„Holográfia” változatai közötti eltérés
(→Elmozdulásmező vizsgálata digitális holográfiával) |
a (→Egyéb információk) |
||
(egy szerkesztő 5 közbeeső változata nincs mutatva) | |||
109. sor: | 109. sor: | ||
A legfontosabb eltérés a digitális holográfiában alkalmazható elrendezések kiválasztásánál a digitális kamerák és a hologramlemezek felbontása közötti különbségből adódik. Míg egy hologramlemez elemi érzékelőinek (anyagszemcsék) mérete/távolsága a látható fény hullámhosszával összemérhető, a digitális kamerák képpontjainak mérete jellemzően egy nagyságrenddel nagyobb, átlagosan 4-10 µm. A mintavételezési tétel csak akkor teljesül, ha a holografikus rács állandója nagyobb, mint két képpont (kamera pixel). Ez akkor valósul meg, ha a tárgy látószöge a kamera egy pontjából nézve elég kicsi, és ha a referenciahullám a tárgyhullámmal kis szöget zár be. (Megjegyezzük, hogy mivel a kamerák mintavételezése integráló jellegű, és nem pontszerű, a mintavételezési tétel megszegése csak folytonos kontrasztcsökkenést okoz a rögzített képeken, tehát kis mértékben még megszeghető a feltétel.) E felbontásbeli különbség miatt a hagyományos holográfia megengedi a tárgy és a referencia nyaláb 1/a. ábrán látható nagyszögű találkozását, a digitális holográfia a technológia jelenlegi állása mellett azonban nem, így csak kvázi – de nem teljesen - in-line elrendezés használható. A digitális kamerák érzékenysége és dinamika tartománya (jelszintek, szürkeségi szintek száma) szintén eltér a hologramlemezekétől, így az exponálás feltételei is mások lesznek. | A legfontosabb eltérés a digitális holográfiában alkalmazható elrendezések kiválasztásánál a digitális kamerák és a hologramlemezek felbontása közötti különbségből adódik. Míg egy hologramlemez elemi érzékelőinek (anyagszemcsék) mérete/távolsága a látható fény hullámhosszával összemérhető, a digitális kamerák képpontjainak mérete jellemzően egy nagyságrenddel nagyobb, átlagosan 4-10 µm. A mintavételezési tétel csak akkor teljesül, ha a holografikus rács állandója nagyobb, mint két képpont (kamera pixel). Ez akkor valósul meg, ha a tárgy látószöge a kamera egy pontjából nézve elég kicsi, és ha a referenciahullám a tárgyhullámmal kis szöget zár be. (Megjegyezzük, hogy mivel a kamerák mintavételezése integráló jellegű, és nem pontszerű, a mintavételezési tétel megszegése csak folytonos kontrasztcsökkenést okoz a rögzített képeken, tehát kis mértékben még megszeghető a feltétel.) E felbontásbeli különbség miatt a hagyományos holográfia megengedi a tárgy és a referencia nyaláb 1/a. ábrán látható nagyszögű találkozását, a digitális holográfia a technológia jelenlegi állása mellett azonban nem, így csak kvázi – de nem teljesen - in-line elrendezés használható. A digitális kamerák érzékenysége és dinamika tartománya (jelszintek, szürkeségi szintek száma) szintén eltér a hologramlemezekétől, így az exponálás feltételei is mások lesznek. | ||
− | Mint ismeretes, két síkhullám interferenciája során a keletkezett interferencia csíkrendszer legkisebb térközöltsége: $d=\frac{\lambda}{2\sin\frac{\Theta}{2}}$, ahol $\Theta$ a terjedési irányok közötti szög. Ezt az összefüggést felhasználva, és figyelembe véve a mintavételi tételt egy adott képpontméretű ($\Delta x$) kamerára megadható az a maximális szög, amelyet a tárgyhullám és a referenciahullám bezárhat: $\Theta_{max}\approx\frac{\lambda}{2\Delta x}$ . Ez a szög a digitális kamerák pixelméretei mellett és látható fény esetén tipikusan $3^o$ körül van, ez indokolja a 4. ábrán látható elrendezés használatát. | + | Mint ismeretes, két síkhullám interferenciája során a keletkezett interferencia csíkrendszer legkisebb térközöltsége: $d=\frac{\lambda}{2\sin\frac{\Theta}{2}}$, ahol $\Theta$ a terjedési irányok közötti szög. Ezt az összefüggést felhasználva, és figyelembe véve a mintavételi tételt egy adott képpontméretű ($\Delta x$) kamerára megadható az a maximális szög, amelyet a tárgyhullám és a referenciahullám bezárhat: $\Theta_{max}\approx\frac{\lambda}{2\Delta x}$ . Ez a szög a digitális kamerák pixelméretei mellett és látható fény esetén tipikusan $3^o$ körül van, ez indokolja a 4. ábrán látható elrendezés használatát. Hasonló okból a tárgy látószöge sem lehet ennél sokkal nagyobb, azaz nem lehet túl közel a kamerához. |
Szemléltetésképp az alábbi ábra digitális hologramokra mutat példát: az a)-c) ábrák szimulált hologramokat, a d) ábra egy a fenti elrendezésben rögzített valós tárgy digitális hologramját mutatja. | Szemléltetésképp az alábbi ábra digitális hologramokra mutat példát: az a)-c) ábrák szimulált hologramokat, a d) ábra egy a fenti elrendezésben rögzített valós tárgy digitális hologramját mutatja. | ||
123. sor: | 123. sor: | ||
Ismert tehát a hullám közvetlenül a virtuális hologramlemez mögött, a következő lépés a hullám ''terjedésének'' szimulációja. Mivel a valós tárgy és a CCD kamera távolsága véges volt, a terjedést is ebben a véges távolságban kell kiszámolni. Lencse nem szerepelt az optikai elrendezésben, tehát szabad hullámterjedéssel van dolgunk, azaz diffrakciós integrált kell numerikusan kiszámolni. A CCD kamera korlátozott felbontásából és a kis térszögű hullámok alkalmazásából rögtön következik, hogy alkalmazható a Fresnel-féle parabolikus/paraxiális közelítés, ami nagy könnyebbséget jelent a számolás szempontjából, mivel így az visszavezethető egy Fourier-transzformációra. A diffrakció Fresnel-közelítésben esetünkben az alábbi módon írható fel: $$A(u,v)=\frac{i}{\lambda D}e^{\frac{-i\pi}{\lambda D}(u^2+v^2)}\int_{\infty}^{\infty}\int_{\infty}^{\infty}R(x,y)h(x,y) e^{\frac{-i\pi}{\lambda D}(x^2+y^2)}e^{i2\pi(xu+yv)}\textup{d}x\textup{d}y,$$ ahol $A(u,v)$ az eredmény (rekonstruált kép) komplex amplitúdó eloszlása, tehát fázisinformáció is van (!), $h(x,y)$ a digitális hologram, $R(x,y)$ a referencia hullám komplex amplitúdója, $D$ a rekonstrukció/tárgy/kép sík távolsága a hologramtól (CCD kamerától), $\lambda$ pedig a fény hullámhossza. A fenti összefüggést a Fourier-transzformáció segítségével tovább írhatjuk, valamint áttérve diszkrét numerikus koordinátákra: $$A(u',v')=\frac{i}{\lambda D}e^{\frac{-i\pi}{\lambda