„Lock-in programozás, kvarcszenzor vizsgálata” változatai közötti eltérés

A Fizipedia wikiből
(Órákban használt kvarcoszcillátor nanofizikai alkalmazása)
(A mérés célja)
1. sor: 1. sor:
 
==A mérés célja==
 
==A mérés célja==
 
<wlatex>
 
<wlatex>
A mérés célja a Stanford Research Systems SR830 típusú digitális lock-in erősítő használatának és programozásának megismerése, tesztmérés elvégzése egy párhozamos LC körön, illetve egy atomi erő mikroszkópokban is használt kvarc szenzor vizsgálata.
+
A mérés célja a Stanford Research Systems SR830 típusú digitális lock-in erősítő használatának és programozásának megismerése, tesztmérés elvégzése egy párhuzamos LC körön, illetve egy atomerő-mikroszkópokban is használt kvarcszenzor vizsgálata.
 
</wlatex>
 
</wlatex>
  

A lap 2013. szeptember 29., 05:22-kori változata

Tartalomjegyzék

A mérés célja


A mérés célja a Stanford Research Systems SR830 típusú digitális lock-in erősítő használatának és programozásának megismerése, tesztmérés elvégzése egy párhuzamos LC körön, illetve egy atomerő-mikroszkópokban is használt kvarcszenzor vizsgálata.

Órákban használt kvarcoszcillátor nanofizikai alkalmazása


A hangvilla alakú kvarcoszcillátort (1. ábra, bal oldal) kvarcórákban, elektronikai áramkörökben használják órajel előállítására, olcsón beszerezhető - körülbelül 20 Ft/db. Az oszcillátor egy hangvilla alakú kvarc (Tuning Fork vagy röviden TF-nek is szokták nevezni), a legfontosabb jellemzője a rezonancia-frekvenciájának az értéke, névlegesen 32,768kHz (=215 Hz). A kvarc piezoelektromos viselkedésének köszönhetően a hangvilla rezgése elektromos feszültség segítségével gerjeszthető. Az oszcillátor természetesen több rezgési módussal is rendelkezik, azonban az elektródák úgy vannak kialakítva, hogy alapvetően azt a módust gerjesztik, melyben az ágak a hangvilla síkjában, tükörszimmetrikusan rezegnek. Ezen módus sem erővel sem forgatónyomatékkal nem hat a rögzítési pontra, így gyengén csatolódik a külvilághoz. Ennek köszönhetően a hangvilla óriási jósági tényezővel rendelkezik. A kontaktusokra váltakozó feszültséget kapcsolva, a kristály periodikusan deformálódik, rezgésbe jön. Amikor a rákapcsolt váltakozó feszültség frekvenciája megegyezik a kvarckristály anyaga és méretei által meghatározott rezonancia-frekvenciával, a rezgési amplitúdó sokszorosára nő. A rezgés detektálásához a kvarcoszcillátoron folyó áramot mérjük, ami a hangvilla ágainak sebességével arányos, a rezonancia-frekvenciánál maximuma van (1. ábra, jobb oldal). Ez az egyszerű kvarcszenzor atomerő mikroszkóp érzékelőjeként is kiválóan használható.

TF photo.jpg
TF res.png
1. ábra. Kvarcórákban használt hangvilla alakú kvarcoszcillátor (bal oldal) és annak rezonancia-görbéje (jobb oldal), forrás: Magyarkuti András diplomamunka, BME Fizika Tanszék, 2013.

Egy hagyományos atomerő mikroszkópban (atomic force microscope, AFM) egy laprugó végére helyeznek el egy hegyes tűt, amit közel visznek a felülethez. A laprugó mozgását egy lézer segítségével detektálják. Dinamikus üzemmódban a laprugót rezonanciafrekvenciájához közel rezgetik. A tű és a minta közötti erőhatás miatt elhangolódik a rezonancia-frekvencia. Mérés közben a tűvel a mintával párhuzamos x-y irányban pásztáznak, miközben z irányban úgy mozgatják a tűt, hogy a szabad rezgéshez képest mindig ugyan annyival legyen elhangolódva a rezonancia-frekvenciája, azaz pásztázás közben folyamatosan ugyanakkora erő hasson a tű és a minta között (2. ábra). Így a tűvel nagyjából konstans, nanométeres nagyságrendű távolságban pásztáznak a minta fölött, és a z irányú mozgatás x-y függéséből leolvasható a minta topográfiája akár atomi felbontással.

