓ ,n& + sin 'n%↑ ,n + 1& , #2$

%− ,n& = − sin 'n%↓ ,n& + cos 'n%↑ ,n + 1& , #3$

and ground state %↑ ,0& with corresponding eigenenergies

E ±,n = #n + 1$!"r ±
!

2
'4g2#n + 1$ + (2, #4$

E↑,0 = −
!(

2
. #5$

In these expressions,

'n =
1

2
tan−1!2g'n + 1

(
" , #6$

and ((#−"r the atom-cavity detuning.
Figure 1(b) shows the spectrum of these dressed states for

the case of zero detuning, (=0, between the atom and cavity.
In this situation, degeneracy of the pair of states with n+1
quanta is lifted by 2g'n+1 due to the atom-photon interac-
tion. In the manifold with a single excitation, Eqs. (2) and (3)
reduce to the maximally entangled atom-field states %± ,0&
= #%↑ ,1&± %↓ ,0&$ /'2. An initial state with an excited atom and
zero photons %↑ ,0& will therefore flop into a photon %↓ ,1& and
back again at the vacuum Rabi frequency g /). Since the
excitation is half atom and half photon, the decay rate of
%± ,0& is #%+&$ /2. The pair of states %± ,0& will be resolved in
a transmission experiment if the splitting 2g is larger than
this linewidth. The value of g=Ermsd /! is determined by the
transition dipole moment d and the rms zero-point electric
field of the cavity mode. Strong coupling is achieved when
g*% ,& [15].

FIG. 1. (Color online) (a) Standard representation of a cavity
quantum electrodynamic system, comprising a single mode of the

electromagnetic field in a cavity with decay rate % coupled with a
coupling strength g=Ermsd /! to a two-level system with spontane-

ous decay rate & and cavity transit time ttransit. (b) Energy spectrum
of the uncoupled (left and right) and dressed (center) atom-photon
states in the case of zero detuning. The degeneracy of the two-

dimensional manifolds of states with n−1 quanta is lifted by

2g'n+1. (c) Energy spectrum in the dispersive regime (long-
dashed lines). To second order in g, the level separation is indepen-
dent of n, but depends on the state of the atom.

TABLE I. Key rates and CQED parameters for optical [2] and microwave [3] atomic systems using 3D cavities, compared against the
proposed approach using superconducting circuits, showing the possibility for attaining the strong cavity QED limit #nRabi*1$. For the 1D
superconducting system, a full-wave #L=+$ resonator, "r /2)=10 GHz, a relatively low Q of 104, and coupling ,=Cg /C-=0.1 are assumed.
For the 3D microwave case, the number of Rabi flops is limited by the transit time. For the 1D circuit case, the intrinsic Cooper-pair box

decay rate is unknown; a conservative value equal to the current experimental upper bound &.1/ #2 /s$ is assumed.

Parameter Symbol 3D optical 3D microwave 1D circuit

Resonance or transition frequency "r /2), # /2) 350 THz 51 GHz 10 GHz

Vacuum Rabi frequency g /), g /"r 220 MHz, 3010−7 47 kHz, 1010−7 100 MHz, 5010−3

Transition dipole d /ea0 )1 10103 20104

Cavity lifetime 1/% ,Q 10 ns, 30107 1 ms, 30108 160 ns, 104

Atom lifetime 1/& 61 ns 30 ms 2 /s

Atom transit time ttransit 150 /s 100 /s 2

Critical atom number N0=2&% /g
2 6010−3 3010−6 .6010−5

Critical photon number m0=&
2 /2g2 3010−4 3010−8 .1010−6

Number of vacuum Rabi flops nRabi=2g / #%+&$ )10 )5 )102
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I. EXERCISES, CONTROL QUESTIONS

1. List three areas where the performance of quantum computing could exceed that of classical computing.

2. List the three Pauli matrices.

3. Construct a classical circuit that adds two single-bit numbers, using only the NAND gate.

4. Construct a quantum circuit that adds two single-bit numbers.
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decay rate so that we can understand their fundamental
physical origins as well as engineer improvements. Besides
!" evaluated above, there are two additional contributions to
the total damping rate !=!"+!!+!NR. Here !! is the decay
rate into photon modes other than the cavity mode and !NR is
the rate of other (possibly nonradiative) decays. Optical cavi-
ties are relatively open and !! is significant, but for 1D
microwave cavities, !! is expected to be negligible (despite
the very large transition dipole). For Rydberg atoms the two
qubit states are both highly excited levels and !NR represents
(radiative) decay out of the two-level subspace. For Cooper-
pair boxes, !NR is completely unknown at the present time,
but could have contributions from phonons, two-level sys-
tems in insulating [20] barriers and substrates, or thermally
excited quasiparticles.
For Cooper box qubits not inside a cavity, recent experi-

ments [18] have determined a relaxation time 1/!=T1
!1.3 #s despite the backaction of continuous measurement
by a SET electrometer. Vion et al. [17] found T1!1.84 #s
(without measurement backaction) for their charge-phase qu-
bit. Thus, in these experiments, if there are nonradiative de-
cay channels, they are at most comparable to the vacuum
radiative decay rate (and may well be much less) estimated
using Eq. (18). Experiments with a cavity will present the
qubit with a simple and well-controlled electromagnetic en-
vironment, in which the radiative lifetime can be enhanced
with detuning to 1/!"$64 #s, allowing !NR to dominate
and yielding valuable information about any nonradiative
processes.

