„Interferencia és dekoherencia nanoszerkezetekben” változatai közötti eltérés
(→Aharonov Bohm gyűrű) |
|||
61. sor: | 61. sor: | ||
<wlatex> | <wlatex> | ||
Nanoáramkörökben az interferenciajelenségeket nem tudjuk a ernyő mentén detektálni, olyan elrendezést kell találni, melyben például az áramkör két (vagy pár) kontaktusán keresztül feszültséget adunk a mintára és a mért áramban jelenik meg az interfernecia valamilyen hangolható paraméter függvényében. Erre talán a legjobb példa a nanogyűrűkben tapasztalható Aharonov-Bohm jelenség. | Nanoáramkörökben az interferenciajelenségeket nem tudjuk a ernyő mentén detektálni, olyan elrendezést kell találni, melyben például az áramkör két (vagy pár) kontaktusán keresztül feszültséget adunk a mintára és a mért áramban jelenik meg az interfernecia valamilyen hangolható paraméter függvényében. Erre talán a legjobb példa a nanogyűrűkben tapasztalható Aharonov-Bohm jelenség. | ||
− | Az egyik kontaktusból bejövő elektronhullámot egy kör alakú gyűrű két ága mentén két részre osztjuk, és a gyűrű másik oldalára helyezett kontaktuson keresztül egyesül a két parciális hullám , és a | + | Az egyik kontaktusból bejövő elektronhullámot egy kör alakú gyűrű két ága mentén két részre osztjuk, és a gyűrű másik oldalára helyezett kontaktuson keresztül egyesül a két parciális hullám (4. ábra). Zérus mágneses térben az elektronok a felső ágon $k_F s_1$, míg az alsó ágon $k_F s_2$ fázist vesznek fel, ahol $k_F$ a Fermi-hullámszám, $s_1$ és $s_2$ pedig a két kontaktus közötti trajektóriahossz a felső illetve az alsó ág mentén (lásd 4. ábra). Ennek megfelelően az interferenciatag $\cos(k_F(s_1-s_2))$-vel arányos. |
+ | |||
{| cellpadding="5" cellspacing="0" align="center" | {| cellpadding="5" cellspacing="0" align="center" | ||
|- | |- | ||
69. sor: | 70. sor: | ||
|} | |} | ||
− | + | Véges mágneses térben azonban a fenti fázisok mellett $(e/\hbar} \int \vec{A} \mathrm{d}\vec{s}$ ún. Aharonov Bohm fázist is felvesznek, ahol $\vec{A}$ a vektorpotenciál, az integrálást pedig az elektronok trajektóriája mentén kell elvégezni. | |
− | + | A gyűrű felső és alsó ágának járulékát összegezve: | |
$$G\sim T = |t_1+t_2|^2 = \left| e^{i k_F s_1 + \frac{i e}{\hbar} \int \limits_1 \vec{A} \mathrm{d}\vec{s}} + e^{i k_F s_2 + \frac{i e}{\hbar} \int \limits_2 \vec{A} \mathrm{d}\vec{s}}\right|^2 = $$ | $$G\sim T = |t_1+t_2|^2 = \left| e^{i k_F s_1 + \frac{i e}{\hbar} \int \limits_1 \vec{A} \mathrm{d}\vec{s}} + e^{i k_F s_2 + \frac{i e}{\hbar} \int \limits_2 \vec{A} \mathrm{d}\vec{s}}\right|^2 = $$ | ||
− | $$2+2\cdot cos\left(k_F(s_1-s_2)+\frac{e}{\hbar} \oint \vec{A} \mathrm{d} \vec{s}\right) = 2+2\cdot cos(\delta_0 + 2 \pi \Phi/\Phi_0)$$ | + | $$2+2\cdot cos\left(k_F(s_1-s_2)+\frac{e}{\hbar} \oint \vec{A} \mathrm{d} \vec{s}\right) = 2+2\cdot cos(\delta_0 + 2 \pi \Phi/\Phi_0),$$ |
+ | ahol $\Phi=B\cdot A$ a gyűrű által körbezárt mágneses fluxus, $\Phi_0=e/h$ pedig az úgynevezett fluxuskvantum. Látszik, hogy a fluxus változtatásával a fluxuskvantum periódusa szerint oszcillál. | ||
+ | |||
Alacsony hőméréskleten látszik az oszcilláció a mágneses tér függvényében, magasabb hőmérsékleten azonban elmosódik. | Alacsony hőméréskleten látszik az oszcilláció a mágneses tér függvényében, magasabb hőmérsékleten azonban elmosódik. | ||
A lap 2013. július 4., 04:48-kori változata
Tartalomjegyzék |
Interferencia-kísérletek hat nagyságrenddel kisebb skálán
A fizikában régóta ismertek az interferencia-kísérletek, melyeknek egy emblematikus példája az 1. ábrán szemléltetett kétrés kísérlet. Ha fény két közeli résen halad keresztül, a rések mögé helyezett ernyőn interferencia-képet látunk, azaz az ernyőn látható intenzitásprofil nem egyezik meg az egyik illetve a másik rés kitakarásakor kapott intenzitások összegével, hanem azon tartományokban ahova a két résen keresztül azonos fázissal érkezik a hullám erősítést, ahol pedig ellentétes (180 fokkal eltolt) fázissal, ott kioltást tapasztalunk. Természetesen ugyanez a jelenség a legkülönbözőbb közegekben megfigyelhető a vízhullámoktól a hanghullámokig.