AFM dyn.ogv
2. ábra. Atomerő mikroszkóp működése nem kontakt, dinamikus üzemmódban, forrás: Magyarkuti András diploma előadás, BME Fizika Tanszék, 2013.

Alacsonyhőmérsékleti AFM méréseknél a laprugó mozgásának optikai detektálása nagyon nehéz, így célszerűbb olyan szenzort alkalmazni, melynek mozgása csupán elektromosan detektálható. Erre kiválóan alkalmas az órákban használt kvarcoszcillátor: a hangvilla egyik ágára ragasztott tű hat kölcsön a felülettel, és az óriási jósági tényező miatt egészen kicsi erőhatás is jelentős rezonancia-frekvencia változáshoz vezet, így a tű és minta közötti erőhatás viszonylag könnyen detektálható.

A 3. ábrán látható egy elektronsugaras litográfiával készült majd arannyal bevont felületű nanoszerkezeten történő mérés alagútmikroszkóp üzemmódban - az alagútáramra szabályozva, majd ezt követően ugyanazon a helyen atomerő mikroszkóp üzemmódban - a kvarcoszcillátor frekvencia-eltolódására, azaz a minta és a tű között fellépő erőre szabályozva. Mindkét esetben pár száz nm széles, párhuzamos csíkok láthatóak.


STM stripes.png
png
3. ábra. Elektronsugaras litográfiával készült nanoszerkezeten történő mérés STM majd AFM üzemmódban, forrás: Magyarkuti András diplomamunka, BME Fizika Tanszék, 2013.

Pásztázó szondás mikroszkópokról részletesebb információ a nanofizika tudásbázis Nanoszerkezetek előállítási és vizsgálati technikái fejezetében található.

A kvarcoszcillátor mozgását írjuk le az elképzelhető legegyszerűbb modellel, melyben egy \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0% effektív rugóállandójú rugóra akasztott \setbox0\hbox{$m$}% \message{//depth:\the\dp0//}% \box0% effektív tömegű test mozog egy dimenzióban, z irányban. Természetesen a kvarc piezoelektromos tulajdonságait is figyelembe kell venni, amit a

\[ \left(\begin{matrix}  z \\ Q \end{matrix}\right) = \left(\begin{matrix} k^{-1} & s \\ s & C \end{matrix}\right)\cdot \left(\begin{matrix}  F \\ U \end{matrix}\right)\]

mátrix-egyenlettel tehetünk meg, ahol \setbox0\hbox{$z$}% \message{//depth:\the\dp0//}% \box0% az elmozdulás, \setbox0\hbox{$Q$}% \message{//depth:\the\dp0//}% \box0% az elektródákon megjelenő töltés, \setbox0\hbox{$F$}% \message{//depth:\the\dp0//}% \box0% a kifejtett erő, \setbox0\hbox{$U$}% \message{//depth:\the\dp0//}% \box0% az elektródák közötti feszültség, \setbox0\hbox{$s$}% \message{//depth:\the\dp0//}% \box0% az elmozdulás egységnyi feszültség hatására terhelés nélkül (\setbox0\hbox{$F=0$}% \message{//depth:\the\dp0//}% \box0%), \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0% a rugóállandó zérus feszültségnél, \setbox0\hbox{$C$}% \message{//depth:\the\dp0//}% \box0% pedig a kapacitás (egységnyi feszültségre eső töltésfelhalmozódás) \setbox0\hbox{$F=0$}% \message{//depth:\the\dp0//}% \box0% mellet. Energiamegmaradási megfontolásból a fenti mátrix determinánsa \setbox0\hbox{$0$}% \message{//depth:\the\dp0//}% \box0%, azaz \setbox0\hbox{$s^2=C/k$}% \message{//depth:\the\dp0//}% \box0%. Ez alapján általánosan elmondható, hogy:

\[Q=\alpha \cdot z,\]

ahol \setbox0\hbox{$\alpha=ks=c/s$}% \message{//depth:\the\dp0//}% \box0%.