D}\left((u'\Delta x')^2+(v'\Delta y')^2\right)}\mathcal F^{-1} \left[R(x,y)h(x,y) e^{\frac{-i\pi}{\lambda D}\left((k\Delta x)^2+(l\Delta y)^2\right)}\right],$$ ahol Δx, Δy a CCD képpontmérete, k,l illetve u’,v’ pedig képpont koordináták a hologram illetve a kép síkjában. A Fourier-transzformáció megjelenése azért előnyös, mert gyors-Fourier-algoritmus (FFT) alkalmazásával már rendkívül gyorsan kiszámolható az egész integrál. (Megj.: Sok esetben az integrál előtti tényezők figyelmen kívül hagyhatók) | Ismert tehát a hullám közvetlenül a virtuális hologramlemez mögött, a következő lépés a hullám ''terjedésének'' szimulációja. Mivel a valós tárgy és a CCD kamera távolsága véges volt, a terjedést is ebben a véges távolságban kell kiszámolni. Lencse nem szerepelt az optikai elrendezésben, tehát szabad hullámterjedéssel van dolgunk, azaz diffrakciós integrált kell numerikusan kiszámolni. A CCD kamera korlátozott felbontásából és a kis térszögű hullámok alkalmazásából rögtön következik, hogy alkalmazható a Fresnel-féle parabolikus/paraxiális közelítés, ami nagy könnyebbséget jelent a számolás szempontjából, mivel így az visszavezethető egy Fourier-transzformációra. A diffrakció Fresnel-közelítésben esetünkben az alábbi módon írható fel: $$A(u,v)=\frac{i}{\lambda D}e^{\frac{-i\pi}{\lambda D}(u^2+v^2)}\int_{\infty}^{\infty}\int_{\infty}^{\infty}R(x,y)h(x,y) e^{\frac{-i\pi}{\lambda D}(x^2+y^2)}e^{i2\pi(xu+yv)}\textup{d}x\textup{d}y,$$ ahol $A(u,v)$ az eredmény (rekonstruált kép) komplex amplitúdó eloszlása, tehát fázisinformáció is van (!), $h(x,y)$ a digitális hologram, $R(x,y)$ a referencia hullám komplex amplitúdója, $D$ a rekonstrukció/tárgy/kép sík távolsága a hologramtól (CCD kamerától), $\lambda$ pedig a fény hullámhossza. A fenti összefüggést a Fourier-transzformáció segítségével tovább írhatjuk, valamint áttérve diszkrét numerikus koordinátákra: $$A(u',v')=\frac{i}{\lambda D}e^{\frac{-i\pi}{\lambda D}\left((u'\Delta x')^2+(v'\Delta y')^2\right)}\mathcal F^{-1} \left[R(x,y)h(x,y) e^{\frac{-i\pi}{\lambda D}\left((k\Delta x)^2+(l\Delta y)^2\right)}\right],$$ ahol Δx, Δy a CCD képpontmérete, k,l illetve u’,v’ pedig képpont koordináták a hologram illetve a kép síkjában. A Fourier-transzformáció megjelenése azért előnyös, mert gyors-Fourier-algoritmus (FFT) alkalmazásával már rendkívül gyorsan kiszámolható az egész integrál. (Megj.: Sok esetben az integrál előtti tényezők figyelmen kívül hagyhatók) | ||
− | Látható, hogy a numerikus rekonstrukció paraméterei a D rekonstrukciós távolság kivételével tulajdonképpen adottak, mivel mind a hologram képpontméretei, mind a fényhullámhossz már a hologram felvételekor meghatározottak. A D távolságot azonban viszonylag szabadon lehet - és mélységben tagolt tárgy esetén kell is - változtatni, méghozzá a valós tárgy-kamera távolság környékén, így az A(u,v)-ból képzett intezitás-eloszlásban a tárgy éles képe lesz látható. Ez ahhoz hasonlít, mint mikor fókuszálunk a fényképezésnél, amikor is kell találnunk egy olyan tárgytávolságot, amelynél a tárgy minden része elfogadhatóan éles. Az előző összefüggéssel kapcsolatban még meg kell jegyezni, hogy a Fourier-transzformáció megköti az (u,v) képsíkbeli Δx′, Δy′ képpontméretet az alábbiak szerint: $\Delta x’=\frac{\lambda D}{\Delta x | + | Látható, hogy a numerikus rekonstrukció paraméterei a D rekonstrukciós távolság kivételével tulajdonképpen adottak, mivel mind a hologram képpontméretei, mind a fényhullámhossz már a hologram felvételekor meghatározottak. A D távolságot azonban viszonylag szabadon lehet - és mélységben tagolt tárgy esetén kell is - változtatni, méghozzá a valós tárgy-kamera távolság környékén, így az A(u,v)-ból képzett intezitás-eloszlásban a tárgy éles képe lesz látható. Ez ahhoz hasonlít, mint mikor fókuszálunk a fényképezésnél, amikor is kell találnunk egy olyan tárgytávolságot, amelynél a tárgy minden része elfogadhatóan éles. Az előző összefüggéssel kapcsolatban még meg kell jegyezni, hogy a Fourier-transzformáció megköti az (u,v) képsíkbeli Δx′, Δy′ képpontméretet az alábbiak szerint: $\Delta x’=\frac{\lambda D}{\Delta x N_x}$ ahol $N_x$ a gyors-Fourier-algoritmusban alkalmazott (lineáris) mátrixméret $x$ irányban. A fenti összefüggés szerint tehát a képsíkbeli képpontméret változik, méghozzá egyenesen arányos a D rekonstrukciós távolsággal. Ezt a rekonstruált képen látható méretek helyes értelmezéséhez figyelembe kell venni! |
Az alábbi ábrán példaképp egy mérésben rögzített digitális hologram számítógépes rekonstrukciója látható. A tárgy egy 40 mm x 40 mm belső méretű, peremén befogott 0,2 mm vastagságú bronz lemez (membrán) volt. A lemez felületét fehérre festettük a jobb reflexió miatt, de a felület képen látható szemcsézettsége nem a festés hibája, hanem a matt felület lézeres megvilágítása miatt látható, és minden hasonló mérésben a képzaj egyik forrása. A mérésekben ilyen, vagy ehhez hasonló tárgyakat használunk akár interferometrikus pontosságú mérésekre is. Az ábrán nem csak a tárgy éles képe, hanem középen egy igen fényes nyaláb, rá középpontosan tükrösen pedig egy szórt nyaláb is látható. Ez a három folt nem más, mint egy valódi hologram rekonstrukciójánál is látható három elhajlási rend. A középső folt a nem elhajló, áthaladó nulladrend, a két első rend közül az egyik vetített kép (itt ez látható éles képként), a másiknak pedig virtuális kép felel meg. (Mivel a rekonstruált hullám egy síkban van ábrázolva, ez a sík egy ernyőnek tekintendő, ezért lesz az ilyenkor látható éles kép valós.) Ha a rekonstrukciót az ellentétes irányban számoljuk ki -D távolságban, akkor az éles kép helyén szórt folt, az eredetileg szórt folt helyén pedig éles kép jelenik meg, azaz a két első elhajlási vagy hologramrend egymás ''konjugáltja'', hasonlóan az analóg holográfiához. [[Fájl:fizlab4-holo-6.jpg|bélyegkép|250px|Digitális hologram rekonstrukciójának intenzitás eloszlása a virtuális tárgy-/képsíkban.]] | Az alábbi ábrán példaképp egy mérésben rögzített digitális hologram számítógépes rekonstrukciója látható. A tárgy egy 40 mm x 40 mm belső méretű, peremén befogott 0,2 mm vastagságú bronz lemez (membrán) volt. A lemez felületét