VI. DISPERSIVE QND READOUT OF QUBITS

In addition to lifetime enhancement, the dispersive regime
is advantageous for readout of the qubit. This can be realized
by microwave irradiation of the cavity and then probing the
transmitted or reflected photons [26].

A. Measurement protocol

A drive of frequency %#w on the resonator can be mod-
eled by [15]

H#w"t# = &'"t#"a†e−i%#wt + ae+i%#wt# , "20#

where '"t# is a measure of the drive amplitude. In the dis-
persive limit, one expects from Fig. 1(c) peaks in the trans-
mission spectrum at %r−g

2 /( and )+2g2 /( if the qubit is
initially in its ground state. In a frame rotating at the drive
frequency, the matrix elements for these transitions are, re-
spectively,

$↑ ,0%H#w%− ,n& ! ' ,

$↑ ,0%H#w%+ ,n& !
'g

(
. "21#

In the large detuning case, the peak at )+2g2 /(, corre-
sponding approximatively to a qubit flip, is highly sup-
pressed.
The matrix element corresponding to a qubit flip from the

excited state is also suppressed and, as shown in Fig. 5,

depending on the qubit being in its ground or excited states,
the transmission spectrum will present a peak of width " at
%r−g

2 /( or %r+g
2 /(. With the parameters of Table I, this

dispersive pull of the cavity frequency is ±g2 /"(= ±2.5 line-
widths for a 10% detuning. Exact diagonalization (4) shows
that the pull is power dependent and decreases in magnitude
for cavity photon numbers on the scale n=ncrit'(2 /4g2. In
the regime of nonlinear response, single-atom optical bista-
bility [14] can be expected when the drive frequency is off
resonance at low power but on resonance at high power [29].
The state-dependent pull of the cavity frequency by the

qubit can be used to entangle the state of the qubit with that
of the photons transmitted or reflected by the resonator. For
g2 /"($1, as in Fig. 5, the pull is greater than the linewidth,
and irradiating the cavity at one of the pulled frequencies
%r±g

2 /(, the transmission of the cavity will be close to
unity for one state of the qubit and close to zero for the other
[30].
Choosing the drive to be instead at the bare cavity fre-

quency %r, the state of the qubit is encoded in the phase of
the reflected and transmitted microwaves. An initial qubit
state %*&=+%↑ &+,%↓ & evolves under microwave irradiation
into the entangled state %-&=+%↑ ,.&+,%↓ ,−.&, where tan .
=2g2 /"( and %±.& are (interaction representation) coherent
states with the appropriate mean photon number and oppo-
site phases. In the situation where g2 /"(/1, this is the most
appropriate strategy.
It is interesting to note that such an entangled state can be

used to couple qubits in distant resonators and allow quan-
tum communication [31]. Moreover, if an independent mea-
surement of the qubit state can be made, such states can be
turned into photon Schrödinger cats [15].
To characterize these two measurement schemes corre-

sponding to two different choices of the drive frequency, we
compute the average photon number inside the resonator n̄
and the homodyne voltage on the 50) impedance at the
output of the resonator. Since the power coupled to the out-
side of the resonator is P= $n&&%r" /2= $Vout&2 /R, the homo-
dyne voltage can be expressed as $Vout&=(R&%r"$a+a†& /2
and is proportional to the real part of the field inside the
cavity.

FIG. 5. (Color online) Transmission spectrum of the cavity,

which is “pulled” by an amount ±g2 /(= ±2.5%r010
−4, depending

on the state of the qubit (red for the excited state, blue for the
ground state). To perform a measurement of the qubit, a pulse of

microwave photons, at a probe frequency %#w=%r or %r±g
2 /(, is

sent through the cavity. Additional peaks near ) corresponding to

qubit flips are suppressed by g /(.
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`Dispersive qubit readout’ in circuit QED

H = !"r!a†a + 1
2
" + !#

2
$z + !g#a†$− + $+a$ + H% + H&.

#1$

Here H% describes the coupling of the cavity to the con-
tinuum which produces the cavity decay rate %="r /Q, while
H& describes the coupling of the atom to modes other than
the cavity mode which cause the excited state to decay at rate
& (and possibly also produce additional dephasing effects).
An additional important parameter in the atomic case is the

transit time ttransit of the atom through the cavity.
In the absence of damping, exact diagonalization of the

Jaynes-Cumming Hamiltonian yields the excited eigenstates
(dressed states) [15]

%+ ,n& = cos 'n%↓ ,n& + sin 'n%↑ ,n + 1& , #2$

%− ,n& = − sin 'n%↓ ,n& + cos 'n%↑ ,n + 1& , #3$

and ground state %↑ ,0& with corresponding eigenenergies

E ±,n = #n + 1$!"r ±
!