Dinamikus mozgás leírásához a tehetetlenséget és a súrlódásból, közegellenállásból származó, sebességgel arányos csillapítást is figyelembe kell venni, így az oszcillátor elmozdulására a

\[m\ddot{z}=-kz-\gamma\dot{z}+sU\]

differenciál-egyenlet írható fel, ahol \setbox0\hbox{$\gamma$}% \message{//depth:\the\dp0//}% \box0% a csillapítási tényező.

A \setbox0\hbox{$Q=\alpha \cdot z$}% \message{//depth:\the\dp0//}% \box0% a szenzor árama az oszcillátor sebességével arányos:

\[I=\alpha \cdot \dot{z}.\]

Ezt a fenti differenciálegyenletbe hellyettesítve egy soros RLC kör differenciálegyenletét kapjuk, ahol az \setbox0\hbox{$L$}% \message{//depth:\the\dp0//}% \box0%, \setbox0\hbox{$R$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$C$}% \message{//depth:\the\dp0//}% \box0% elektromos paraméterek a piezoelektromos együtthatón keresztül megfeleltethetőek a \setbox0\hbox{$m$}% \message{//depth:\the\dp0//}% \box0%, \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$g$}% \message{//depth:\the\dp0//}% \box0% mechanikai paramétereknek.


A fenti mátr

vényében a és a irányban

üzemm

A kereskedelmi forgalomban kapható atomerő mikroszkópok esetén leggyakrabban az előbbiekben ismertetett kantilevert használják érzékelőként. Speciális körülmények - például alacsony hőmérsékleten történő mérés esetén - problémát jelenthet a laprugó lehajlásának lézeres detektálása, sokkal kézenfekvőbb megoldás egy olyan érzékelő, amivel elektromos elven mérhetjük a minta és a tű között fellépő erőt. A hagyományos AFM kantilever helyett egy speciális, piezoelektromos elven működő érzékelő készíthető a kvarc órákban is használt hangvilla alakú kvarcoszcillátort alkalmazva (12. ábra).



Az AFM érzékelőhöz a kvarcoszcillátor egyik ágára egy hegyes tűt ragasztunk, ez az érzékelő dinamikus módban történő mérést tesz lehetővé. A kvarcoszcillátort a rezonancia-frekvenciáján gerjesztjük, a tűt a felülethez közelítve a rezonancia-frekvencia eltolódik. Pásztázás közben úgy mozgatjuk a tűt a felületre merőlegesen, hogy a frekvencia-eltolódás mindig a kívánt minta-tű távolságnak megfelelő frekvencia-eltolódással egyezzen meg.

Mivel a minta és a tű közötti erőhatás lassan változik a minta-tű távolság függvényében, ezért atomerő mikroszkóppal nehezebb jó felbontást elérni mint alagútmikroszkóppal mérve. Ehhez jóval hegyesebb tűre van szükség, például elektrokémiai marásos eljárással hegyezhetünk tűt erre a célra.



A Lock-In erősítő kiválóan alkalmas különböző áramköri elemek frekvenciafüggő impedanciájának vizsgálatára. Egy párhuzamos LC körön végzett gyakorló mérések után a laborgyakorlaton a kvarcórákban általánosan használt kvarc oszcillátor (tuning fork) viselkedését vizsgáljuk. A kvarc oszcillátor egy hangvillára hasonlít (1. ábra), sajátfrekvenciája 32768 Hz. A kvarc piezoelektromos viselkedésének köszönhetően a hangvilla rezgését elektromosan, az oszcillátorra párologtatott elektródákra adott feszültséggel lehet gerjeszteni. Az oszcillátor kiemelkedően jó jósági tényezővel rendelkezik.


Nem kontakt üzemmódban a laprugót a rezonanciafrekvenciáján gerjesztik, a rezgés amplitúdója 10 nm-nél kisebb, akár néhány pm is lehet. A tűre ható erő elhangolja a rezonancia-frekvenciát, pásztázás közben úgy mozgatják a tűt, hogy mindig állandó legyen a frekvencia-eltolódás (10. ábra).






A kvarc oszcillátor természetesen több rezgési módussal is rendelkezik, azonban az elektródák úgy vannak kialakítva, hogy csak a szimmetrikusan rezgő módust gerjesztik. Ezen módus sem erővel sem forgatónyomatékkal nem hat a rögzítési pontra, így gyengén csatolódik a külvilághoz.