fehérre festettük a jobb reflexió miatt, de a felület képen látható szemcsézettsége nem a festés hibája, hanem a matt felület lézeres megvilágítása miatt látható, és minden hasonló mérésben a képzaj egyik forrása. A mérésekben ilyen, vagy ehhez hasonló tárgyakat használunk akár interferometrikus pontosságú mérésekre is. Az ábrán nem csak a tárgy éles képe, hanem középen egy igen fényes nyaláb, rá középpontosan tükrösen pedig egy szórt nyaláb is látható. Ez a három folt nem más, mint egy valódi hologram rekonstrukciójánál is látható három elhajlási rend. A középső folt a nem elhajló, áthaladó nulladrend, a két első rend közül az egyik vetített kép (itt ez látható éles képként), a másiknak pedig virtuális kép felel meg. (Mivel a rekonstruált hullám egy síkban van ábrázolva, ez a sík egy ernyőnek tekintendő, ezért lesz az ilyenkor látható éles kép valós.) Ha a rekonstrukciót az ellentétes irányban számoljuk ki -D távolságban, akkor az éles kép helyén szórt folt, az eredetileg szórt folt helyén pedig éles kép jelenik meg, azaz a két első elhajlási vagy hologramrend egymás ''konjugáltja'', hasonlóan az analóg holográfiához. [[Fájl:fizlab4-holo-6.jpg|bélyegkép|250px|Digitális hologram rekonstrukciójának intenzitás eloszlása a virtuális tárgy-/képsíkban.]] | ||
162. sor: | 162. sor: | ||
=== Holografikus optikai elem készítése === | === Holografikus optikai elem készítése === | ||
<wlatex> | <wlatex> | ||
− | Ismételje meg az első feladatot tárgyként a mérőhelyen található domború tükröt használva. Vizsgálja meg a kész holografikus tükör működését, és jegyezze fel tapasztalatait. Hogyan jelenik meg a domború tükörnek megfelelő tükörkép? Hogyan viselkedik az optikai elemünk, ha a másik oldalát használjuk? Mi változik, ha a beeső fénysugarak és a megfigyelés is ferdék? Lehetséges valós, vetített képet készíteni az elemmel? Használja a | + | Ismételje meg az első feladatot merőleges megvilágítással és tárgyként a mérőhelyen található domború tükröt használva. Vizsgálja meg a kész holografikus tükör működését, és jegyezze fel tapasztalatait. Hogyan jelenik meg a domború tükörnek megfelelő tükörkép? Hogyan viselkedik az optikai elemünk, ha a másik oldalát használjuk? Mi változik, ha a beeső fénysugarak és a megfigyelés is ferdék? Lehetséges valós, vetített képet készíteni az elemmel? Használja a mérőhelyen található piros és fehér LED fényforrásokat, vagy egy mobiltelefon vakuzó LED-jét folytonos üzemben. Lehetőség szerint dokumentálja is a látottakat digitális fényképekkel. |
</wlatex> | </wlatex> | ||
172. sor: | 172. sor: | ||
=== Elmozdulásmező vizsgálata digitális holográfiával === | === Elmozdulásmező vizsgálata digitális holográfiával === | ||
<wlatex> | <wlatex> | ||
− | A mérési gyakorlat második részében megmérjük egy membrán közepén a síkra merőleges elmozdulás legnagyobb értékét. A méréshez a 4. ábrán látható elrendezést használjuk, de a valóságos kitágított nyalábjaink nem tökéletes síkhullámok. A fényforrás egy 35 mW teljesítményű 632,8 nm-es vörös fényű léghűtéses He-Ne gázlézer. A képeket egy Baumer Optronics MX13 típusú 1280x1024 képpont felbontású monokróm CCD kamerával rögzítjük, melynek képpontmérete 6,7 μm x 6,7 μm, és saját kezelőprogrammal rendelkezik. Ebben a kamera élőképe is megtekinthető (jobb oldalon a kék film gomb, a szürke azonnali lefagyást okoz!), valamint kézzel állíthatók az exponálás (záridő, erősítés) paraméterei a távcső gomb alatti gombbal. A rögzített 8 bites színmélységű kép hisztogramja (különböző szürkeségi szintű pixelek számának eloszlása) egy másik programmal tekinthető meg. Ebben a ''Hisztogram'' gombra kattintva a mintavevő ablak a címsorát egérrel elhúzva a megfelelő képterületre helyezhető, majd dupla kattintással rögzül. Ezután a ''Timer'' gombbal ki/be kapcsolható a hisztogram élő követése. A hisztogram ábra és a felette található limitszámlálók értéke alapján állapítható meg pontosan, hogy a kép esetleg alul- vagy túlexponált. (A hisztogram funkció számos digitális fényképezőgépben is megtalálható már.) Az elrendezésben található BS1 nyalábosztó forgatható, ezáltal az intenzitás osztásaránya változtatható a tárgy- és a referenciaág között, de a referenciaágban található még egy forgatható nyalábosztó, amelyet további gyengítésre használunk. A digitális hologramokat egy HoloVision 2.2 nevű szabadon felhasználható programmal rekonstruáljuk ([https://sourceforge.net/projects/holovision/ projekt honlap]). | + | A mérési gyakorlat második részében megmérjük egy membrán közepén a síkra merőleges elmozdulás legnagyobb értékét. A méréshez a 4. ábrán látható elrendezést használjuk, de a valóságos kitágított nyalábjaink nem tökéletes síkhullámok. A fényforrás egy 35 mW teljesítményű 632,8 nm-es vörös fényű léghűtéses He-Ne gázlézer. A képeket egy Baumer Optronics MX13 típusú 1280x1024 képpont felbontású monokróm CCD kamerával rögzítjük, melynek képpontmérete 6,7 μm x 6,7 μm, és saját kezelőprogrammal rendelkezik. Ebben a kamera élőképe is megtekinthető (jobb oldalon a kék film gomb, a szürke azonnali lefagyást okoz!), valamint kézzel állíthatók az exponálás (záridő, erősítés) paraméterei a távcső ikonnal ellátott gomb alatti gombbal. Az erősítés optimális értéke 100-120 körüli az állító csúszka középső tartományában. A rögzített 8 bites színmélységű kép hisztogramja (különböző szürkeségi szintű pixelek számának eloszlása) egy másik programmal tekinthető meg. Ebben a ''Hisztogram'' gombra kattintva a mintavevő ablak a címsorát egérrel elhúzva a megfelelő képterületre helyezhető, majd dupla kattintással rögzül. Ezután a ''Timer'' gombbal ki/be kapcsolható a hisztogram élő követése. A hisztogram ábra és a felette található limitszámlálók értéke alapján állapítható meg pontosan, hogy a kép esetleg alul- vagy túlexponált. (A hisztogram funkció számos digitális fényképezőgépben is megtalálható már.) Az elrendezésben található BS1 nyalábosztó forgatható, ezáltal az intenzitás osztásaránya változtatható a tárgy- és a referenciaág között, de a referenciaágban található még egy forgatható nyalábosztó, amelyet további gyengítésre használunk. A digitális hologramokat egy HoloVision 2.2 nevű szabadon felhasználható programmal rekonstruáljuk ([https://sourceforge.net/projects/holovision/ projekt honlap]). |
