„Félvezető termoelem és Peltier-elem vizsgálata” változatai közötti eltérés
39. sor: | 39. sor: | ||
A termoelektromos jelenségek fémek esetében is fellépnek, de az effektusok sokkal erősebbek félvezetők alkalmazásakor: például egy félvezető termoelem hőfoktényezője egy nagyságrenddel nagyobb, mint egy fém termoelemé. Ezért a gyakorlatban használt Peltier-elemek (termoelektromos hűtőelemek) is félvezetőkből készülnek és a mérésen is ilyet használunk. | A termoelektromos jelenségek fémek esetében is fellépnek, de az effektusok sokkal erősebbek félvezetők alkalmazásakor: például egy félvezető termoelem hőfoktényezője egy nagyságrenddel nagyobb, mint egy fém termoelemé. Ezért a gyakorlatban használt Peltier-elemek (termoelektromos hűtőelemek) is félvezetőkből készülnek és a mérésen is ilyet használunk. | ||
− | + | Egy n- és p-típusú félvezetőből kialakított termoelemet mutat az ([[#fig:1|1/b ábra]]). Ha az '''A''' és '''B''' pont $T_0$ hőmérsékleten van és '''C''' pont hőmérséklete $T$, ($T\neq T_0$) az '''A''' és '''B''' pont között $U$ feszültséget mérhetünk. Ez a '''Seebeck-effektus'''. Az effektusra jellemző az anyagtól és hőmérséklettől függő $\alpha$ állandót az $$\alpha = \left( \frac{{\rm d}U}{{\rm d}T}\right)_{T_0}$$ egyenlettel definiáljuk. | |
− | + | <br /> | |
Ha a fenti összeállításon áram folyik, az áram irányától függően a '''C''' pontban hő szabadul fel, vagy hő nyelődik el. Ez a '''Peltier-effektus'''. Az egységnyi idő alatt felszabaduló vagy elnyelt hőnek megfelelő hőteljesítmény ($P_P$) arányos az $I$ árammal: $$P_P=\frac{{\rm d}Q}{{\rm d}t}=\pi I=\alpha TI$$ ahol $Q$ a hő, $\pi$ a Peltier-együttható, $T$ az abszolút hőmérséklet, míg $\alpha$ a Seebeck-együttható. | Ha a fenti összeállításon áram folyik, az áram irányától függően a '''C''' pontban hő szabadul fel, vagy hő nyelődik el. Ez a '''Peltier-effektus'''. Az egységnyi idő alatt felszabaduló vagy elnyelt hőnek megfelelő hőteljesítmény ($P_P$) arányos az $I$ árammal: $$P_P=\frac{{\rm d}Q}{{\rm d}t}=\pi I=\alpha TI$$ ahol $Q$ a hő, $\pi$ a Peltier-együttható, $T$ az abszolút hőmérséklet, míg $\alpha$ a Seebeck-együttható. | ||
− | + | <br /> | |
Amikor $I$ áram folyik olyan homogén vezetőben, amelyben az áram irányába eső ${\rm d}T/{\rm d}x$ gradiens van, az áram és a hőmérséklet gradiens irányától, valamint a vezető anyagától függően hő szabadul fel, vagy nyelődik el. Ez a '''Thomson-effektus'''. Az időegység alatt a vezető egységnyi hosszúságú részében fejlődő Thomson-hő arányos az áramerősséggel és a hőmérséklet gradienssel: $$P_T=- \tau \frac{{\rm d}T}{{\rm d}x} I$$ ahol $\tau$ a vezető anyagától és a hőmérséklettől függő előjeles mennyiség, a Thomson-állandó. A Thomson-hő pozitív előjelű – azaz hő szabadul fel – ha $\tau$ pozitív előjelű és az áram a magasabb hőmérsékletű hely felől az alacsonyabb hőmérsékletű hely felé folyik. | Amikor $I$ áram folyik olyan homogén vezetőben, amelyben az áram irányába eső ${\rm d}T/{\rm d}x$ gradiens van, az áram és a hőmérséklet gradiens irányától, valamint a vezető anyagától függően hő szabadul fel, vagy nyelődik el. Ez a '''Thomson-effektus'''. Az időegység alatt a vezető egységnyi hosszúságú részében fejlődő Thomson-hő arányos az áramerősséggel és a hőmérséklet gradienssel: $$P_T=- \tau \frac{{\rm d}T}{{\rm d}x} I$$ ahol $\tau$ a vezető anyagától és a hőmérséklettől függő előjeles mennyiség, a Thomson-állandó. A Thomson-hő pozitív előjelű – azaz hő szabadul fel – ha $\tau$ pozitív előjelű és az áram a magasabb hőmérsékletű hely felől az alacsonyabb hőmérsékletű hely felé folyik. | ||
A lap 2014. szeptember 11., 15:30-kori változata
A mérés célja:
- elmélyíteni a hallgatók termoelektromos effektusokkal kapcsolatos ismereteit,
- megismertetni a hallgatókat a félvezető termoelemmel és a Peltier-elemmel (termoelektromos hűtő elemmel).