A piezoelektromos tulajdonságokat az alábbi mátrixegyenlettel lehet leírni:

\[ \left(\begin{matrix}  z \\ Q \end{matrix}\right) = \left(\begin{matrix} k^{-1} & s \\ s & C \end{matrix}\right)\cdot \left(\begin{matrix}  F \\ U \end{matrix}\right),\]

ahol \setbox0\hbox{$z$}% \message{//depth:\the\dp0//}% \box0% a piezo elmozdulása a megfelelő tengely irányában, \setbox0\hbox{$Q$}% \message{//depth:\the\dp0//}% \box0% az elektródákon megjelenő töltés, \setbox0\hbox{$F$}% \message{//depth:\the\dp0//}% \box0% a piezo által kifejtett erő, \setbox0\hbox{$U$}% \message{//depth:\the\dp0//}% \box0% az elektródák közötti feszültség, \setbox0\hbox{$s$}% \message{//depth:\the\dp0//}% \box0% a terheletlen (\setbox0\hbox{$F=0$}% \message{//depth:\the\dp0//}% \box0%) piezo elmozdulása egységnyi feszültség hatására, \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0% a rugóállandó zérus feszültségnél, \setbox0\hbox{$C$}% \message{//depth:\the\dp0//}% \box0% pedig a kapacitás (egységnyi feszültségre eső töltésfelhalmozódás) \setbox0\hbox{$F=0$}% \message{//depth:\the\dp0//}% \box0% mellet. Energiamegmaradási megfontolásból a fenti mátrix determinánsa \setbox0\hbox{$0$}% \message{//depth:\the\dp0//}% \box0%, azaz \setbox0\hbox{$s^2=C/k$}% \message{//depth:\the\dp0//}% \box0%. Ez alapján általánosan elmondható, hogy:

\[Q=\alpha \cdot z,\]

ahol \setbox0\hbox{$\alpha=ks=c/s$}% \message{//depth:\the\dp0//}% \box0%.

Ha az oszcillátort egy egy szabadsági fokú rendszernek tekintjük (azaz csak a szimmetrikus rezgést vizsgáljuk) akkor a mozgás jól leírható az alábbi differenciálegyenlettel:

\[m\ddot{z}=-kz-g\dot{z}+sU\]
Tuning fork.jpg
1. ábra


Termikus zaj szilárdtestekben

Különböző mennyiségek mérésénél általában a vizsgált mennyiség várható értékére vagyunk kíváncsiak, és a várható érték körüli fluktuációt zavaró tényezőnek tekintjük. Sok esetben viszont egy fizikai mennyiség "zaja" több információt hordoz a rendszerről mint maga a várható érték. A mérési gyakorlaton az egyik legalapvetőbb zajformát, az ún. termikus zajt tanulmányozzuk. A termikus zaj véges hőmérsékleten jelentkezik a különböző állapotok betöltésének termikus fluktuációi miatt. Egy fermionikus rendszerben egy állapot betöltési száma n=0,1 lehet. A betöltési szám várható értéke a Fermi függvény,

\[\left< n \right> =f=\frac{1}{\mathrm{e}^{\frac{\epsilon-\mu}{k_B T}}+1}.\]

A betöltési szám szórásnégyzete:

\[\left< \left(n-\left<n \right> \right)^2\right)=\left< n\right> -\left< n \right> ^2=f(1-f)=-k_B T\frac{\mathrm{d}f}{\mathrm{d}\epsilon},\]

ahol kihasználtuk, hogy fermionokra \setbox0\hbox{$n^2=n$}% \message{//depth:\the\dp0//}% \box0%. A kifejezést energia szerint kiintegrálva (\setbox0\hbox{$\int \mathrm{d}f/\mathrm{d}\epsilon =-1$}% \message{//depth:\the\dp0//}% \box0%) rögtön látszik, hogy a termikus zaj arányos a hőmérséklettel.