A tényleges mérés előtt ellenőrizzük az elrendezést és annak beállításait. Mérje meg a kamera és a tárgy távolságát. Az elrendezésben a megfigyelés merőleges a membrán felületére, a megvilágítás azonban nem. Mérje meg ennek szögét távolságokból, és az adatok alapján a (9) összefüggés alkalmazásával határozza meg azt a síkra merőleges elmozdulásértéket, amelynél az okozott fázisváltozás 2π. (Ehhez vegyen fel egy derékszögű koordinátarendszert a membránhoz igazodva.) Ez lesz a mérés ún. kontúrtávolsága, azaz lényegében alapvető nagyságrendje. | A tényleges mérés előtt ellenőrizzük az elrendezést és annak beállításait. Mérje meg a kamera és a tárgy távolságát. Az elrendezésben a megfigyelés merőleges a membrán felületére, a megvilágítás azonban nem. Mérje meg ennek szögét távolságokból, és az adatok alapján a (9) összefüggés alkalmazásával határozza meg azt a síkra merőleges elmozdulásértéket, amelynél az okozott fázisváltozás 2π. (Ehhez vegyen fel egy derékszögű koordinátarendszert a membránhoz igazodva.) Ez lesz a mérés ún. kontúrtávolsága, azaz lényegében alapvető nagyságrendje. | ||
187. sor: | 187. sor: | ||
==Egyéb információk== | ==Egyéb információk== | ||
− | A jegyzőkönyvben: elméleti bevezető nem szükséges, de saját igény esetén se legyen több egy oldalnál. Foglalja össze a mérés során tapasztaltakat! Mellékelje a ténylegesen használt elrendezések rajzát vagy fényképét, és ha készültek digitális fényképek a rekonstrukciókról, azokat is. Térjen ki a mérési feladatokban megfogalmazott kérdésekre is! | + | A jegyzőkönyvben: elméleti bevezető nem szükséges, de saját igény esetén se legyen több egy oldalnál. Foglalja össze a mérés során tapasztaltakat! Mellékelje a ténylegesen használt elrendezések rajzát vagy fényképét, és ha készültek digitális fényképek a rekonstrukciókról, azokat is. A nagy fájlméretű jegyzőkönyv elkerülése érdekében lehetőség szerint a beillesztés előtt a fényképeket redukálja 1000*1000 képpont felbontás alá. Térjen ki a mérési feladatokban megfogalmazott kérdésekre is, valamint a számításoknál előforduló eltérések lehetséges okaira! |
'''Biztonsági tudnivalók: A direkt lézerfénybe ne nézzünk bele, különösen a digitális holográfia résznél használtba! A nem kitágított vagy nem szórt lézerfénnyel megvilágított pontokat lehetőleg ne nézzük hosszabb ideig, a szórt lézerfénybe pedig csak a szükséges ideig nézzünk! A csillogó ékszereket vagy karórákat vegyük le, az optikai asztalok magasságába ne hajoljunk le! Mozogjunk körültekintően a laborban: vigyázzunk az asztal széléhez közel lévő beállított elemekre, illetve a nyalábtágítókig található elemekre!''' | '''Biztonsági tudnivalók: A direkt lézerfénybe ne nézzünk bele, különösen a digitális holográfia résznél használtba! A nem kitágított vagy nem szórt lézerfénnyel megvilágított pontokat lehetőleg ne nézzük hosszabb ideig, a szórt lézerfénybe pedig csak a szükséges ideig nézzünk! A csillogó ékszereket vagy karórákat vegyük le, az optikai asztalok magasságába ne hajoljunk le! Mozogjunk körültekintően a laborban: vigyázzunk az asztal széléhez közel lévő beállított elemekre, illetve a nyalábtágítókig található elemekre!''' |
A lap jelenlegi, 2017. november 3., 11:35-kori változata
Tartalomjegyzék |
Bevezetés
Mint az közismert, az ember térbeli látással rendelkezik. Ez részben abból adódik, hogy két szemmel sztereo látásra van módunk, azaz testünk vagy szemünk mozgatása nélkül is korábbi tapasztalataink alapján el tudjuk helyezni a térben az érzékelt tárgyakat, mivel két szemünk eltérő képet lát. Azonban még egy szemmel is lehetőségünk van bizonyos mértékben a térbeliség megítélésére, hiszen a különböző távolságban található tárgyakat csak akkor látjuk élesen, ha szemünk ún. akkomodációs, fókuszállítási képességét használjuk. Különböző távolságokra fókuszálva, és figyelve a tárgyak képének változását ezen a módon is térbeli képet alkothatunk környezetünkről. Tehetjük ezt annak ellenére, hogy érzékelőnk - a szem retinája - csak kétdimenziós.
Az általunk látottak rögzítésének egyik elterjedt módja a fényképezés. Ekkor a látáshoz hasonlóan a valóságos tárgyakat egy kétdimenziós felületre képezzük valamilyen optikai rendszer segítségével. Ha az elkészült fényképet nézzük, akkor a valóság szemléléséhez képest még két szemmel sem látunk ahhoz hasonló térbeli hatást. Ha különböző távolságokra fókuszálunk, legfeljebb a fényképet láthatjuk életlenül. A fénykép tehát kevesebb információt tartalmaz, mint amiről készítettük, a valóságban rendelkezésre álló információk egy része nem rögzült.
A hiányzó információ pedig nem más, mint a fény fázisa, ugyanis az érzékelők, detektorok csak a fény intenzitását észlelik. A holográfia újítása - amelyet Gábor Dénesnek köszönhetünk (1947), és amelyért Nobel-díjat kapott (1971) - éppen az, hogy közvetett módon mégis lehetővé teszi egy hullám fázisának rögzítését annak ellenére, hogy a holográfia is a fotónegatívokéhoz hasonló elvű képrögzítést alkalmaz. A holográfia „trükkje”, hogy a fázisváltozást intenzitásváltozássá változtatja/kódolja, azaz a detektorok számára is érzékelhetővé teszi. A kódolás megvalósítására az interferencia jelensége alkalmas, amelynél az eredő kép intenzitásának ingadozásai az interferáló fényhullámok fáziskülönbségétől függenek. A megvalósításhoz tehát a rögzítendő tárgyról kiinduló hullámon kívül egy másik hullámra is szükség van. A siker további feltételei, hogy a két hullám interferenciaképes legyen, ehhez nagy koherenciájú fényforrásokra (lézerekre) van szükség, valamint hogy az érzékelő felbontása elegendően nagy legyen ahhoz, hogy az interferenciaképet rögzíteni tudja. De mire jó egy ilyen interferenciamező? Amint azt alább látni fogjuk, a kidolgozott hologramlemez megfelelően megvilágítva a diffrakció révén úgymond rekonstruálja a kérdéses tárgyról szórt fény intenzitás és fáziseloszlását egyaránt, így a látvány teljesen háromdimenziós lesz. A hullámok fázisának rögzítése azonban nem csak érdekes látványt eredményezhet, hanem jónéhány optikai mérési eljárást is lehetővé tesz.