1. ábra. |
A modern fizika fejlődésével az interferencia-kísérletek újabb értelmezést kaptak, hiszen jól demonstrálták a részecske hullám dualitást. Ha az 1. ábrán szemléltetett kísérletben nagyon kis fényintenzitást, és nagyon érzékeny ernyőt használunk, akkor először véletlenszerű felvillanásokat látunk az ernyő különböző pontjain, mely a fény részecske-természetét támasztja alá. Ha viszont sokat várunk, akkor a véletlenszerű felvillanásokból kirajzolódik a jól ismert interferencia-kép (lásd 2. ábra).
2. ábra. |
További érdekesség, hogy ha a két rés mellé detektorokat helyezünk és próbáljuk megállaítani, hogy a fényt alkotó fotonok éppen melyik résen haladnak keresztül, akkor azt tapasztaljuk, hogy minél pontosabban detektáljuk a résen áthaladó fotonokat, annál inkább elvész az interferenciakép. Azaz akár egyetlen foton is képes mindkét résen áthaladva önmagával interferálni, viszont ha megmérjük, hogy merre ment a foton, akkor az interferencia megszűnik.
Az elmúlt évtizedekben a nanofizika fejlődésének köszönhetően a kétrés kísérlethez hasonlóan izgalmas interferenciakísérleteket mintegy 6 nagyságrenddel kisebb méretskálájú nanoáramkörökben is sikerült megvalósítani, ebbe a témakörbe nyújtunk betekintést a következőkben.
Fáziskoherencia-hossz
A nanovezetékek tárgyalásánál már említettük, hogy egy nanoáramkörben akkor tapasztalhatunk interferenciajelenséget, ha annak mérete kisebb a fáziskoferencia-hossznál. Próbáljuk ezt a karakterisztikus méretskálát egy kicsit pontosabban definiálni.
Ha egy elektronhullámot egy adott pontban szétválasztunk, és feltételezzük, hogy a két parciális hullám két különböző trajektórián keresztül jut el egy másik pontba, ahol újra egyesülnek (3. ábra), akkor ebben a pontban a hullám intenzitását
Ahol és az egyik illetve a másik trajektóriához tartozó komplex amplitúdó, pedig az egyik pontból a másik pontba történő eljutáshoz szükséges karakterisztikus idő.
3. ábra. |
A két trajektória mentén az elektronok szóródásokat szenvednek. Rugalmas (pl. rácshibákon, szennyezőkön, történő) szóródás esetén egy időben konstans fázistolás lép fel, de ez nem befolyásolja az interferenciaképességet, legfeljebb azt hogy a parciális hullámok találkozásakor erősítést vagy gyengítést tapasztalunk. Ha viszont az elektronhullám az egyik trajektória mentén egy rugalmatlan szórást szenved (pl. elektron-fonon kölcsönhatás), akkor megváltozik az energiája, és így a hullámok egyesítésekor egy időben fluktuáló, kiátlagolódó interferenciaképet kapunk. A fenti képletben ezen, rugalmatlan szórásoknak köszönhető koherenciavesztés karakterisztikus időskáláját adja meg. Ennél az időnél lényegesen hosszabb skálán a parciális hullámok egyesítésekor egyszerűen az intenzitások adódnak össze, és a fázisviszonyoktól függő interferenciatag (a fenti képlet utolsó tagja) elvész.
Ha két rugalmatlan szórás között nem történik rugalmas szórás, azaz összemérhető a momentum relaxáció karakterisztikus idejével, akkor az a távolságskála melyen belül interferenciát tapasztalunk egyszerűen
ahol az elektronok Fermi-sebessége. Ha viszont két rugalmatlan ütközés között számos rugalmas ütközés történik, akkor az elektronok diffúzív trajektóriák mentén mozognak. Ebben az esetben is trajtóriahossz után vész el az interferenciakészség, azonban ezen a trajektóriahossz a diffúzív mozgás miatt térben csak
eltávolodást eredményez a kiindulási ponttól, ahol a diffúziós állandó, mely a momentumrelaxációs időből két dimenzióban képlettel számolható.
Aharonov Bohm gyűrű
Nanoáramkörökben az interferenciajelenségeket nem tudjuk a ernyő mentén detektálni, olyan elrendezést kell találni, melyben például az áramkör két (vagy pár) kontaktusán keresztül feszültséget adunk a mintára és a mért áramban jelenik meg az interfernecia valamilyen hangolható paraméter függvényében. Erre talán a legjobb példa a nanogyűrűkben tapasztalható Aharonov-Bohm jelenség.
