„Interferencia és dekoherencia nanoszerkezetekben” változatai közötti eltérés

A Fizipedia wikiből
(Aharonov Bohm gyűrű)
17. sor: 17. sor:
 
|[[Fájl:Egyfoton_interferencia.gif|közép|400px|]]
 
|[[Fájl:Egyfoton_interferencia.gif|közép|400px|]]
 
|-
 
|-
| align="center"|1. ábra.  
+
| align="center"|2. ábra.  
 
|}
 
|}
  
41. sor: 41. sor:
 
|[[Fájl:Koherencia_ido.png|közép|250px|]]
 
|[[Fájl:Koherencia_ido.png|közép|250px|]]
 
|-
 
|-
| align="center"|1. ábra.  
+
| align="center"|3. ábra.  
 
|}
 
|}
  
66. sor: 66. sor:
 
|[[Fájl:AB_gyuru.png|közép|250px|]]
 
|[[Fájl:AB_gyuru.png|közép|250px|]]
 
|-
 
|-
| align="center"|1. ábra.  
+
| align="center"|4. ábra.  
 
|}
 
|}
  

A lap 2013. július 3., 05:40-kori változata

Tartalomjegyzék

Interferencia-kísérletek hat nagyságrenddel kisebb skálán



A fizikában régóta ismertek az interferencia-kísérletek, melyeknek egy emblematikus példája az 1. ábrán szemléltetett kétrés kísérlet. Ha fény két közeli résen halad keresztül, a rések mögé helyezett ernyőn interferencia-képet látunk, azaz az ernyőn látható intenzitásprofil nem egyezik meg az egyik illetve a másik rés kitakarásakor kapott intenzitások összegével, hanem azon tartományokban ahova a két résen keresztül azonos fázissal érkezik a hullám erősítést, ahol pedig ellentétes (180 fokkal eltolt) fázissal, ott kioltást tapasztalunk. Természetesen ugyanez a jelenség a legkülönbözőbb közegekben megfigyelhető a vízhullámoktól a hanghullámokig.

Interferencia.png
1. ábra.

A modern fizika fejlődésével az interferencia-kísérletek újabb értelmezést kaptak, hiszen jól demonstrálták a részecske hullám dualitást. Ha az 1. ábrán szemléltetett kísérletben nagyon kis fényintenzitást, és nagyon érzékeny ernyőt használunk, akkor először véletlenszerű felvillanásokat látunk az ernyő különböző pontjain, mely a fény részecske-természetét támasztja alá. Ha viszont sokat várunk, akkor a véletlenszerű felvillanásokból kirajzolódik a jól ismert interferencia-kép (lásd 2. ábra).

Egyfoton interferencia.gif
2. ábra.

További érdekesség, hogy ha a két rés mellé detektorokat helyezünk és próbáljuk megállaítani, hogy a fényt alkotó fotonok éppen melyik résen haladnak keresztül, akkor azt tapasztaljuk, hogy minél pontosabban detektáljuk a résen áthaladó fotonokat, annál inkább elvész az interferenciakép. Azaz akár egyetlen foton is képes mindkét résen áthaladva önmagával interferálni, viszont ha megmérjük, hogy merre ment a foton, akkor az interferencia megszűnik.

Az elmúlt évtizedekben a nanofizika fejlődésének köszönhetően a kétrés kísérlethez hasonlóan izgalmas interferenciakísérleteket mintegy 6 nagyságrenddel kisebb méretskálájú nanoáramkörökben is sikerült megvalósítani, ebbe a témakörbe nyújtunk betekintést a következőkben.


Fáziskoherencia-hossz


A nanovezetékek tárgyalásánál már említettük, hogy egy nanoáramkörben akkor tapasztalhatunk interferenciajelenséget, ha annak mérete kisebb a fáziskoferencia-hossznál. Próbáljuk ezt a karakterisztikus méretskálát egy kicsit pontosabban definiálni.