Jelen mérés célja: négy kisebb méretű és eltérő típusú hologram készítésén keresztül elsajátítani a hagyományos (analóg) holográfia gyakorlati alapjait, és megismerkedni két konkrét méréstechnikai alkalmazással: a holografikus interferometriával és a holografikus optikai elemek fogalmával. A mérés második részében a digitális holográfiával és annak mérétechnikai alkalmazásával ismerkedünk meg.
Elméleti összefoglaló
Transzmissziós hologram készítése és rekonstrukciója
Az ún. fehérfényű látványhologramok szemlélésnek elrendezése egyesek számára ismert lehet kiállítások révén: a kidolgozott hologramlemezt erős pontszerű fényforrással világítják meg, pl. spotlámpával. Azonban történetileg nem ez a hologramtípus az első, és az alapjelenség illetve a készítés megértéséhez sem ez a legalkalmasabb típus.
Hologram készítésének egyik lehetséges elrendezését mutatja az 1/a. ábra. Ezzel az elrendezéssel ún. transzmissziós off-axis hologram készíthető. Fényforrásnak lézerdiódát használunk, mely nagyfokú koherenciája révén biztosítja az interferenciaképességet. Ehhez továbbá ki kell zárni más természetes és hagyományos fényforrásokat, tehát a tárgyat külön meg kell világítani a lézerfénnyel. A diódalézer fénye nyalábformáló előtétlencse nélkül kb. ellipszis keresztmetszetű nyalábként tágul (divergens), így a tárgy- és referenciahullám úgy hozható létre, hogy a nyaláb egy része közvetlenül, a másik fele pedig a tárgyról szóródva jut a hologramlemezre, és ott interferálnak.
Ez a negatív filmektől eltérően többnyire szilárd hordozóra (pl. üveglap) felvitt nagy felbontású fényérzékeny réteget jelent. A hologramlemezek térbeli felbontása egy-két nagyságrenddel nagyobb, mint a színes negatív filmeké! Az interferenciakép, az ún. holografikus rács akkor rögzíthető jó minőségben, ha a két találkozó hullám intenzitásának aránya, valamint együttes intenzitásuk, és az exponálás ideje is megfelelő. Mivel az expozíciós idők másodperc vagy perc nagyságrendűek is lehetnek, arról is gondoskodni kell, hogy az interferenciakép és a hologramlemez egymáshoz képest ne mozogjon/rezegjen, ezért az egész elrendezést speciális optikai asztalra szokás helyezni, amely rezgésmentes, és kellő merevségű, valamint más zavaró hatásokat is ki kell zárni (pl. légáramlatok, háttérfény). Érdemes megjegyezni, hogy az 1/a. ábrán látható elrendezésben nem található a fényképezésnél vagy a látásnál meglévő leképező lencse. Ez azt is jelenti, hogy egy-egy tárgypontról a hologramlemez egészére szóródik fény, nincs tehát 1-1 megfeleltetés („leképezés“) a tárgypontok és a fényérzékeny lemez pontjai között (mint a hagyományos fényképezésnél). Mivel ebben az elrendezésben a tárgy és a referencia hullám jelentős szöget zár be egymással, ezért hívjuk off-axis hologramnak.
Az így exponált hologramlemezt típusától függően esetleg még elő is kell hívni, ami egy többlépéses vegyi kidolgozás, ezáltal rögzül rajta tartósan a kép. Ezen a képen azonban eltérően egy fényképtől önmagában nem látható semmi, ami az eredeti tárgyra hasonlítana, pl. egy negatív kicsinyített képmás, mint a fényképezésnél. Ez nem is csoda, hiszen a tárgy felől érkező hullámot a referenciával módosítottuk, és leképezést sem alkalmaztunk. A megfelelő kép előállításához egy másik lépésre, a hologram rekonstrukciójára van szükség, ami amolyan „dekódolás” is: ez látható az 1/b. ábrán. Az elrendezésből a tárgyat elhagyva csak a referencia hullám jut a lemezre, és ott diffraktálódik a létrejött rácsozaton, mivel azon a kidolgozás módjától és a lemez típusától függően vagy sötét és világos részek váltják egymást (amplitúdó hologram), vagy kisebb és nagyobb törésmutatójú részek (fázis hologram).
A tárgy virtuális térbeli képe (amely ernyőn nem fogható fel) annak eredeti helyén jelenik meg, ha a lemez másik oldaláról szemlélődünk, továbbá ideális esetben azonos méretben és irányításban látható. Különböző irányokból másként látszik, akár vízszintesen, akár függőlegesen mozog a megfigyelő (teljes parallaxis!), tehát két szemmel nézve sztereo képet ad, azonban a 3D mozival ellentétben nem csak egyetlen sztereo képpár nyerhető vissza. A különböző mélységben található részekre rá lehet fókuszálni szemmel, így a térbeli mélysége is megvan. Azonban van néhány korlátozó eltérés is: mivel mind a hologram rögzítéséhez, mind a rekonstrukcióhoz monokromatikus lézer fényforrást kell használni, a holografikus kép eredendően egyszínű, valamint a sík hologramlemez véges mérete miatt a virtuális tárgy többnyire nem járható körbe, a lemez mérete korlátozó ablakot jelent. Mivel a szemünkbe az ábra elrendezése szerint jutó fény áthaladt a lemezen (a referencia megvilágítás a lemez másik oldalán van, mint a szem), ezért ez a virtuális kép transzmissziós. A diffrakció révén azonban létrejön egy a rajzon fel nem tüntetett valós (ernyőn felfogható) kép is a lemez átellenes oldalán, amely így szintén transzmissziós. Mivel a hologram off-axis, a kétféle kép nyalábja különböző irányba terjed. Ha a valós képet jól kivehető módon szeretnénk megfigyelni, az 1/c. ábrán látható rekonstrukciós elrendezését használhatjuk. Ekkor egy keskeny lézersugárral világítjuk át a hologramlemez valamely kis darabját, és a geometriát úgy választjuk meg, hogy a megvilágító lézersugár a hologramlemezhez képest pont azzal az iránnyal ellentétes irányban haladjon, amelyben a felvételkor használt referencianyaláb érte a lemezt.