2
'4g2#n + 1$ + (2, #4$

E↑,0 = −
!(

2
. #5$

In these expressions,

'n =
1

2
tan−1!2g'n + 1

(
" , #6$

and ((#−"r the atom-cavity detuning.
Figure 1(b) shows the spectrum of these dressed states for

the case of zero detuning, (=0, between the atom and cavity.
In this situation, degeneracy of the pair of states with n+1
quanta is lifted by 2g'n+1 due to the atom-photon interac-
tion. In the manifold with a single excitation, Eqs. (2) and (3)
reduce to the maximally entangled atom-field states %± ,0&
= #%↑ ,1&± %↓ ,0&$ /'2. An initial state with an excited atom and
zero photons %↑ ,0& will therefore flop into a photon %↓ ,1& and
back again at the vacuum Rabi frequency g /). Since the
excitation is half atom and half photon, the decay rate of
%± ,0& is #%+&$ /2. The pair of states %± ,0& will be resolved in
a transmission experiment if the splitting 2g is larger than
this linewidth. The value of g=Ermsd /! is determined by the
transition dipole moment d and the rms zero-point electric
field of the cavity mode. Strong coupling is achieved when
g*% ,& [15].

FIG. 1. (Color online) (a) Standard representation of a cavity
quantum electrodynamic system, comprising a single mode of the

electromagnetic field in a cavity with decay rate % coupled with a
coupling strength g=Ermsd /! to a two-level system with spontane-

ous decay rate & and cavity transit time ttransit. (b) Energy spectrum
of the uncoupled (left and right) and dressed (center) atom-photon
states in the case of zero detuning. The degeneracy of the two-

dimensional manifolds of states with n−1 quanta is lifted by

2g'n+1. (c) Energy spectrum in the dispersive regime (long-
dashed lines). To second order in g, the level separation is indepen-
dent of n, but depends on the state of the atom.

TABLE I. Key rates and CQED parameters for optical [2] and microwave [3] atomic systems using 3D cavities, compared against the
proposed approach using superconducting circuits, showing the possibility for attaining the strong cavity QED limit #nRabi*1$. For the 1D
superconducting system, a full-wave #L=+$ resonator, "r /2)=10 GHz, a relatively low Q of 104, and coupling ,=Cg /C-=0.1 are assumed.
For the 3D microwave case, the number of Rabi flops is limited by the transit time. For the 1D circuit case, the intrinsic Cooper-pair box

decay rate is unknown; a conservative value equal to the current experimental upper bound &.1/ #2 /s$ is assumed.

Parameter Symbol 3D optical 3D microwave 1D circuit

Resonance or transition frequency "r /2), # /2) 350 THz 51 GHz 10 GHz

Vacuum Rabi frequency g /), g /"r 220 MHz, 3010−7 47 kHz, 1010−7 100 MHz, 5010−3

Transition dipole d /ea0 )1 10103 20104

Cavity lifetime 1/% ,Q 10 ns, 30107 1 ms, 30108 160 ns, 104

Atom lifetime 1/& 61 ns 30 ms 2 /s

Atom transit time ttransit 150 /s 100 /s 2

Critical atom number N0=2&% /g
2 6010−3 3010−6 .6010−5

Critical photon number m0=&
2 /2g2 3010−4 3010−8 .1010−6

Number of vacuum Rabi flops nRabi=2g / #%+&$ )10 )5 )102
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In the dispersive regime, the qubit can be read out by probing the oscillator.

drive frequency 
of oscillator

amplitude of 
oscillator

H = !"r!a†a + 1
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$z + !g#a†$− + $+a$ + H% + H&.

#1$

Here H% describes the coupling of the cavity to the con-
tinuum which produces the cavity decay rate %="r /Q, while
H& describes the coupling of the atom to modes other than
the cavity mode which cause the excited state to decay at rate
& (and possibly also produce additional dephasing effects).
An additional important parameter in the atomic case is the

transit time ttransit of the atom through the cavity.
In the absence of damping, exact diagonalization of the

Jaynes-Cumming Hamiltonian yields the excited eigenstates
(dressed states) [15]

%+ ,n& = cos 'n%↓ ,n& + sin 'n%↑ ,n + 1& , #2$
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and ((#−"r the atom-cavity detuning.
Figure 1(b) shows the spectrum of these dressed states for

the case of zero detuning, (=0, between the atom and cavity.
In this situation, degeneracy of the pair of states with n+1
quanta is lifted by 2g'n+1 due to the atom-photon interac-
tion. In the manifold with a single excitation, Eqs. (2) and (3)
reduce to the maximally entangled atom-field states %± ,0&
= #%↑ ,1&± %↓ ,0&$ /'2. An initial state with an excited atom and
zero photons %↑ ,0& will therefore flop into a photon %↓ ,1& and
back again at the vacuum Rabi frequency g /). Since the
excitation is half atom and half photon, the decay rate of
%± ,0& is #%+&$ /2. The pair of states %± ,0& will be resolved in
a transmission experiment if the splitting 2g is larger than
this linewidth. The value of g=Ermsd /! is determined by the
transition dipole moment d and the rms zero-point electric
field of the cavity mode. Strong coupling is achieved when
g*% ,& [15].

