„Interferencia és dekoherencia nanoszerkezetekben” változatai közötti eltérés
(→Fáziskoherencia-hossz) |
|||
33. sor: | 33. sor: | ||
Ha egy elektronhullámot egy adott pontban szétválasztunk, és feltételezzük, hogy a két parciális hullám két különböző trajektórián keresztül jut el egy másik pontba, ahol újra egyesülnek (3. ábra), akkor ebben a pontban a hullám intenzitását | Ha egy elektronhullámot egy adott pontban szétválasztunk, és feltételezzük, hogy a két parciális hullám két különböző trajektórián keresztül jut el egy másik pontba, ahol újra egyesülnek (3. ábra), akkor ebben a pontban a hullám intenzitását | ||
$$ | $$ | ||
− | T=\left| t_1 \right|^2 + \left| t_2 \right|^2 + 2\left| t_1t_2 \right| \exp\left(-\tau_L/tau_\phi \right) | + | T=\left| t_1 \right|^2 + \left| t_2 \right|^2 + 2\left| t_1t_2 \right| \exp\left(-\tau_L/\tau_\phi \right), |
$$ | $$ | ||
+ | Ahol $t_1$ és $t_2$ az egyik illetve a másik trajektóriához tartozó komplex amplitúdó, $\tau_L$ pedig az egyik pontból a másik pontba történő eljutáshoz szükséges karakterisztikus idő. | ||
{| cellpadding="5" cellspacing="0" align="center" | {| cellpadding="5" cellspacing="0" align="center" | ||
42. sor: | 43. sor: | ||
| align="center"|1. ábra. | | align="center"|1. ábra. | ||
|} | |} | ||
− | |||
+ | A két trajektória mentén az elektronok szóródásokat szenvednek. Rugalmas (pl. rácshibákon, szennyezőkön, történő) szóródás esetén egy időben konstans fázistolás lép fel, de ez nem befolyásolja az interferenciaképességet, legfeljebb azt hogy a parciális hullámok találkozásakor erősítést vagy gyengítést tapasztalunk. Ha viszont az elektronhullám az egyik trajektória mentén egy rugalmatlan szórást szenved (pl. elektron-fonon kölcsönhatás), akkor megváltozik az energiája, és így a hullámok egyesítésekor egy időben fluktuáló, kiátlagolódó interferenciaképet kapunk. A fenti képletben $\tau_\phi$ ezen, rugalmatlan szórásoknak köszönhető koherenciavesztés karakterisztikus időskáláját adja meg. Ennél az időnél lényegesen hosszabb skálán a parciális hullámok egyesítésekor egyszerűen az intenzitások adódnak össze, és a fázisviszonyoktól függő interferenciatag (a fenti képlet utolsó tagja) elvész. | ||
+ | |||
+ | Ha két rugalmatlan szórás között nem történik rugalmas szórás, azaz $\tau_\phi$ összemérhető a momentum relaxáció $\tau_m$ karakterisztikus idejével, akkor az a ''távolságskála'' melyen belül interferenciát tapasztalunk egyszerűen | ||
+ | $$ | ||
+ | l_\phi=v_F\cdot \tau_\phi, | ||
+ | $$ | ||
+ | ahol $v_F$ az elektronok Fermi-sebessége. Ha viszont két rugalmatlan ütközés között számos rugalmas ütközés történik, akkor az elektronok diffúzív trajektóriák mentén mozognak. Ebben az esetben is $v_F\cdot \tau_\phi$ trajtóriahossz után vész el az interferenciakészség, azonban ezen a trajektóriahossz a diffúzív mozgás miatt térben csak | ||
+ | $$ | ||
+ | l_\phi=\sqrt{D\tau_\phi} | ||
+ | $$ | ||
+ | eltávolodást eredményez a kiindulási ponttól, ahol $D$ a diffúziós állandó, mely a momentumrelaxációs időből két dimenzióban $D=v_F^2\tau_m/2$ képlettel számolható. | ||
+ | </wlatex> | ||
== Aharonov Bohm gyűrű == | == Aharonov Bohm gyűrű == |
A lap 2013. július 3., 05:32-kori változata
Tartalomjegyzék |
Interferencia-kísérletek hat nagyságrenddel kisebb skálán
A fizikában régóta ismertek az interferencia-kísérletek, melyeknek egy emblematikus példája az 1. ábrán szemléltetett kétrés kísérlet. Ha fény két közeli résen halad keresztül, a rések mögé helyezett ernyőn interferencia-képet látunk, azaz az ernyőn látható intenzitásprofil nem egyezik meg az egyik illetve a másik rés kitakarásakor kapott intenzitások összegével, hanem azon tartományokban ahova a két résen keresztül azonos fázissal érkezik a hullám erősítést, ahol pedig ellentétes (180 fokkal eltolt) fázissal, ott kioltást tapasztalunk. Természetesen ugyanez a jelenség a legkülönbözőbb közegekben megfigyelhető a vízhullámoktól a hanghullámokig.