A holográfia elvi háttere
Az eredeti tárgyhullám másának visszanyerése matematikailag az alábbi egyszerű módon látható be amplitúdó hologram esetére. Tekintsük a fényhullám amplitúdóját a hologramlemez közvetlen környezetében. Felvételkor a lemezhez érkező két hullám komplex amplitúdója legyen az referencia, és a tárgyhullám, ahol R és T valós értékű amplitúdók. A referenciahullám R(x,y) erőssége a lemeznél már csak lassan változik, gyakorlatilag R állandónak tekinthető. A lemezt exponáló intenzitáseloszlás, azaz interferenciakép
alakú, ahol egy anyagállandó és az expozíciós idő szorzata. Rekonstrukciókor a hologramlemezt az eredeti referenciahullámmal átvilágítva közvetlenül a lemez mögött a komplex amplitúdó
alakot ölt. Ennek első tagja a referenciahullám áthaladó hányada, második -al arányos tagja egy fókuszálódó (ez miatt lehet) konjugált kép, harmadik t-vel arányos tagja pedig az eredeti tárgyhullám mása (vegyük észre, hogy az arányossági tényezők mind valós állandók!). Ez virtuális képet ad, mivel közvetlenül a hologramlemez mögötti síkdarabon így ugyanolyan hullámtér áll elő (fázisát is tekintve, hisz t komplex), mint az eredeti tárgyról érkező fény esetén. A (3) összefüggést épp ezért a holográfia alapegyenletének is nevezik. Off-axis hologram esetén ez a három elhajlási rend ( és ) irányban szétválik, ellenkező esetben viszont nem. (Megjegyzés: ha a lemez viselkedése nem teljesen lineáris, megjelenhetnek magasabb diffrakciós rendek is)
Reflexiós hologram készítése és rekonstrukciója
A fejezet elején említett fehérfényű látványhologramok az eddig tárgyalt típustól abban térnek el, hogy in-line elrendezésűek, azaz a nyalábok a lemez normálisával nulla vagy kis szöget zárnak be, valamint reflexiós elrendezésűek: a referencia és a tárgynyaláb a lemez átellenes oldaláról érkezik, rekonstrukciókor pedig a megvilágítás és a megfigyelés van azonos oldalon. A reflexiós hologramok rögzítésének elrendezését a 2/a. ábra mutatja. Ilyen hologramok esetén is megfigyelhető valós és virtuális rekonstruált kép, az ezekhez tartozó elrendezés a 2/b. és 2/c. ábrán látható.
Fehér fényben ezek a hologramok azért tekinthetők meg, mert kb. vagy még vastagabb fényérzékeny réteget tartalmazó lemezre készülnek, így már ún. vastag hologramnak tekinthetők a hullámhosszhoz képest. A vastag diffrakciós rácsok ún. Bragg-effektust mutatnak: a fehér fényt alkotó hullámokból csak a rögzítésnél használthoz közeli hullámhosszakon diffraktálnak jelentősen, így „szelektálnak” a színek között, továbbá érzékenyek a rekonstrukciónál alkalmazott megvilágítás irányára is, amelynek nagyjából azonosnak kell lennie a felvételkori referencia nyaláb irányával, ez pedig egy irányszelektivitást jelent. Ez utóbbi tulajdonságnak köszönhetően vastag hologramlemezbe többet is lehet exponálni úgy, hogy a rögzített képek közül lényegében mindig csak egy rekonstruálódik a megvilágítás irányától függően. (Minél vastagabb, „térfogatibb” egy hologram, annál szelektívebb, így szélsőséges esetben rengeteg hologram - vagyis kép, azaz akár bináris adat - rögzíthető a fényérzékeny anyag egyazon térfogatába. Ez az alapja a holografikus adattárolásnak.)
Holografikus interferometria
Mivel a rekonstruált tárgyhullám komplex amplitúdóját maga az eredeti tárgy határozza meg, pl. annak alakja, felületi minősége, így a hologram ezekről is tárol valamennyi információt. Ha egyetlen tárgyról annak két különböző állapotában készítünk egy-egy hologramot ugyanarra a lemezre egymás után azonos referenciával, az így kapott lemezt kétexpozíciós hologramnak hívjuk:
(Itt feltételeztük, hogy a tárgynyalábnak csak a fázisa változott meg érdemben, T valós amplitúdója nem, továbbá az indexek az állapotokat jelölik.) Rekonstrukciókor a két állapot egyidejűleg jelenik meg:
azaz az hullámtérben egy -el és egy -vel arányos tag is szerepel mindkét első elhajlási rendben, amelyek a képeket adják. Ha a virtuális képet szemléljük, ott csak az utolsó tagoknak van járuléka, hisz a többi rend „máshová” terjed, így az arányossági tényezőktől eltekintve a megfigyelhető intenzitás ebben a diffrakciós rendben az alábbi:
ahol a zárójelben álló interferenciatagok egymás konjugáltjai. Eszerint tehát a két állapothoz tartozó tárgyhullám interferál egymással. Mivel és , így a zárójel pedig ennek valós része, azaz Így a tárgy kétexpozíciós holografikus képén a két állapot közti fázisváltozás jellegétől függően jellemzően görbevonalú interferencia-csíkrendszert (ún. kontúrvonalakat) látunk, amely a tárgy megváltozását (vagy alakját) jellemzi. Például ha a tárgy egy deformálható befogott fémlap volt, és a két expozíció között mikrométeres nagyságrendben deformáltuk, akkor az elrendezés geometriájától függően pl. a síkra merőleges elmozdulás-komponens kontúrvonalai lesznek láthatók. Az interferencia-csíkrendszert meghatározó ill. fázisokat a 3. ábra alapján felírva belátható, hogy a különbségüket a alakban adhatjuk meg, ahol a tárgyat megvilágító síkhullám hullámvektora, pedig a tárgyról a megfigyelés irányába kiinduló nyaláb hullámvektora (), valamint az elmozdulásvektor és az úgynevezett érzékenységi vektor. Az ábrán a piros nyilak önkényesen kiragadott sugarak a kiterjedt nyalábból. Mivel általános esetben az elmozdulásvektor a felület különböző részein nem állandó, a fáziskülönbség is helyfüggő lesz. A skaláris szorzásból látható, hogy az vektornak csak az érzékenységi vektor irányú komponense számít, azaz csak az mérhető. Az érzékenységi vektor iránya és hossza is változtatható, ha a megvilágítás illetve a megfigyelés (szemlélés) irányát változtatjuk, így pl. ha mozgunk egy kétexpozíciós hologram előtt, a csíkrendszer is mozog, változik, mivel a fáziskülönbség is változni fog.A fentiekhez hasonló, a tárgy megváltozását kontúrozó interferenciacsíkokat lehet látni akkor is, ha csak egyet exponálunk a tárgyról, a kidolgozott hologramlemezt tized-mikrométeres pontossággal (!) visszahelyezzük az erre alkalmas tartóba, majd a tárgyat továbbra is az eredeti nyalábokkal megvilágítva deformáljuk. Ekkor az eredeti állapot képe interferál a megváltozott állapot élő képével, így ahogy változik a deformáció, úgy változnak az interferenciacsíkok is. Ennek az igen látványos módszerenek a neve real-time holografikus interferometria, és mutatja, hogy megfelelő technológia mellett a fázishelyes fényhullám rekonstrukciót mennyire komolyan lehet venni.