FIG. 1. (Color online) (a) Standard representation of a cavity
quantum electrodynamic system, comprising a single mode of the

electromagnetic field in a cavity with decay rate % coupled with a
coupling strength g=Ermsd /! to a two-level system with spontane-

ous decay rate & and cavity transit time ttransit. (b) Energy spectrum
of the uncoupled (left and right) and dressed (center) atom-photon
states in the case of zero detuning. The degeneracy of the two-

dimensional manifolds of states with n−1 quanta is lifted by

2g'n+1. (c) Energy spectrum in the dispersive regime (long-
dashed lines). To second order in g, the level separation is indepen-
dent of n, but depends on the state of the atom.

TABLE I. Key rates and CQED parameters for optical [2] and microwave [3] atomic systems using 3D cavities, compared against the
proposed approach using superconducting circuits, showing the possibility for attaining the strong cavity QED limit #nRabi*1$. For the 1D
superconducting system, a full-wave #L=+$ resonator, "r /2)=10 GHz, a relatively low Q of 104, and coupling ,=Cg /C-=0.1 are assumed.
For the 3D microwave case, the number of Rabi flops is limited by the transit time. For the 1D circuit case, the intrinsic Cooper-pair box

decay rate is unknown; a conservative value equal to the current experimental upper bound &.1/ #2 /s$ is assumed.

Parameter Symbol 3D optical 3D microwave 1D circuit

Resonance or transition frequency "r /2), # /2) 350 THz 51 GHz 10 GHz

Vacuum Rabi frequency g /), g /"r 220 MHz, 3010−7 47 kHz, 1010−7 100 MHz, 5010−3

Transition dipole d /ea0 )1 10103 20104

Cavity lifetime 1/% ,Q 10 ns, 30107 1 ms, 30108 160 ns, 104

Atom lifetime 1/& 61 ns 30 ms 2 /s

Atom transit time ttransit 150 /s 100 /s 2

Critical atom number N0=2&% /g
2 6010−3 3010−6 .6010−5

Critical photon number m0=&
2 /2g2 3010−4 3010−8 .1010−6
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I. EXERCISES, CONTROL QUESTIONS

1. List three areas where the performance of quantum computing could exceed that of classical computing.

2. List the three Pauli matrices.

3. Construct a classical circuit that adds two single-bit numbers, using only the NAND gate.

4. Construct a quantum circuit that adds two single-bit numbers.
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For large detuning, g /!"1, expansion of Eq. (4) yields
the dispersive spectrum shown in Fig. 1(c). In this situation,
the eigenstates of the one excitation manifold take the form
[15]

!− ,0" # − $g/!%!↓ ,0" + !↑ ,1" , $7%

!+ ,0" # !↓ ,0" + $g/!%!↑ ,1" . $8%

The corresponding decay rates are then simply given by

#− ,0 & $g/!%2$ + % , $9%

#+ ,0 & $ + $g/!%2% . $10%

More insight into the dispersive regime is gained by mak-
ing the unitary transformation

U = exp' g
!

$a&+ − a†&−%( $11%

and expanding to second order in g (neglecting damping for
the moment) to obtain

UHU† ) ''(r + g2! &z(a†a + '2') + g2! (&z. $12%

As is clear from this expression, the atom transition is ac
Stark/Lamb shifted by $g2 /!%$n+1/2%. Alternatively, one
can interpret the ac Stark shift as a dispersive shift of the
cavity transition by &zg2 /!. In other words, the atom pulls
the cavity frequency by ±g2 /%!.

III. CIRCUIT IMPLEMENTATION OF CAVITY QED

We now consider the proposed realization of cavity QED
using the superconducing circuits shown in Fig. 2. A 1D
transmission line resonator consisting of a full-wave section
of superconducting coplanar waveguide plays the role of the
cavity and a superconducting qubit plays the role of the
atom. A number of superconducting quantum circuits could
function as artificial atom, but for definiteness we focus here
on the Cooper-pair box [6,16–18].

A. Cavity: Coplanar stripline resonator

An important advantage of this approach is that the zero-
point energy is distributed over a very small effective volume
()10−5 cubic wavelengths) for our choice of a quasi-one-
dimensional transmission line “cavity.” As shown in Appen-
dix A, this leads to significant rms voltages Vrms

0 #*'(r /cL
between the center conductor and the adjacent ground plane
at the antinodal positions, where L is the resonator length and
c is the capacitance per unit length of the transmission line.
At a resonant frequency of 10 GHz $h* /kB#0.5 K% and for
a 10 +m gap between the center conductor and the adjacent
ground plane, Vrms#2 +V corresponding to electric fields
Erms#0.2 V/m, some 100 times larger than achieved in the
3D cavity described in Ref. [3]. Thus, this geometry might
also be useful for coupling to Rydberg atoms [19].