Ha egy elektronhullámot egy adott pontban szétválasztunk, és feltételezzük, hogy a két parciális hullám két különböző trajektórián keresztül jut el egy másik pontba, ahol újra egyesülnek (3. ábra), akkor ebben a pontban a hullám intenzitását

\[ T=\left| t_1 \right|^2 + \left| t_2 \right|^2 + 2\left| t_1t_2 \right| \exp\left(-\tau_L/\tau_\phi \right),  \]

Ahol \setbox0\hbox{$t_1$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$t_2$}% \message{//depth:\the\dp0//}% \box0% az egyik illetve a másik trajektóriához tartozó komplex amplitúdó, \setbox0\hbox{$\tau_L$}% \message{//depth:\the\dp0//}% \box0% pedig az egyik pontból a másik pontba történő eljutáshoz szükséges karakterisztikus idő.

Koherencia ido.png
3. ábra.


A két trajektória mentén az elektronok szóródásokat szenvednek. Rugalmas (pl. rácshibákon, szennyezőkön, történő) szóródás esetén egy időben konstans fázistolás lép fel, de ez nem befolyásolja az interferenciaképességet, legfeljebb azt hogy a parciális hullámok találkozásakor erősítést vagy gyengítést tapasztalunk. Ha viszont az elektronhullám az egyik trajektória mentén egy rugalmatlan szórást szenved (pl. elektron-fonon kölcsönhatás), akkor megváltozik az energiája, és így a hullámok egyesítésekor egy időben fluktuáló, kiátlagolódó interferenciaképet kapunk. A fenti képletben \setbox0\hbox{$\tau_\phi$}% \message{//depth:\the\dp0//}% \box0% ezen, rugalmatlan szórásoknak köszönhető koherenciavesztés karakterisztikus időskáláját adja meg. Ennél az időnél lényegesen hosszabb skálán a parciális hullámok egyesítésekor egyszerűen az intenzitások adódnak össze, és a fázisviszonyoktól függő interferenciatag (a fenti képlet utolsó tagja) elvész.

Ha két rugalmatlan szórás között nem történik rugalmas szórás, azaz \setbox0\hbox{$\tau_\phi$}% \message{//depth:\the\dp0//}% \box0% összemérhető a momentum relaxáció \setbox0\hbox{$\tau_m$}% \message{//depth:\the\dp0//}% \box0% karakterisztikus idejével, akkor az a távolságskála melyen belül interferenciát tapasztalunk egyszerűen

\[ l_\phi=v_F\cdot \tau_\phi, \]

ahol \setbox0\hbox{$v_F$}% \message{//depth:\the\dp0//}% \box0% az elektronok Fermi-sebessége. Ha viszont két rugalmatlan ütközés között számos rugalmas ütközés történik, akkor az elektronok diffúzív trajektóriák mentén mozognak. Ebben az esetben is \setbox0\hbox{$v_F\cdot \tau_\phi$}% \message{//depth:\the\dp0//}% \box0% trajtóriahossz után vész el az interferenciakészség, azonban ezen a trajektóriahossz a diffúzív mozgás miatt térben csak

\[ l_\phi=\sqrt{D\tau_\phi} \]

eltávolodást eredményez a kiindulási ponttól, ahol \setbox0\hbox{$D$}% \message{//depth:\the\dp0//}% \box0% a diffúziós állandó, mely a momentumrelaxációs időből két dimenzióban \setbox0\hbox{$D=v_F^2\tau_m/2$}% \message{//depth:\the\dp0//}% \box0% képlettel számolható.

Aharonov Bohm gyűrű


Nanoáramkörökben az interferenciajelenségeket nem tudjuk a ernyő mentén detektálni, olyan elrendezést kell találni, melyben például az áramkör két (vagy pár) kontaktusán keresztül feszültséget adunk a mintára és a mért áramban jelenik meg az interfernecia valamilyen hangolható paraméter függvényében. Erre talán a legjobb példa a nanogyűrűkben tapasztalható Aharonov-Bohm jelenség. Az egyik kontaktusból bejövő elektronhullámot egy kör alakú gyűrű két ága mentén két részre osztjuk, és a gyűrű másik oldalára helyezett kontaktuson keresztül egyesül a két parciális hullám , és a gyűrű

AB gyuru.png
4. ábra.