Holografikus optikai elemek
Ha a tárgyhullám és a referenciahullám egyaránt síkhullám, amelyek valamilyen szöget zárnak be, a hologramon rögzülő interferenciakép egyszerű, ekvidisztáns egyenes csíkokból álló rács lesz. Az ilyen diffrakciós rácsot tekinthetjük a legegyszerűbb példának a holografikus optikai elemekre (HOE-kre). A holografikus úton létrehozott rács előnye, hogy egyszerűen előállítható, nagyon jó hatásfokú diszperzív elemet szolgáltat spektroszkópiai alkalmazásokhoz. Természetesen a rácsállandó a két síkhullám hullámhosszának és bezárt szögének függvényében pontosan beállítható. Komplexebb feladatokat ellátó (pl. helyfüggő rácsállandójú vagy fókuszáló) diffrakciós rácsokat is egyszerűen előállíthatunk holografikus úton: mindössze a két interferáló síkhullám egyikét kell kicserélnünk alkalmasan megtervezett hullámfrontú nyalábra.
Mivel a hologram által rekonstruált kép olyan, mintha a tárgy teljes valójában „ott lenne“, várható, hogy ha a tárgy szerepét valamilyen optikai eszköz, pl. egy lencse vagy egy tükör tölti be, akkor a hologram bizonyos korlátok között valóban úgy fog működni, mint az adott optikai eszköz, amelyről készült (tehát pl. az adott módon fókuszálni vagy reflektálni fogja a fényt). Az ilyen egyszerű holografikus lencsék vagy tükrök is a HOE-k csoportjába tartoznak.
Az alábbiakban egy konkrét példaként megnézzük, hogyan lehet két egyszerű gömbhullám interferenciájának rögzítésével holografikus lencsét előállítani. Feltételezzük, hogy mindkét gömbhullám a hologram síkjára merőleges optikai tengelyről indul ki (ezt ún. on-axis elrendezésnek nevezzük). Az egyik (nevezzük ezt a referenciahullámnak) , a másik (nevezzük ezt a tárgyhullámnak) távolságra a hologramtól. Ekkor – a gömbhullámok jólismert parabolikus/paraxiális közelítését alkalmazva, és mindkét hullámnál konstans egységnyi amplitudót feltételezve – a referenciahullám és a tárgyhullám (1) egyenletben szereplő ill. komplex amplitudója az alábbi alakban írható a hologram síkjának (x,y) pontjában:
A hologramon rögzülő interferenciakép ekkor így alakul:
a hologram áteresztőképessége pedig ismét a (2) egyenlettel írható fel, tehát lineáris függvénye -nek. Rekonstruáljuk most a hologramot az referenciahullám helyett egy merőleges beesésű síkhullámmal (amelynek tehát a komplex amplitudója a hologram síkjában , egy valós konstans). Ekkor a (3) egyenlet kifejezése helyett szerepel, azaz egy konstans faktortól eltekintve maga a áteresztőképesség-függvény adja meg az átvilágított lemez mögött előálló fényhullám komplex amplitudóját. Ebből és a (2) és (11) egyenletekből látható, hogy a hologramból rekonstruálódó három elhajlási rend a következő lesz:
- egy konstans komplex amplitudójú merőleges síkhullám (nulladrend, a megvilágító nyaláb elhajlás nélkül továbbhaladó része),
- egy fázissal leírható hullám (+1-rend),
- egy fázissal leírható hullám (-1-rend).
A -rendű tagok fázisának matematikai alakjából látható (emlékeztetők: a (10) képletek), hogy ezek voltaképpen olyan (paraxiális) gömbhullámok, amelyek , ill. távolságra fókuszálódnak a hologram síkjától. Természetesen és közül az egyik pozitív, a másik negatív, tehát a -rendek közül az egyik konvergens, a másik divergens gömbhullám, mindkettő fókusztávolsággal. Összefoglalva: a két on-axis gömbhullám interferenciáját rögzítő hologrammal olyan HOE-t kaptunk, amely gyűjtő- és szórólencseként is funkcionálhat, attól függően hogy egy adott alkalmazáskor melyik rekonstruált elhajlási rendet használjuk fel.
A HOE-k legfontosabb alkalmazási területeit azok az esetek jelentik, amikor bonyolult, összetett optikai manipulációkat végrehajtó elrendezések (pl. az optikai távközlésben demultiplexelésre használt sokfókuszú lencsék) helyettesítését szeretnénk megoldani egyetlen egyszerű és kompakt hologrammal. Ilyenkor a legfőbb előny a holográfia alkalmazásával elérhető méret- és költségcsökkenés.
Digitális holográfia
A lézeres hagyományos holográfiával szinte egyidős az a szándék (és az első kezdetleges megvalósítás is), hogy a referencia és a tárgyhullám interferenciájának eredőjét, a holografikus rácsot elektronikus vagy digitális jel formájában kezeljék. Ez egyrészt jelentheti a létező hullámfrontok által generált interferencia mező digitális megörökítését, másrészt jelentheti a digitálisan kiszámolt hologram valós rekonstrukcióját. Az elektronikus eszközök használatának további előnye még a körülményes kémiai eljárások mellőzhetősége is.
A digitális holográfia fejlődését sokáig hátráltatta három eszköz fejletlen volta:
- Megfelelő képbeviteli eszköz nélkül a tárgyhullám és a referenciahullám finom struktúráját nem lehet megörökíteni. Ez nem csak nagy (kb. 100 vonal/mm) felbontást jelent, hanem a szükséges jel/zaj viszonyt és stabil képbevitelt is.
- A hatalmas adatmennyiség kezelése nagy számítási kapacitást igényel.
- A hullámfrontok rekonstrukciója nagyfelbontású megjelenítő eszközt kívánna.
A hagyományos fotográfiai eljárások fejlettsége (mint amelyeket a nyomtatott áramkörök készítésénél alkalmaznak) először a digitálisan kiszámolt hologramok valós rekonstrukciójának vizsgálatát tette lehetővé. Ezt a szűkebb kutatási területet manapság számítógépes holográfiának nevezik. A nagyteljesítményű számítógépek megjelenése, rohamos fejlődése, valamint a nagy felbontású CCD és CMOS kamerák kifejlesztése idővel lehetővé tette a létező hullámfrontok által generált interferencia mező digitális megörökítését is. Az elmúlt évtizedben megjelent új eszközcsalád - a térbeli fénymodulátorok (SLM) - pedig a digitális hologramok valós idejű megjelenítését teszik lehetővé. Mindezeknek köszönhetően a digitális holográfia teljesítőképessége elérte azt a szintet, hogy méréstechnikai alkalmazásai is léteznek.
Röviden érdemes megjegyezni, hogy az analóg, kémiai, kétdimenziós képérzékelő és fénymoduláló hologramlemez cseréje szintén kétdimenziós digitális eszközökre nem érinti a holográfia lényegét/elvét, a fázisinformáció intenzitásba kódolását, ezért is működhetnek a digitális változatok.Digitális hologram felvételére lényegében egy a hagyományos holográfiában is alkalmazott optikai elrendezést kell megépíteni, melynek vázlata a 4. ábrán látható. Az elrendezés Mach-Zehnder típusú interferométer, melyben a BS1 nyalábosztó tükrön áthaladó fény kitágítás és párhuzamosítás/kollimálás után (kollimátoros nyalábtágító, BE1) alkotja a sík referenciahullámot. Az osztón tükröződő fény kitágítás és kollimálás után (BE2) megvilágítja a tárgyat, a tárgyról szóródott fényhullám pedig a BS2 nyalábosztón egyesül a referencia hullámmal, és együtt jutnak a CCD kamerára. (Az analóg holográfiához hasonlóan az elrendezésben legtöbbször nem található lencse, bár létezik ilyen megvalósítás is.)