In addition to the small effective volume and the fact that
the on-chip realization of CQED shown in Fig. 2 can be
fabricated with existing lithographic techniques, a
transmission-line resonator geometry offers other practical
advantages over lumped LC circuits or current-biased large
Josephson junctions. The qubit can be placed within the cav-
ity formed by the transmission line to strongly suppress the
spontaneous emission, in contrast to a lumped LC circuit,
where without additional special filtering, radiation and para-
sitic resonances may be induced in the wiring [20]. Since the
resonant frequency of the transmission line is determined
primarily by a fixed geometry, its reproducibility and immu-
nity to 1/ f noise should be superior to Josephson junction
plasma oscillators. Finally, transmission-line resonances in
coplanar waveguides with Q#106 have already been dem-
onstrated [21,22], suggesting that the internal losses can be
very low. The optimal choice of the resonator Q in this ap-
proach is strongly dependent on the intrinsic decay rates of
superconducting qubits which, as described below, are pres-
ently unknown, but can be determined with the setup pro-
posed here. Here we assume the conservative case of an
overcoupled resonator with a Q#104, which is preferable for
the first experiments.

B. Artificial atom: The Cooper-pair box

Our choice of “atom,” the Cooper-pair box [6,16], is a
mesoscopic superconducting island. As shown in Fig. 3, the

FIG. 2. (Color online). Schematic layout and equivalent lumped
circuit representation of proposed implementation of cavity QED

using superconducting circuits. The 1D transmission line resonator

consists of a full-wave section of superconducting coplanar wave-

guide, which may be lithographically fabricated using conventional

optical lithography. A Cooper-pair box qubit is placed between the

superconducting lines and is capacitively coupled to the center trace

at a maximum of the voltage standing wave, yielding a strong elec-

tric dipole interaction between the qubit and a single photon in the

cavity. The box consists of two small $#100 nm,100 nm% Joseph-
son junctions, configured in a #1 +m loop to permit tuning of the

effective Josephson energy by an external flux -ext. Input and out-
put signals are coupled to the resonator, via the capacitive gaps in

the center line, from 50) transmission lines which allow measure-

ments of the amplitude and phase of the cavity transmission, and

the introduction of dc and rf pulses to manipulate the qubit states.

Multiple qubits (not shown) can be similarly placed at different
antinodes of the standing wave to generate entanglement and two-

bit quantum gates across distances of several millimeters.
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An alternative way to derive the `dispersive cavity shift’

H = !"r!a†a + 1
2
" + !#

2
$z + !g#a†$− + $+a$ + H% + H&.

#1$

Here H% describes the coupling of the cavity to the con-
tinuum which produces the cavity decay rate %="r /Q, while
H& describes the coupling of the atom to modes other than
the cavity mode which cause the excited state to decay at rate
& (and possibly also produce additional dephasing effects).
An additional important parameter in the atomic case is the

transit time ttransit of the atom through the cavity.
In the absence of damping, exact diagonalization of the

Jaynes-Cumming Hamiltonian yields the excited eigenstates
(dressed states) [15]

%+ ,n& = cos 'n%↓ ,n& + sin 'n%↑ ,n + 1& , #2$

%− ,n& = − sin 'n%↓ ,n& + cos 'n%↑ ,n + 1& , #3$

and ground state %↑ ,0& with corresponding eigenenergies

E ±,n = #n + 1$!"r ±
!

2
'4g2#n + 1$ + (2, #4$

E↑,0 = −
!(

2
. #5$

In these expressions,

'n =
1

2
tan−1!2g'n + 1

(
" , #6$

and ((#−"r the atom-cavity detuning.
Figure 1(b) shows the spectrum of these dressed states for

the case of zero detuning, (=0, between the atom and cavity.
In this situation, degeneracy of the pair of states with n+1
quanta is lifted by 2g'n+1 due to the atom-photon interac-
tion. In the manifold with a single excitation, Eqs. (2) and (3)
reduce to the maximally entangled atom-field states %± ,0&
= #%↑ ,1&± %↓ ,0&$ /'2. An initial state with an excited atom and
zero photons %↑ ,0& will therefore flop into a photon %↓ ,1& and
back again at the vacuum Rabi frequency g /). Since the
excitation is half atom and half photon, the decay rate of
%± ,0& is #%+&$ /2. The pair of states %± ,0& will be resolved in
a transmission experiment if the splitting 2g is larger than
this linewidth. The value of g=Ermsd /! is determined by the
transition dipole moment d and the rms zero-point electric
field of the cavity mode. Strong coupling is achieved when
g*% ,& [15].

FIG. 1. (Color online) (a) Standard representation of a cavity
quantum electrodynamic system, comprising a single mode of the

electromagnetic field in a cavity with decay rate % coupled with a
coupling strength g=Ermsd /! to a two-level system with spontane-

ous decay rate & and cavity transit time ttransit. (b) Energy spectrum
of the uncoupled (left and right) and dressed (center) atom-photon
states in the case of zero detuning. The degeneracy of the two-

dimensional manifolds of states with n−1 quanta is lifted by

2g'n+1. (c) Energy spectrum in the dispersive regime (long-
dashed lines). To second order in g, the level separation is indepen-
dent of n, but depends on the state of the atom.