A zaj mértékének pontos megadásához először definiálni kell a zaj mérésére használt mennyiséget. Egy zajmérés kísérleti megvalósítása a következő ábrán szemléltethető:

Zaj mint jel zajsuruseg.jpg
2. ábra

A mért \setbox0\hbox{$I(t)$}% \message{//depth:\the\dp0//}% \box0% jelből kiszűrjük az \setbox0\hbox{$f_0$}% \message{//depth:\the\dp0//}% \box0% frekvencia körüli \setbox0\hbox{$\Delta f$}% \message{//depth:\the\dp0//}% \box0% sávszélességű tartományt, és az így kapott \setbox0\hbox{$I(t|f_0,\Delta f)$}% \message{//depth:\the\dp0//}% \box0% jel szórásnégyzetét vizsgáljuk egy spektrumanalizátorral. Megfelelően keskeny frekvenciasávot alkalmazva a mért szórásnégyzet arányos lesz a frekvenciasáv szélességével, és az arányossági tényezőt nevezzük a zaj spektrális sűrűségének:

\[\left<(\Delta I(t|f_0,\Delta f))^2\right>=S_I(f_0)\Delta f.\]

Megmutatható hogy a zaj spektrális sűrűsége nem más, mint a áram-áram korrelációs függvény Fourier transzformáltjának a kétszerese. A zaj pontos definícióját megismerve a termikus zaj értékét a fluktuáció-disszipáció tétel alapján adhatjuk meg, mely egy rendszer egyensúlyi fluktuációi és az egyensúlyból kitérített rendszer lineáris válaszfüggvénye között teremt összefüggést. Elektromos áram esetén az ez egyensúlyi fluktuáció nem más mint az áramzaj, a lineáris válaszfüggvény pedig a külső feszültségre adott válasz, vagyis a vezetőképesség. Így egy rendszer áramzaja:

\[S_I(f)=2hf\cdot \coth{\left( \frac{hf}{2k_B T}\right) }\cdot G,\]

azaz alacsony frekvencián (\setbox0\hbox{$hf\ll k_B T$}% \message{//depth:\the\dp0//}% \box0%) az áramfluktuációk termikus zaja:

\[S_I=4k_B TG.\]

Hasonlóképpen a feszültségzaj:

\[S_V=4k_B TR.\]

Látjuk, hogy a termikus zaj segítségével "csupán" feszültségmérés alapján meghatározhatjuk egy rendszer abszolút hőmérsékletét. Persze a precíz zajmérések komoly méréstechnikai kihívást jelentenek, hiszen nanovoltos vagy még kisebb feszültségek fluktuációját kell pontosan mérni. Ennek ellenére a termikus zaj mérésének komoly metrológiai jelentősége van, hiszen számos módszerrel mérhetünk precízen hőmérsékletváltozást, de az abszolút hőmérsékletet nem könnyű meghatározni. A jelenleg érvényes hőmérsékletstandardok mind ún. másodlagos hőmérők, melyek nem alapvető fizikai törvény hanem megfelelő kalibráció alapján mérik az abszolút hőmérékletet. (A szobahőmérséklet körüli széles tartományban pl. platina vékonyréteg ellenálláshőmérőt használnak standardként.) A termikus zaj mérése alapvető fizikai állandók (Boltzmann állandó + elektron töltés) alapján vezeti vissza a hőmérsékletmérést feszültségmérésre, így a hőmérsékletstandardok kalibrálásának egyik alapvető módszere.

A termikus zaj mellett még két fontos zajtípusról érdemes megemlékezni. Az egyik a szennyezők és rácshibák véletlen mozgásából adódó ún. 1/f zaj, mely alacsony frekvenciákon dominál, és a nevét is a zajsűrűség tipikus frekvenciafüggéséről kapta. A másik az elektrontöltés kvantáltságából adódó ún. sörét zaj, melynek a lényege egy egyszerű példán szemléltethető: Képzeljünk el egy elektronhullámot, mely áthalad egy T transzmissziós valószínűségű nyalábosztón. Az áthaladt töltés értéke T valószínűséggel 1 és 1-T valószínűséggel 0,így az áthaladt töltés T várható értéke körül T(1-T) szórásnégyzetű fluktuációt tapasztalunk. Ezt az elemi folyamatot több elektronra általánosítva megmutatható, hogy a sörétzaj nagysága a rendszerre kapcsolt feszültséggel arányos. A fenti példából érezhető, hogy a sörétzaj kisméretű rendszerekben válik fontossá, ahol egyszerre csak kevés elektron vesz részt a vezetésben.