Ennek érdekében:
- összefoglaljuk a félvezető termoelemmel és a Peltier-elemmel kapcsolatos elméleti tudnivalókat,
- mérések segítségével meghatározzuk a félvezető termoelem és a Peltier-elem fontosabb jellemzőit,
- a mért Seebeck és Peltier együttható hányadosából meghatározzuk az abszolút hőmérsékletet.
Tartalomjegyzék |
Elméleti összefoglaló
A Hőmérsékletérzékelők hitelesítése című mérés elméleti részében részletesebben foglalkoztunk a két vezetőből készült termoelemek működésével és alkalmazásával. Most az ott elmondottakra is támaszkodunk.
Termoelektromos jelenségek
A félvezető termoelem és a Peltier-elem működését termoelektromos és hőtani folyamatok határozzák meg. A termoelektromos jelenségek elektromos és hőtani folyamatok közötti kapcsolatokat adnak meg. Összefoglalónkat ezen effektusok (a Seebeck-, a Peltier-, a Thomson-effektus) és a Joule-hő ismertetésével kezdjük, majd a tisztán hőtani folyamatok leírásával folytatjuk, míg végül megvizsgáljuk ezek együttes hatását a termoelem és a Peltier-elem viselkedésére.
A termoelektromos jelenségek fémek esetében is fellépnek, de az effektusok sokkal erősebbek félvezetők alkalmazásakor: például egy félvezető termoelem hőfoktényezője egy nagyságrenddel nagyobb, mint egy fém termoelemé. Ezért a gyakorlatban használt Peltier-elemek (termoelektromos hűtőelemek) is félvezetőkből készülnek és a mérésen is ilyet használunk.
Egy n- és p-típusú félvezetőből kialakított termoelemet mutat az (1/b ábra). Ha az A és B pont hőmérsékleten van és C pont hőmérséklete , () az A és B pont között feszültséget mérhetünk. Ez a Seebeck-effektus. Az effektusra jellemző az anyagtól és hőmérséklettől függő állandót az egyenlettel definiáljuk.
Félvezető termoelem
Ha két fémből (1 és 2) termoelemet hozunk létre (1/a ábra), az A és B pontok között mérhető feszültség a C pont hőmérséklete és az A és B pont közös hőmérsékletének különbségétől (), valamint a két fém anyagi minőségétől függ. A kapott feszültség nem függ a két fém C pontban történ összeforrasztására használt harmadik fém anyagi minőségétől. A fém termoelemhez hasonlóan, két különböző módon szennyezett félvezetőből is létrehozhatunk termoelemet. Ezek érzékenysége kb. egy nagyságrenddel nagyobb, mint a fémből készült termoelemeké. A félvezető termoelem vázlata az 1/b ábrán, perspektivikus rajza pedig az 1/c ábrán látható.
A termoelem egyik jellemzője az 1.1 részben bevezetett Seebeck-együttható, ami az l°C hőmérséklet-különbség hatására kialakuló termofeszültséget adja meg.
Az első közelítésben a termoelem üresjárási feszültségének hőmérsékletfüggése az összefüggéssel adható meg. A vizsgálat tárgyát képező félvezető termoelem darab p-n átmenetet tartalmaz, amelyek elektromosan sorba kapcsolódnak (1/d ábra), így feszültségük összeadódik:Az átmenetek két alumínium lemezhez csatlakoznak, jó hővezető, de elektromosan szigetelő réteggel (1/d ábra). Az alumínium lemezek közül az egyik (a meleg oldal) hőmérsékleten, míg a másik (a hideg oldal) hőmérsékleten van. Ilyen módon az elemek hőtani szempontból párhuzamosan kapcsolódnak.