TABLE I. Key rates and CQED parameters for optical [2] and microwave [3] atomic systems using 3D cavities, compared against the
proposed approach using superconducting circuits, showing the possibility for attaining the strong cavity QED limit #nRabi*1$. For the 1D
superconducting system, a full-wave #L=+$ resonator, "r /2)=10 GHz, a relatively low Q of 104, and coupling ,=Cg /C-=0.1 are assumed.
For the 3D microwave case, the number of Rabi flops is limited by the transit time. For the 1D circuit case, the intrinsic Cooper-pair box

decay rate is unknown; a conservative value equal to the current experimental upper bound &.1/ #2 /s$ is assumed.

Parameter Symbol 3D optical 3D microwave 1D circuit

Resonance or transition frequency "r /2), # /2) 350 THz 51 GHz 10 GHz

Vacuum Rabi frequency g /), g /"r 220 MHz, 3010−7 47 kHz, 1010−7 100 MHz, 5010−3

Transition dipole d /ea0 )1 10103 20104

Cavity lifetime 1/% ,Q 10 ns, 30107 1 ms, 30108 160 ns, 104

Atom lifetime 1/& 61 ns 30 ms 2 /s

Atom transit time ttransit 150 /s 100 /s 2

Critical atom number N0=2&% /g
2 6010−3 3010−6 .6010−5

Critical photon number m0=&
2 /2g2 3010−4 3010−8 .1010−6

Number of vacuum Rabi flops nRabi=2g / #%+&$ )10 )5 )102
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• do a `small’ unitary transformation:

• expand the result up to second order in g:

qubit-state-dependent cavity eigenfrequency

• start from Jaynes-Cummings Hamiltonian:



A sqrt-of-iSWAP gate in circuit QED

of frequency are sufficient to realize any one-qubit logical
operation.
Assuming that we can take full advantage of lifetime en-

hancement inside the cavity (i.e., that !=!"), the number of
# rotations about the x axis which can be carried out is N#
=2$% /#g"!105$ for the experimental parameters assumed
in Table I. For large $, the choice of drive frequency must
take into account the power dependence of the cavity fre-
quency pulling.
Numerical simulation shown in Fig. 9 confirms this

simple picture and that single-bit rotations can be performed
with very high fidelity. It is interesting to note that since
detuning between the resonator and the drive is large, the
cavity is only virtually populated, with an average photon

number n̄"$2 /%2!0.1. Virtual population and depopulation
of the cavity can be realized much faster than the cavity
lifetime 1/" and, as a result, the qubit feels the effect of the
drive rapidly after the drive has been turned on. The limit on
the speed of turn on and off of the drive is set by the detun-
ing %. If the drive is turned on faster than 1/%, the frequency
spread of the drive is such that part of the drive’s photons
will pick up phase information (see Fig. 8) and dephase the
qubit. As a result, for large detuning, this approach leads to a
fast and accurate way to coherently control the state of the
qubit.
To model the effect of the drive on the resonator an alter-

native model is to use the cavity-modified Maxwell-Bloch
equations [25]. As expected, numerical integration of the
Maxwell-Bloch equations reproduce very well the stochastic
numerical results when the drive is at the qubit’s frequency
but do not reproduce these numerical results when the drive
is close to the bare resonator frequency (Figs. 6 and 7)—i.e.,
when entanglement between the qubit and photons cannot be
neglected.

VIII. RESONATOR AS QUANTUM BUS: ENTANGLEMENT

OF MULTIPLE QUBITS

The transmission-line resonator has the advantage that it
should be possible to place multiple qubits along its length
#!1 cm$ and entangle them together, which is an essential

requirement for quantum computation. For the case of two
qubits, they can be placed closer to the ends of the resonator
but still well isolated from the environment and can be sepa-
rately dc biased by capacitive coupling to the left and right
center conductors of the transmission line. Additional qubits
would have to have separate gate bias lines installed.
For the pair of qubits labeled i and j, both coupled with

strength g to the cavity and detuned from the resonator but in
resonance with each other, the transformation (11) yields the
effective two-qubit Hamiltonian [3,38,39]

H2q " &%'r + g2% #(i
z + ( j

z$&a†a + 1
2
&%) + g2

%
&#(i

z + ( j
z$

+ &
g2

%
#(i
+( j

− + (i
−( j

+$ . #32$

In addition to ac Stark and Lamb shifts, the last term couples
the qubits through virtual excitations of the resonator.
In a frame rotating at the qubit’s frequency ), H2q gen-

erates the evolution

U2q#t$ = exp%− ig2% t'a†a + 12(#(i
z + ( j

z$&

*)
1

cos
g2

%
t i sin

g2

%
t

i sin
g2

%
t cos

g2

%
t

1

* ! 1r, #33$

where 1r is the identity operator in resonator space. Up to

FIG. 8. (Color online) Phase shift of the cavity field for the two
states of the qubit as a function of detuning between the driving and

resonator frequencies. Obtained from the steady-state solution of

the equation of motion for a#t$ while only taking into account
damping on the cavity and using the parameters of Table I. Readout

of the qubit is realized at, or close to, zero detuning between the

drive and resonator frequencies where the dependence of the phase

shift on the qubit state is largest. Coherent manipulations of the

qubit are realized close to the qubit frequency which is 10% de-

tuned from the cavity (not shown on this scale). At such large de-
tunings, there is little dependence of the phase shift on the qubit’s

state.