1. ábra. |
A modern fizika fejlődésével az interferencia-kísérletek újabb értelmezést kaptak, hiszen jól demonstrálták a részecske hullám dualitást. Ha az 1. ábrán szemléltetett kísérletben nagyon kis fényintenzitást, és nagyon érzékeny ernyőt használunk, akkor először véletlenszerű felvillanásokat látunk az ernyő különböző pontjain, mely a fény részecske-természetét támasztja alá. Ha viszont sokat várunk, akkor a véletlenszerű felvillanásokból kirajzolódik a jól ismert interferencia-kép (lásd 2. ábra).
1. ábra. |
További érdekesség, hogy ha a két rés mellé detektorokat helyezünk és próbáljuk megállaítani, hogy a fényt alkotó fotonok éppen melyik résen haladnak keresztül, akkor azt tapasztaljuk, hogy minél pontosabban detektáljuk a résen áthaladó fotonokat, annál inkább elvész az interferenciakép. Azaz akár egyetlen foton is képes mindkét résen áthaladva önmagával interferálni, viszont ha megmérjük, hogy merre ment a foton, akkor az interferencia megszűnik.
Az elmúlt évtizedekben a nanofizika fejlődésének köszönhetően a kétrés kísérlethez hasonlóan izgalmas interferenciakísérleteket mintegy 6 nagyságrenddel kisebb méretskálájú nanoáramkörökben is sikerült megvalósítani, ebbe a témakörbe nyújtunk betekintést a következőkben.
Fáziskoherencia-hossz
A nanovezetékek tárgyalásánál már említettük, hogy egy nanoáramkörben akkor tapasztalhatunk interferenciajelenséget, ha annak mérete kisebb a fáziskoferencia-hossznál. Próbáljuk ezt a karakterisztikus méretskálát egy kicsit pontosabban definiálni.
Ha egy elektronhullámot egy adott pontban szétválasztunk, és feltételezzük, hogy a két parciális hullám két különböző trajektórián keresztül jut el egy másik pontba, ahol újra egyesülnek (3. ábra), akkor ebben a pontban a hullám intenzitását
Ahol és az egyik illetve a másik trajektóriához tartozó komplex amplitúdó, pedig az egyik pontból a másik pontba történő eljutáshoz szükséges karakterisztikus idő.
1. ábra. |
A két trajektória mentén az elektronok szóródásokat szenvednek. Rugalmas (pl. rácshibákon, szennyezőkön, történő) szóródás esetén egy időben konstans fázistolás lép fel, de ez nem befolyásolja az interferenciaképességet, legfeljebb azt hogy a parciális hullámok találkozásakor erősítést vagy gyengítést tapasztalunk. Ha viszont az elektronhullám az egyik trajektória mentén egy rugalmatlan szórást szenved (pl. elektron-fonon kölcsönhatás), akkor megváltozik az energiája, és így a hullámok egyesítésekor egy időben fluktuáló, kiátlagolódó interferenciaképet kapunk. A fenti képletben ezen, rugalmatlan szórásoknak köszönhető koherenciavesztés karakterisztikus időskáláját adja meg. Ennél az időnél lényegesen hosszabb skálán a parciális hullámok egyesítésekor egyszerűen az intenzitások adódnak össze, és a fázisviszonyoktól függő interferenciatag (a fenti képlet utolsó tagja) elvész.
Ha két rugalmatlan szórás között nem történik rugalmas szórás, azaz összemérhető a momentum relaxáció karakterisztikus idejével, akkor az a távolságskála melyen belül interferenciát tapasztalunk egyszerűen
ahol az elektronok Fermi-sebessége. Ha viszont két rugalmatlan ütközés között számos rugalmas ütközés történik, akkor az elektronok diffúzív trajektóriák mentén mozognak. Ebben az esetben is trajtóriahossz után vész el az interferenciakészség, azonban ezen a trajektóriahossz a diffúzív mozgás miatt térben csak
eltávolodást eredményez a kiindulási ponttól, ahol a diffúziós állandó, mely a momentumrelaxációs időből két dimenzióban képlettel számolható.