Az egyik kontaktusból bejövő elektronhullámot egy kör alakú gyűrű két ága mentén két részre osztjuk, és a gyűrű másik oldalára helyezett kontaktuson keresztül egyesül a két parciális hullám (4. ábra). Zérus mágneses térben az elektronok a felső ágon , míg az alsó ágon fázist vesznek fel, ahol a Fermi-hullámszám, és pedig a két kontaktus közötti trajektóriahossz a felső illetve az alsó ág mentén (lásd 4. ábra). Ennek megfelelően az interferenciatag -vel arányos.
4. ábra. |
\setbox0\hbox{$(e/\hbar} \int \vec{A} \mathrm{d}\vec{s}$}% \message{//depth:\the\dp0//}% \box0%ún. Aharonov Bohm fázist is felvesznek, ahol a vektorpotenciál, az integrálást pedig az elektronok trajektóriája mentén kell elvégezni.
A gyűrű felső és alsó ágának járulékát összegezve:
ahol a gyűrű által körbezárt mágneses fluxus, pedig az úgynevezett fluxuskvantum. Látszik, hogy a fluxus változtatásával a fluxuskvantum periódusa szerint oszcillál.
Alacsony hőméréskleten látszik az oszcilláció a mágneses tér függvényében, magasabb hőmérsékleten azonban elmosódik.
Az interferenciakép eltűnésének az okai:
- Környezet miatti dekoherencia
- Hőmérsékleti miatti fázis kiátlagolódás
1. ábra. |
Hőmérsékleti miatti koherenciavesztés
1. ábra. | 1. ábra. |
Véges hőmérsékleten a Fermi energia körüli kT tartományban különböző energiájú elektronok propagálnak. Koherens összeadás esetén is a fázisok kiátlagolódnak!
A nanoszerkezeten az elektronok átlagosan idő alatt haladnak át. Az ehhez tartozó karakterisztikus energia: Thouless energia, hőmérsékleten lesz jelentős ez a kiátlagolódás
Környezet miatti koherenciavesztés
1. ábra. |
- Alsó ágon haladó eletronhullám:
- Felső ágon haladó eletronhullám:
Teljes hullámfügvény:
Transzmissziót mérünk: (T operátor csak az elektron hullámfüggvényekre hat, a környezetre nem!)
Ha , akkor elveszik az interferencia!
- Azaz ha a felül és alul haladó parciális elektronhullám különböző nyomot hagy a környezetben, akkor nem látunk interferenciát. Erre jó példa a fonon szórás, mely a hőmérséklet növelésével egyre jelentősebb dekoherenciához vezet.
Egyszerű példa (Stern, Aharonov, Imry)
1. ábra. Vezetőképesség fluktuációk |
Az alsó ágon haladó részecske hullámfügvénye megváltozik a kölcsönhatás miatt:
- A kölcsönhatás ideje alatt felszedett fázis: .
- q bizonytalansága miatt a fázis is bizonytalan:
- Ha a fázisbizonytalanság nagy lesz, elveszik az interferencia:
Töltött részecske, mely csak az alsó ágon áthaladó elektronnal hat kölcsön (a felső ágon haladó elektronnal elhanyagolható a kölcsönhatás). Helykoordináta: , helybizonytalanság:
- Ha alul halad az elektron, a töltött részecske gyorsul az erő hatására. Kölcsönhatás ideje (t) alatt az impulzusváltozás:
- Ha az impulzus változás nagyobb az impulzus bizonytalanságnál,akkor a részecske tárolta az "útinformációt":
Ugyan az a két feltétel! Ugyanakkor veszik el az interferencia, amikor a környezet állapota megkülönbözethetővé válik alul illetve felül haladó elektron esetén!
Környezet miatti koherenciavesztés Aharonov Bohm gyűrűben
Ha a kétrés kísérletben megmondható, hogy az elektron melyik résen haladt át (nyomot hagy a környezetében) interferencia megszűnik.
Interferométer: Aharonov - Bohm elrendezés QDot-tal az egyik ágban.
„Útvonal” detektor = QDot + mellette kvantum vezeték (QPC): a Dotban lévő elektron visszaszórást okoz QPC-ben, minél több e-t szór vissza a QPC-ban, annál nagyobb nyomot hagy a környezetén.
Környezet miatti koherenciavesztés: a környezetben minnél nagyobb nyomot hagy az csökken az interferencia láthatósága csökken (láthatóság: )
- Detektor „érzékenységét” QPC-ra adott () feszültség növelésével javíthatjuk: nő, több elektront tud visszaszórni.
- A detektor érzékenységének a növelésével az interferencia láthatósága csökken!
Vezetőképesség fluktuációk
1. ábra. Vezetőképesség fluktuációk |
1. ábra. Vezetőképesség fluktuációk |
Gyenge lokalizáció
1. ábra. Vezetőképesség fluktuációk |
1. ábra. Vezetőképesség fluktuációk |
1. ábra. Vezetőképesség fluktuációk |