FIG. 9. (Color online) Numerical stochastic wave function
simulation showing coherent control of a qubit by microwave irra-

diation of the cavity at the ac Stark- and Lamb-shifted qubit fre-

quency. The qubit (red line) is first left to evolve freely for about
40 ns. The drive is turned on for t=7#% /2g$!115 ns, correspond-
ing to 7# pulses, and then turned off. Since the drive is tuned far
away from the cavity, the cavity photon number (black line) is small
even for the moderately large drive amplitude $=0.03 'r used here.
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• Setup: two qubits (i and j) interacting with the same oscillator

• Do the unitary transformation + expansion from the last slide
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qubit-qubit interaction: 
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`virtual photon exchange’
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of frequency are sufficient to realize any one-qubit logical
operation.
Assuming that we can take full advantage of lifetime en-

hancement inside the cavity (i.e., that !=!"), the number of
# rotations about the x axis which can be carried out is N#
=2$% /#g"!105$ for the experimental parameters assumed
in Table I. For large $, the choice of drive frequency must
take into account the power dependence of the cavity fre-
quency pulling.
Numerical simulation shown in Fig. 9 confirms this

simple picture and that single-bit rotations can be performed
with very high fidelity. It is interesting to note that since
detuning between the resonator and the drive is large, the
cavity is only virtually populated, with an average photon

number n̄"$2 /%2!0.1. Virtual population and depopulation
of the cavity can be realized much faster than the cavity
lifetime 1/" and, as a result, the qubit feels the effect of the
drive rapidly after the drive has been turned on. The limit on
the speed of turn on and off of the drive is set by the detun-
ing %. If the drive is turned on faster than 1/%, the frequency
spread of the drive is such that part of the drive’s photons
will pick up phase information (see Fig. 8) and dephase the
qubit. As a result, for large detuning, this approach leads to a
fast and accurate way to coherently control the state of the
qubit.
To model the effect of the drive on the resonator an alter-

native model is to use the cavity-modified Maxwell-Bloch
equations [25]. As expected, numerical integration of the
Maxwell-Bloch equations reproduce very well the stochastic
numerical results when the drive is at the qubit’s frequency
but do not reproduce these numerical results when the drive
is close to the bare resonator frequency (Figs. 6 and 7)—i.e.,
when entanglement between the qubit and photons cannot be
neglected.
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OF MULTIPLE QUBITS

The transmission-line resonator has the advantage that it
should be possible to place multiple qubits along its length
#!1 cm$ and entangle them together, which is an essential

requirement for quantum computation. For the case of two
qubits, they can be placed closer to the ends of the resonator
but still well isolated from the environment and can be sepa-
rately dc biased by capacitive coupling to the left and right
center conductors of the transmission line. Additional qubits
would have to have separate gate bias lines installed.
For the pair of qubits labeled i and j, both coupled with

strength g to the cavity and detuned from the resonator but in
resonance with each other, the transformation (11) yields the
effective two-qubit Hamiltonian [3,38,39]
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In addition to ac Stark and Lamb shifts, the last term couples
the qubits through virtual excitations of the resonator.
In a frame rotating at the qubit’s frequency ), H2q gen-

erates the evolution

U2q#t$ = exp%− ig2% t'a†a + 12(#(i
z + ( j

z$&

*)
1

cos
g2

%
t i sin

g2

%
t

i sin
g2

%
t cos

g2

%
t

1

* ! 1r, #33$

where 1r is the identity operator in resonator space. Up to

FIG. 8. (Color online) Phase shift of the cavity field for the two
states of the qubit as a function of detuning between the driving and

resonator frequencies. Obtained from the steady-state solution of

the equation of motion for a#t$ while only taking into account
damping on the cavity and using the parameters of Table I. Readout

of the qubit is realized at, or close to, zero detuning between the

drive and resonator frequencies where the dependence of the phase

shift on the qubit state is largest. Coherent manipulations of the

qubit are realized close to the qubit frequency which is 10% de-

tuned from the cavity (not shown on this scale). At such large de-
tunings, there is little dependence of the phase shift on the qubit’s

state.

FIG. 9. (Color online) Numerical stochastic wave function
simulation showing coherent control of a qubit by microwave irra-

diation of the cavity at the ac Stark- and Lamb-shifted qubit fre-

quency. The qubit (red line) is first left to evolve freely for about
40 ns. The drive is turned on for t=7#% /2g$!115 ns, correspond-
ing to 7# pulses, and then turned off. Since the drive is tuned far
away from the cavity, the cavity photon number (black line) is small
even for the moderately large drive amplitude $=0.03 'r used here.
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of frequency are sufficient to realize any one-qubit logical
operation.
Assuming that we can take full advantage of lifetime en-

hancement inside the cavity (i.e., that !=!"), the number of
# rotations about the x axis which can be carried out is N#
=2$% /#g"!105$ for the experimental parameters assumed
in Table I. For large $, the choice of drive frequency must
take into account the power dependence of the cavity fre-
quency pulling.
Numerical simulation shown in Fig. 9 confirms this