Az Aharonov Bohm gyűrű két karján haladó hullámok a vektorpotenciál hatására is felvesznek fázist. A vezetőképesség a közbezárt fluxus (\setbox0\hbox{$\Phi$}% \message{//depth:\the\dp0//}% \box0%) fluxuskvantum (\setbox0\hbox{$\Phi_0=h/e$}% \message{//depth:\the\dp0//}% \box0%) szerint periodikus függvénye:

\[G\sim T = |t_1+t_2|^2 = \left| e^{i k_F s_1 + \frac{i e}{\hbar} \int \limits_1 \vec{A} \mathrm{d}\vec{s}} + e^{i k_F s_2 + \frac{i e}{\hbar} \int \limits_2 \vec{A} \mathrm{d}\vec{s}}\right|^2 = \]
\[2+2\cdot cos\left(k_F(s_1-s_2)+\frac{e}{\hbar} \oint \vec{A} \mathrm{d} \vec{s}\right) = 2+2\cdot cos(\delta_0 + 2 \pi \Phi/\Phi_0)\]

Alacsony hőméréskleten látszik az oszcilláció a mágneses tér függvényében, magasabb hőmérsékleten azonban elmosódik.

Az interferenciakép eltűnésének az okai:

  • Környezet miatti dekoherencia
  • Hőmérsékleti miatti fázis kiátlagolódás
AB gyuru2.png
1. ábra.

Hőmérsékleti miatti koherenciavesztés

Fazisvesztes1.png
Fazisvesztes2.png
1. ábra. 1. ábra.


Véges hőmérsékleten a Fermi energia körüli kT tartományban különböző energiájú elektronok propagálnak. Koherens összeadás esetén is a fázisok kiátlagolódnak!

\[\sim \int \limits_{E_F-kT/2}^{E_F+kT/2} e^{i E t / \hbar} \mathrm{d}E\]

A nanoszerkezeten az elektronok átlagosan \setbox0\hbox{$\tau_c$}% \message{//depth:\the\dp0//}% \box0% idő alatt haladnak át. Az ehhez tartozó karakterisztikus energia: Thouless energia, \setbox0\hbox{$E_T=\hbar/\tau_c$}% \message{//depth:\the\dp0//}% \box0% \setbox0\hbox{$\longrightarrow$}% \message{//depth:\the\dp0//}% \box0% \setbox0\hbox{$\sim kT > E_T$}% \message{//depth:\the\dp0//}% \box0% hőmérsékleten lesz jelentős ez a kiátlagolódás

Környezet miatti koherenciavesztés

Kornyezeti dekoherencia.png
1. ábra.


  • Alsó ágon haladó eletronhullám: \setbox0\hbox{$|1\rangle$}% \message{//depth:\the\dp0//}% \box0%
  • Felső ágon haladó eletronhullám: \setbox0\hbox{$|2\rangle$}% \message{//depth:\the\dp0//}% \box0%

Teljes hullámfügvény:

\[|\Psi\rangle = (\alpha|1\rangle + \beta|2\rangle)|\Phi_{env}\rangle\;\;\longrightarrow\;\;\alpha|1\rangle|\Phi_{env1} + \beta|2\rangle|\Phi_{env2}\]

Transzmissziót mérünk: (T operátor csak az elektron hullámfüggvényekre hat, a környezetre nem!)

\[\langle\Psi|T|\Psi\rangle = |\alpha|^2 \langle 1|T|1\rangle + |\beta|^2 \langle 2|T|2\rangle + \alpha^*\beta \langle 1|T|2\rangle \langle \Phi_{env1}|T|\Phi_{env2}\rangle + \beta^*\alpha \langle 2|T|1\rangle \langle \Phi_{env2}|T|\Phi_{env1}\rangle\]

Ha \setbox0\hbox{$\langle \Phi_{env1}|\Phi_{env2}\rangle \rightarrow 0$}% \message{//depth:\the\dp0//}% \box0%, akkor elveszik az interferencia!

  • Azaz ha a felül és alul haladó parciális elektronhullám különböző nyomot hagy a környezetben, akkor nem látunk interferenciát. Erre jó példa a fonon szórás, mely a hőmérséklet növelésével egyre jelentősebb dekoherenciához vezet.