Aharonov Bohm gyűrű
1. ábra. |
Az Aharonov Bohm gyűrű két karján haladó hullámok a vektorpotenciál hatására is felvesznek fázist. A vezetőképesség a közbezárt fluxus () fluxuskvantum () szerint periodikus függvénye:
Alacsony hőméréskleten látszik az oszcilláció a mágneses tér függvényében, magasabb hőmérsékleten azonban elmosódik.
Az interferenciakép eltűnésének az okai:
- Környezet miatti dekoherencia
- Hőmérsékleti miatti fázis kiátlagolódás
1. ábra. |
Hőmérsékleti miatti koherenciavesztés
1. ábra. | 1. ábra. |
Véges hőmérsékleten a Fermi energia körüli kT tartományban különböző energiájú elektronok propagálnak. Koherens összeadás esetén is a fázisok kiátlagolódnak!
A nanoszerkezeten az elektronok átlagosan idő alatt haladnak át. Az ehhez tartozó karakterisztikus energia: Thouless energia, hőmérsékleten lesz jelentős ez a kiátlagolódás
Környezet miatti koherenciavesztés
1. ábra. |
- Alsó ágon haladó eletronhullám:
- Felső ágon haladó eletronhullám:
Teljes hullámfügvény:
Transzmissziót mérünk: (T operátor csak az elektron hullámfüggvényekre hat, a környezetre nem!)
Ha , akkor elveszik az interferencia!
- Azaz ha a felül és alul haladó parciális elektronhullám különböző nyomot hagy a környezetben, akkor nem látunk interferenciát. Erre jó példa a fonon szórás, mely a hőmérséklet növelésével egyre jelentősebb dekoherenciához vezet.
Egyszerű példa (Stern, Aharonov, Imry)
1. ábra. Vezetőképesség fluktuációk |
Az alsó ágon haladó részecske hullámfügvénye megváltozik a kölcsönhatás miatt:
- A kölcsönhatás ideje alatt felszedett fázis: .
- q bizonytalansága miatt a fázis is bizonytalan:
- Ha a fázisbizonytalanság nagy lesz, elveszik az interferencia:
Töltött részecske, mely csak az alsó ágon áthaladó elektronnal hat kölcsön (a felső ágon haladó elektronnal elhanyagolható a kölcsönhatás). Helykoordináta: , helybizonytalanság:
- Ha alul halad az elektron, a töltött részecske gyorsul az erő hatására. Kölcsönhatás ideje (t) alatt az impulzusváltozás:
- Ha az impulzus változás nagyobb az impulzus bizonytalanságnál,akkor a részecske tárolta az "útinformációt":
Ugyan az a két feltétel! Ugyanakkor veszik el az interferencia, amikor a környezet állapota megkülönbözethetővé válik alul illetve felül haladó elektron esetén!
Környezet miatti koherenciavesztés Aharonov Bohm gyűrűben
Ha a kétrés kísérletben megmondható, hogy az elektron melyik résen haladt át (nyomot hagy a környezetében) interferencia megszűnik.
Interferométer: Aharonov - Bohm elrendezés QDot-tal az egyik ágban.
„Útvonal” detektor = QDot + mellette kvantum vezeték (QPC): a Dotban lévő elektron visszaszórást okoz QPC-ben, minél több e-t szór vissza a QPC-ban, annál nagyobb nyomot hagy a környezetén.
Környezet miatti koherenciavesztés: a környezetben minnél nagyobb nyomot hagy az csökken az interferencia láthatósága csökken (láthatóság: )
- Detektor „érzékenységét” QPC-ra adott () feszültség növelésével javíthatjuk: nő, több elektront tud visszaszórni.
- A detektor érzékenységének a növelésével az interferencia láthatósága csökken!
Vezetőképesség fluktuációk
1. ábra. Vezetőképesség fluktuációk |
1. ábra. Vezetőképesség fluktuációk |
Gyenge lokalizáció
1. ábra. Vezetőképesség fluktuációk |
1. ábra. Vezetőképesség fluktuációk |
1. ábra. Vezetőképesség fluktuációk |