Vizsgálatainkhoz a termoelemet két hőcserélő közé helyezzük (3/a ábra). A hideg oldalhoz csatlakozó hőcserélőn (alumínium tömb) csapvizet vezetünk keresztül és ennek az oldalnak a hőmérsékletét állandó () értéken tartjuk. A meleg oldalhoz csatlakozó alumínium tömbben ellenállás fűtőtest van, amit alacsony feszültségű külső áramforrás segítségével működtetünk. Így a meleg oldal hőmérsékletét változtatni tudjuk.
Ha különböző hőmérsékletek mellett megmérjük a termoelem üresjárási feszültségét, az – összefüggést ábrázolva egyenest kapunk. Az egyenes meredeksége a Seebeck-együttható.
A termoelem fontos jellemzője a belső ellenállása. A belső ellenállást a Hőmérsékletérzékelők hitelesítése című jegyzetben leírtak (6. feladat) szerint mérhető.
Termoelemünk termikus energia hatására termel villamos energiát. Mekkora hatásfokkal teszi ezt? Erre a kérdésre a következő módon kaphatunk feleletet:
A termoelemet belső ellenállásával azonos nagyságú ellenállással terheljük. Ekkor tudjuk kivenni a maximális elektromos teljesítményt. Ehhez a melegoldali alumínium tömböt kb. 20 W villamos teljesítménnyel felfűtjük, majd a fűtést kikapcsolva mérjük az időben csökkenő hőmérsékletet és a terhelő ellenálláson jelentkező villamos teljesítményt. Ha feltételezzük, hogy rendszerünk a környezettől jól szigetelt, akkor azt mondhatjuk, hogy a fűtött alumínium tömb által leadott hő hatására nyerünk elektromos teljesítményt. A leadott hőteljesítmény:\[P_hő=\frac{{\rm d}Q}{{\rm d}t}=cm\frac{{\rm d}T}{{\rm d}t}\]
\setbox0\hbox{$P_hő$}% \message{//depth:\the\dp0//}% \box0%-t), miközben mérjük az ugyanezen időponthoz tartozó villamos teljesítményt: Az átalakítás hatásfoka ezek után:
\[\eta=\frac{P_v}{P_hő}\]
A fentiekből a hatásfok hőmérséklet-különbség függése [az kapcsolat] is meghatározható.
A termoelem hatásfokának értékét egy adott hőmérsékletkülönbségnél úgy is meghatározhatjuk, hogy az alumíniumtömböt állandó fűtőteljesítménnyel melegítjük. Miután állandósult a hőmérsékletkülönbség, feltételezhetjük, hogy a LaTex syntax error\setbox0\hbox{$P_hő$}% \message{//depth:\the\dp0//}% \box0%fűtés miatt nyerünk a termoelemből villamos teljesítményt.
Peltier-elem
Az előzőekben áttekintett effektusok eredményeként röviden összefoglalva a vizsgált Peltier-elem belsejében a következő folyamatok játszódnak le:
- Az áram irányától függően a Peltier-effektus miatt az egyik oldalon az átmenetnél hő nyelődik el (hideg oldal, hőmérsékleten), másik oldalon hő szabadul fel (meleg oldal, hőmérsékleten).
- A Thomson-effektus következtében a félvezető elemek anyagától (és az áramiránytól) függően az elem belsejében hő szabadul fel vagy nyelődik el. Ez a Peltier-elem két felületén egyenlő mértékű.
- A Joule-hő következtében az elem belsejében hő fejlődik. Ezt egyszerűség kedvéért úgy tekintjük, hogy egyenlő arányban jut a két felületre.
- A hővezetés eredménye egy a meleg oldalról a hideg oldal felé történő hőáramlás.
A Peltier-elem energetikai folyamatait a 2. ábra szemlélteti. A hőerőgépek és a hűtőgépek működése az ideális Carnot-körfolyamat segítségével közelíthető. Hőerőgépként a Carnot-gép munkát végez, miközben a rendszer a magasabb hőmérsékletű hőtartályból hőmennyiséget vesz fel, míg a kisebb hőmérsékletű hőtartálynak hőt ad le. Az így nyert munka . A gép hatásfoka illetve maximális hatásfoka pedig rendre ill. . (Így működik a termoelem.) Hűtőgépként (hőszivattyúként) a Peltier-elem fordított Carnot-gépnek tekinthető. Külső munka befektetése árán a hidegebb oldalról hőt von ki, míg a melegebb oldalon hőt ad le. A folyamat teljesítménytényezője ill. . Vegyük észre, hogy is lehet. A hatásfok ill. teljesítménytényező a megfelelő teljesítmények segítségével is kifejezhető.