Egyszerű példa (Stern, Aharonov, Imry)

Ketres dekoherencia.png
1. ábra. Vezetőképesség fluktuációk

Az alsó ágon haladó részecske hullámfügvénye megváltozik a kölcsönhatás miatt: \setbox0\hbox{$|u_2(x)|\cdot e^{-i(E+V(q-x))\cdot t/\hbar}$}% \message{//depth:\the\dp0//}% \box0%

  • A kölcsönhatás ideje alatt felszedett fázis: \setbox0\hbox{$\Phi$}% \message{//depth:\the\dp0//}% \box0%.
  • q bizonytalansága miatt a fázis is bizonytalan: \setbox0\hbox{$\Delta \Phi = \frac{1}{\hbar} \frac{\partial V}{\partial q} \cdot \Delta q \cdot t$}% \message{//depth:\the\dp0//}% \box0%
  • Ha a fázisbizonytalanság nagy lesz, elveszik az interferencia:
\[\Delta \Phi > 1 \Leftrightarrow \frac{\partial V}{\partial q} \cdot t > \frac{\hbar}{\Delta q}\]

Töltött részecske, mely csak az alsó ágon áthaladó elektronnal hat kölcsön (a felső ágon haladó elektronnal elhanyagolható a kölcsönhatás). Helykoordináta: \setbox0\hbox{$q$}% \message{//depth:\the\dp0//}% \box0%, helybizonytalanság: \setbox0\hbox{$\Delta q$}% \message{//depth:\the\dp0//}% \box0%

  • Ha alul halad az elektron, a töltött részecske gyorsul az erő hatására. Kölcsönhatás ideje (t) alatt az impulzusváltozás: \setbox0\hbox{$\delta p = \frac{\partial V}{\partial q}\cdot t$}% \message{//depth:\the\dp0//}% \box0%
  • Ha az impulzus változás nagyobb az impulzus bizonytalanságnál,akkor a részecske tárolta az "útinformációt":
\[\delta p > \Delta p \Leftrightarrow \frac{\partial V}{\partial q}\cdot t > \frac{\hbar}{\Delta q} \Leftrightarrow \langle\chi_1|\chi_2\rangle<<1\]

Ugyan az a két feltétel! Ugyanakkor veszik el az interferencia, amikor a környezet állapota megkülönbözethetővé válik alul illetve felül haladó elektron esetén!

Környezet miatti koherenciavesztés Aharonov Bohm gyűrűben

Ha a kétrés kísérletben megmondható, hogy az elektron melyik résen haladt át (nyomot hagy a környezetében) \setbox0\hbox{$\rightarrow$}% \message{//depth:\the\dp0//}% \box0% interferencia megszűnik.

Interferométer: Aharonov - Bohm elrendezés QDot-tal az egyik ágban.

„Útvonal” detektor = QDot + mellette kvantum vezeték (QPC): a Dotban lévő elektron visszaszórást okoz QPC-ben, minél több e-t szór vissza a QPC-ban, annál nagyobb nyomot hagy a környezetén.

Környezet miatti koherenciavesztés: a környezetben minnél nagyobb nyomot hagy az \setbox0\hbox{$e \rightarrow |\langle \Phi_{env1}|\Phi_{env2}\rangle|$}% \message{//depth:\the\dp0//}% \box0% csökken \setbox0\hbox{$\rightarrow$}% \message{//depth:\the\dp0//}% \box0% az interferencia láthatósága csökken (láthatóság: \setbox0\hbox{$\nu = Ampl/Avg$}% \message{//depth:\the\dp0//}% \box0%)

  • Detektor „érzékenységét” QPC-ra adott (\setbox0\hbox{$V_d$}% \message{//depth:\the\dp0//}% \box0%) feszültség növelésével javíthatjuk: \setbox0\hbox{$I_{QPC}$}% \message{//depth:\the\dp0//}% \box0% nő, több elektront tud visszaszórni.
  • A detektor érzékenységének a növelésével az interferencia láthatósága csökken!







Vezetőképesség fluktuációk

Vezetokepesseg fluktuaciok1.png
1. ábra. Vezetőképesség fluktuációk


Vezetokepesseg fluktuaciok2.png
1. ábra. Vezetőképesség fluktuációk

Gyenge lokalizáció

AAS oszcilláciok.png
1. ábra. Vezetőképesség fluktuációk


Gyenge lokalizacio1.png
1. ábra. Vezetőképesség fluktuációk


Gyenge lokalizacio2.png
1. ábra. Vezetőképesség fluktuációk