Mérési feladatok


1. Áramgenerátoros meghajtással vegyük fel a mellékelt párhuzamos LC kör impedanciáját a frekvencia függvényében, határozzuk meg a rezonancia-frekvenciát, a kapacitás az induktivitás ill. az induktivitás soros ellenállásának az értékét. A mért görbét hasonlítsuk össze az elméleti várakozásokkal. A méréshez írjunk számítógépes programot, mely GPIB porton kommunikál a műszerrel. A program adott számú lépésben logaritmikus skálán változtassa a frekvenciát egy megadott kezdő és végfrekvencia között, és vegye fel a bemeneten mért jel X és Y komponensét a frekvencia függvényében. Figyeljünk az időállandó helyes beállítására!

2. Az 1. feladatban készült mérőprogramból kiindulva vegyük fel a mellékelt kvarc oszcillátor rezonancia-görbéjét feszültséggenerátoros meghajtást használva (a rezonancia-frekvencia környékén nagyobb pontossággal!). Ennél a mérésnél a pontosabb frekvenciabeállítás érdekében jelforrásként egy Agilent 33220A függvénygenerátort használjunk. A Lock-In generátorát az Agilent függvénygenerátorhoz szinkronizáljuk, a kvarc oszcillátorra a Lock-In kimenetéről adjuk ki a jelet. Az oszcillátor meghajtásához 1:100 osztót használjunk a Lock-In 5V-os kimeneti jelszintje mellett. Ügyeljünk arra, hogy a rezonancia környékén gerjesztett oszcillátor rezgése nagyon lassan cseng le, így a frekvencia változtatásakor sokat kell várni arra, hogy az új frekvenciához tartozó állandósult állapot kialakuljon.

3. Mérjük meg a mellékelt \setbox0\hbox{$0 \Omega$}% \message{//depth:\the\dp0//}% \box0%-os, \setbox0\hbox{$3.3 k\Omega$}% \message{//depth:\the\dp0//}% \box0%-os, \setbox0\hbox{$6.7 k\Omega$}% \message{//depth:\the\dp0//}% \box0%-os és \setbox0\hbox{$10 k\Omega$}% \message{//depth:\the\dp0//}% \box0%-os ellenállások zaját (X noise, Y noise) rögzített, 1kHz és 2kHz közötti frekvenciánál. A mérést hosszú ideig végezzük, és számoljunk időátlagot. Ügyeljünk arra, hogy a kezdeti tranziens szakaszt ne számoljuk bele az időátlagba. Lehetőség szerint a mérést két különböző frekvencián végezzük el. A mért eredmények alapján határozzuk meg a hőmérsékletet és annak hibáját. Az összes mérést ugyan olyan Lock-In beállítás mellett végezzünk, különösen figyeljünk a megfelelő időállandó és méréshatár megválasztására. Használjunk 12dB/Oct ill. Low Noise beállításokat.

TF calib Big.jpg
3. ábra
TF calib.jpg
4. ábra

Függelék: a méréshez használt eszközök


  • SR830 Lock-In + használati utasítás + tápkábel
  • Agilent 33220A függvénygenerátor + használati utasítás (elektronikusan) + tápkábel
  • GPIB kártya USB csatlakozóval + 1 GPIB kábel
  • LC kör fém dobozban
  • Kvarc oszcillátor fém dobozban
  • Fém doboz ellenállások befogásához termikus zaj méréséhez + \setbox0\hbox{$0\Omega $}% \message{//depth:\the\dp0//}% \box0%, \setbox0\hbox{$3.3k\Omega $}% \message{//depth:\the\dp0//}% \box0%, \setbox0\hbox{$6.7k\Omega $}% \message{//depth:\the\dp0//}% \box0%, \setbox0\hbox{$10k\Omega $}% \message{//depth:\the\dp0//}% \box0%-os ellenállások
  • Ellenállásdekád
  • \setbox0\hbox{$0\Omega$}% \message{//depth:\the\dp0//}% \box0%-os lezáró
  • Kézi multiméter
  • Csavarhúzó
  • 6db. közepes BNC-BNC kábel
  • BNC T-elosztó
  • Forrasztó páka

</wlatex>