Legyen kezdetben . Ha a Peltier-elemet a fűtés bekapcsolása nélkül elektromos teljesítmény befektetése mellett működtetjük, olyan értékre áll be, melynél . növelésével , és ezzel a hőmérséklet-különbség is nő. Mivel azonban ismeretlen, a teljesítménytényező így nem határozható meg.
Az teljesítménytényező meghatározásához állandó teljesítménnyel működtetjük a Peltier-elemet, miközben változó fűtőteljesítmény mellett vizsgáljuk a kialakuló egyensúlyi hőmérséklet-különbségeket. Alkalmasan választott fűtőteljesítmény esetén a két oldal közti hőmérséklet-különbség eltűnik. Ekkor a fűtőteljesítmény éppen megegyezik a Peltier-elem által a vízhűtött oldalra átszivattyúzott hőteljesítménnyel (), vagyis a teljesítménytényező az összefüggés alapján számítható, hiszen a fordított Carnot-gép egységnyi idő alatt bevitt külső munkája .
Akkor, amikor a hőmérséklet-különbség eltűnik, meghatározható a Peltier-elem belső ellenállása és a Peltier-együttható értéke is. esetében nem keletkezik termofeszültség, így a Peltier-elem belső ellenállása az képlettel meghatározható. estében nincsen hővezetés (és Thomson-hő) se, így a Peltier-együttható a definiáló képlet alapján könnyen kifejezhető: (A Peltier-elemnek a fűtőellenállás által leadott teljesítményt és a Peltier-elemre kapcsolt, Joule-hőként felszabaduló elektromos teljesítmény felét kell átszivattyúznia.)
Mérési elrendezés
A termoelem és a Peltier-elem vizsgálatához – kicsit különböző elrendezésben – ugyanazt az eszközt használjuk (3/a és 3/b ábra). A mérőeszköz két 50 g-os alumínium tömbből ill. közöttük elhelyezkedő 98 db sorba kötött p-n átmenetből áll. Az eszköznek a külső környezettel történő hőcseréjét többrétegű szigetelés akadályozza. Az egyik tömb hőmérsékletét vízhűtés rögzíti, míg a másik oldal egy tápegységgel (max. 25 V, 5 A) fűthető. A fűtőteljesítményt áram- és feszültségmérés alapján, az alumínium tömbök hőmérsékletét a Pt-hőmérők ellenállásából a összefüggés alapján számítjuk.A termoelem kimenetén mérhető a termofeszültség és a terhelő áram (3/a ábra).
A Peltier-elem működtetéséhez egy másik tápegységet (max. 40 V, 10 A) használunk (3/b ábra). A Peltier-teljesítményt áram- és feszültségmérés alapján számítjuk.
Mérési feladatok
A méréshez rendelkezésre álló eszközök
- A mérés elvégzéséhez és a mérési napló elkészítéséhez a dőlt betűs részekben adunk segítséget.
1. Határozza meg a félvezető termoelem elektromotoros erejét a hőmérséklet függvényében! Ábrázolja az elektromotoros erő – hőmérséklet-különbség összefüggést és határozza meg a Seebeck-állandót. A fűtőellenállásra kezdetben kb. 2 V, majd egyre nagyobb (max. 20 V) feszültséget kapcsolva folyamatosan fűtse a meleg oldalt, és néhány percenként olvassa le a hőmérséklet (ellenállás) és üresjárati feszültség értékeket.
- Az ellenállás alapján számított hőmérséklet:
2/a Határozza meg a termoelem belső ellenállását! Az első feladat utolsó fűtőteljesítményének beállított értékén folytassa a fűtést a véghőmérséklet eléréséig, és ott határozza meg a termoelem belső ellenállását.
- Ilyen mérést végzett már a Hőmérsékletérzékelők hitelesítése közben is!
- Emlékeztetőül: A termoelem belső ellenállásához mérni kell
- a termoelem üresjárati feszültségét (),
- a termoelem áramát egy ismert ellenálláson keresztül (). Ez az ismert ellenállás maga az árammérő is lehet, pl. 20 mA vagy 200 mA méréshatáron.