simple picture and that single-bit rotations can be performed
with very high fidelity. It is interesting to note that since
detuning between the resonator and the drive is large, the
cavity is only virtually populated, with an average photon

number n̄"$2 /%2!0.1. Virtual population and depopulation
of the cavity can be realized much faster than the cavity
lifetime 1/" and, as a result, the qubit feels the effect of the
drive rapidly after the drive has been turned on. The limit on
the speed of turn on and off of the drive is set by the detun-
ing %. If the drive is turned on faster than 1/%, the frequency
spread of the drive is such that part of the drive’s photons
will pick up phase information (see Fig. 8) and dephase the
qubit. As a result, for large detuning, this approach leads to a
fast and accurate way to coherently control the state of the
qubit.
To model the effect of the drive on the resonator an alter-
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would have to have separate gate bias lines installed.
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Up to phase factors, this corresponds at t = ⇡�/4g2 to a
p
iSWAP operation.

I. EXERCISES, CONTROL QUESTIONS

1. List three areas where the performance of quantum computing could exceed that of classical computing.

2. List the three Pauli matrices.

3. Construct a classical circuit that adds two single-bit numbers, using only the NAND gate.

4. Construct a quantum circuit that adds two single-bit numbers.
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tokat. A fájl hétről-hétre frissülni fog az adott hét feladataival. A zárthelyiken ehhez hasonló feladatok várhatók.
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of frequency are sufficient to realize any one-qubit logical
operation.
Assuming that we can take full advantage of lifetime en-

hancement inside the cavity (i.e., that !=!"), the number of
# rotations about the x axis which can be carried out is N#
=2$% /#g"!105$ for the experimental parameters assumed
in Table I. For large $, the choice of drive frequency must
take into account the power dependence of the cavity fre-
quency pulling.
Numerical simulation shown in Fig. 9 confirms this

simple picture and that single-bit rotations can be performed
with very high fidelity. It is interesting to note that since
detuning between the resonator and the drive is large, the
cavity is only virtually populated, with an average photon

number n̄"$2 /%2!0.1. Virtual population and depopulation
of the cavity can be realized much faster than the cavity
lifetime 1/" and, as a result, the qubit feels the effect of the
drive rapidly after the drive has been turned on. The limit on
the speed of turn on and off of the drive is set by the detun-
ing %. If the drive is turned on faster than 1/%, the frequency
spread of the drive is such that part of the drive’s photons
will pick up phase information (see Fig. 8) and dephase the
qubit. As a result, for large detuning, this approach leads to a
fast and accurate way to coherently control the state of the
qubit.
To model the effect of the drive on the resonator an alter-

native model is to use the cavity-modified Maxwell-Bloch
equations [25]. As expected, numerical integration of the
Maxwell-Bloch equations reproduce very well the stochastic
numerical results when the drive is at the qubit’s frequency
but do not reproduce these numerical results when the drive
is close to the bare resonator frequency (Figs. 6 and 7)—i.e.,
when entanglement between the qubit and photons cannot be
neglected.
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OF MULTIPLE QUBITS

The transmission-line resonator has the advantage that it
should be possible to place multiple qubits along its length
#!1 cm$ and entangle them together, which is an essential

requirement for quantum computation. For the case of two
qubits, they can be placed closer to the ends of the resonator
but still well isolated from the environment and can be sepa-
rately dc biased by capacitive coupling to the left and right
center conductors of the transmission line. Additional qubits
would have to have separate gate bias lines installed.
For the pair of qubits labeled i and j, both coupled with

strength g to the cavity and detuned from the resonator but in
resonance with each other, the transformation (11) yields the
effective two-qubit Hamiltonian [3,38,39]
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resonator frequencies. Obtained from the steady-state solution of

the equation of motion for a#t$ while only taking into account
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of the qubit is realized at, or close to, zero detuning between the

drive and resonator frequencies where the dependence of the phase

shift on the qubit state is largest. Coherent manipulations of the

qubit are realized close to the qubit frequency which is 10% de-

tuned from the cavity (not shown on this scale). At such large de-
tunings, there is little dependence of the phase shift on the qubit’s

state.

FIG. 9. (Color online) Numerical stochastic wave function
simulation showing coherent control of a qubit by microwave irra-

diation of the cavity at the ac Stark- and Lamb-shifted qubit fre-

quency. The qubit (red line) is first left to evolve freely for about
40 ns. The drive is turned on for t=7#% /2g$!115 ns, correspond-
ing to 7# pulses, and then turned off. Since the drive is tuned far
away from the cavity, the cavity photon number (black line) is small
even for the moderately large drive amplitude $=0.03 'r used here.
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qubit-qubit interaction: always On

• the effect of the qubit-qubit interaction on dynamics is suppressed at 
`large qubit-qubit detuning’, that is, if:
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• the sqrt-of-iSWAP gate can be turned Off by detuning the two qubits 
from each other



Summary of key results

1. spin resonance => single-qubit gates 
2. Hubbard model and exchange interaction => two-qubit sqrt-of-swap 
3. qubit readout with a dispersively coupled oscillator 
4. two-qubit sqrt-of-iswap via virtual photon exchange