- Az árammérő ellenállását (, ami természetesen függ a méréshatártól) egy ellenállásmérő segítségével lehet megmérni. Az ellenállásmérőt egyszerűen rákötjük a – más áramkörbe ezalatt be nem kötött! –, megfelelő méréshatárra beállított árammérőre.
- , és ismeretében az belső ellenállás számolható.
- Milyen méréshatárra állított árammérővel terheli a termoelemet? Miért?
- Mekkora az árammérő belső ellenállása ezen a méréshatáron?
- Hogyan fejezhető ki a mért mennyiségek segítségével?
2/b Határozza meg a termoelem hatásfokát!
A belső ellenállás meghatározása után kapcsoljon a belső ellenállással kb. megegyező ellenállást a termoelem kivezetéseire. Ehhez használjon ellenállásdekádot.
A terhelés hatására csökkenni fog a kialakult hőmérséklet-különbség. Várja meg, amíg a hőmérséklet-különbség egy új értéken állandósul. Mérje meg ekkor a termoelem kimenetén (a terhelő ellenálláson) a kapocsfeszültséget. Számítsa ki a terhelő ellenálláson leadott teljesítményt (a hasznos teljesítményt) és – a fűtőteljesítmény ismeretében – a termoelem hatásfokát.
3. Mérje meg 2,4 A Peltier-áram esetén (a fűtőtest kiiktatásával) a kialakuló hőmérséklet-különbséget!
- A tápegységet áramgenerátoros üzemmódban használja!
- Az áramerősséget a kimenetek rövidre zárása mellett állítsa be!
- A feszültséglimitet (üresjáratban) 3 V-ra állítsa be!
- Hameg multiméterekkel mérje a Peltier-áramot és (a Peltier-elem kivezetésein) a Peltier-feszültséget!
Mérje a hőmérsékletet 10 percig és a függelékben megadott összefüggések illesztésével határozza meg a kialakuló max. (állandósult) hőmérséklet-különbséget!
- A változó hőmérsékletű (a Peltier-elemmel hűtött) oldal hőmérsékletét számítógépes adatgyűjtő segítségével mérje az idő függvényében.
4. Mérje rögzített Peltier-áram és különböző fűtőteljesítmények mellett a kialakuló hőmérséklet-különbségeket és ábrázolja ezeket! Peltier-áram: 2,4 A, fűtőteljesítmények: 3-11 W között 3-4 értéken mérve. A Peltier-elemet működtető tápegységet az előző feladathoz hasonlóan áramgenerátoros üzemmódban használja, és minden esetben írja fel az egyensúly közelében kialakuló feszültségértékeket is! Mérje a hőmérsékletet esetenként 10 percig és a függelékben megadott összefüggések illesztésével határozza meg a fenti teljesítményeknél kialakuló max. hőmérséklet-különbségeket!
- A változó hőmérsékletű (a Peltier-elemmel hűtött, a fűtőellenállással viszont fűtött) oldal hőmérsékletét számítógépes adatgyűjtő segítségével mérje az idő függvényében.
- Figyelem! A Peltier-feszültség (állandó Peltier-áram mellett) a hőmérséklet-különbség változásával változik. Mi ennek az oka?
5. Az állandósult hőmérséklet-különbség – fűtőteljesítmény kapcsolat alapján számítsa ki a Peltier-elem teljesítmény-tényezőjét és belső ellenállását!
- Ehhez ábrázolja az állandósult hőmérséklet-különbséget a fűtőteljesítmény függvényében, és egyenesillesztéssel határozza meg, milyen fűtőteljesítménynél lenne nulla a hőmérséklet-különbség.
- A nulla hőmérséklet-különbséghez tartozó Peltier-feszültséget interpolálással határozza meg.
- A Peltier-elem belső ellenállására kapott eredményét hasonlítsa össze a termoelem belső ellenállásával.
6. Határozza meg a Peltier-együtthatót! A Seebeck-együttható és a Peltier-együttható ismeretében számítsa ki a abszolút hőmérsékletet!
Függelék
- A termikus egyensúly beállása viszonylag hosszú időt igényel. Ezért a véghőmérséklet meghatározásánál kihasználjuk, hogy a fűthető oldal hőmérsékletének () időbeli változása jó közelítéssel exponenciális jellegű: ahol a hőmérséklet kezdeti értéke, míg a hőmérséklet-változás karakterisztikus ideje.