A legfontosabb eltérés a digitális holográfiában alkalmazható elrendezések kiválasztásánál a digitális kamerák és a hologramlemezek felbontása közötti különbségből adódik. Míg egy hologramlemez elemi érzékelőinek (anyagszemcsék) mérete/távolsága a látható fény hullámhosszával összemérhető, a digitális kamerák képpontjainak mérete jellemzően egy nagyságrenddel nagyobb, átlagosan 4-10 µm. A mintavételezési tétel csak akkor teljesül, ha a holografikus rács állandója nagyobb, mint két képpont (kamera pixel). Ez akkor valósul meg, ha a tárgy látószöge a kamera egy pontjából nézve elég kicsi, és ha a referenciahullám a tárgyhullámmal kis szöget zár be. (Megjegyezzük, hogy mivel a kamerák mintavételezése integráló jellegű, és nem pontszerű, a mintavételezési tétel megszegése csak folytonos kontrasztcsökkenést okoz a rögzített képeken, tehát kis mértékben még megszeghető a feltétel.) E felbontásbeli különbség miatt a hagyományos holográfia megengedi a tárgy és a referencia nyaláb 1/a. ábrán látható nagyszögű találkozását, a digitális holográfia a technológia jelenlegi állása mellett azonban nem, így csak kvázi – de nem teljesen - in-line elrendezés használható. A digitális kamerák érzékenysége és dinamika tartománya (jelszintek, szürkeségi szintek száma) szintén eltér a hologramlemezekétől, így az exponálás feltételei is mások lesznek.
Mint ismeretes, két síkhullám interferenciája során a keletkezett interferencia csíkrendszer legkisebb térközöltsége: , ahol a terjedési irányok közötti szög. Ezt az összefüggést felhasználva, és figyelembe véve a mintavételi tételt egy adott képpontméretű () kamerára megadható az a maximális szög, amelyet a tárgyhullám és a referenciahullám bezárhat: . Ez a szög a digitális kamerák pixelméretei mellett és látható fény esetén tipikusan körül van, ez indokolja a 4. ábrán látható elrendezés használatát. Hasonló okból a tárgy látószöge sem lehet ennél sokkal nagyobb, azaz nem lehet túl közel a kamerához.
Szemléltetésképp az alábbi ábra digitális hologramokra mutat példát: az a)-c) ábrák szimulált hologramokat, a d) ábra egy a fenti elrendezésben rögzített valós tárgy digitális hologramját mutatja.
A digitális hologramok numerikus rekonstrukciójához (digitális rekonstrukció) az analóg amplitúdó hologramok optikai rekonstrukcióját szimuláljuk a számítógépen. Ha a hologramlemezt mint amplitúdó moduláló eszközt (transzparenciát) a referenciahullámmal átvilágítjuk, akkor sík referenciahullám esetén ennek az az egyszerű modell felel meg, hogy tekintsük a digitális hologramot a hullámfront amplitúdójának, melynek fázisa egyébként állandó. Ez megfelel a valóságban a közvetlenül a hologramlemez mögött észlelhető hullámnak. Ha a referenciahullám gömbhullám volt, akkor a digitális hologramhoz állandó fázis helyett gömbhullám fázisát kell rendelni, így ekkor már komplex amplitúdójú hullámot kapunk.
Ismert tehát a hullám közvetlenül a virtuális hologramlemez mögött, a következő lépés a hullám terjedésének szimulációja. Mivel a valós tárgy és a CCD kamera távolsága véges volt, a terjedést is ebben a véges távolságban kell kiszámolni. Lencse nem szerepelt az optikai elrendezésben, tehát szabad hullámterjedéssel van dolgunk, azaz diffrakciós integrált kell numerikusan kiszámolni. A CCD kamera korlátozott felbontásából és a kis térszögű hullámok alkalmazásából rögtön következik, hogy alkalmazható a Fresnel-féle parabolikus/paraxiális közelítés, ami nagy könnyebbséget jelent a számolás szempontjából, mivel így az visszavezethető egy Fourier-transzformációra. A diffrakció Fresnel-közelítésben esetünkben az alábbi módon írható fel: ahol az eredmény (rekonstruált kép) komplex amplitúdó eloszlása, tehát fázisinformáció is van (!), a digitális hologram, a referencia hullám komplex amplitúdója, a rekonstrukció/tárgy/kép sík távolsága a hologramtól (CCD kamerától), pedig a fény hullámhossza. A fenti összefüggést a Fourier-transzformáció segítségével tovább írhatjuk, valamint áttérve diszkrét numerikus koordinátákra: ahol Δx, Δy a CCD képpontmérete, k,l illetve u’,v’ pedig képpont koordináták a hologram illetve a kép síkjában. A Fourier-transzformáció megjelenése azért előnyös, mert gyors-Fourier-algoritmus (FFT) alkalmazásával már rendkívül gyorsan kiszámolható az egész integrál. (Megj.: Sok esetben az integrál előtti tényezők figyelmen kívül hagyhatók)Látható, hogy a numerikus rekonstrukció paraméterei a D rekonstrukciós távolság kivételével tulajdonképpen adottak, mivel mind a hologram képpontméretei, mind a fényhullámhossz már a hologram felvételekor meghatározottak. A D távolságot azonban viszonylag szabadon lehet - és mélységben tagolt tárgy esetén kell is - változtatni, méghozzá a valós tárgy-kamera távolság környékén, így az A(u,v)-ból képzett intezitás-eloszlásban a tárgy éles képe lesz látható. Ez ahhoz hasonlít, mint mikor fókuszálunk a fényképezésnél, amikor is kell találnunk egy olyan tárgytávolságot, amelynél a tárgy minden része elfogadhatóan éles. Az előző összefüggéssel kapcsolatban még meg kell jegyezni, hogy a Fourier-transzformáció megköti az (u,v) képsíkbeli Δx′, Δy′ képpontméretet az alábbiak szerint: ahol a gyors-Fourier-algoritmusban alkalmazott (lineáris) mátrixméret irányban. A fenti összefüggés szerint tehát a képsíkbeli képpontméret változik, méghozzá egyenesen arányos a D rekonstrukciós távolsággal. Ezt a rekonstruált képen látható méretek helyes értelmezéséhez figyelembe kell venni!
Az alábbi ábrán példaképp egy mérésben rögzített digitális hologram számítógépes rekonstrukciója látható. A tárgy egy 40 mm x 40 mm belső méretű, peremén befogott 0,2 mm vastagságú bronz lemez (membrán) volt. A lemez felületét fehérre festettük a jobb reflexió miatt, de a felület képen látható szemcsézettsége nem a festés hibája, hanem a matt felület lézeres megvilágítása miatt látható, és minden hasonló mérésben a képzaj egyik forrása. A mérésekben ilyen, vagy ehhez hasonló tárgyakat használunk akár interferometrikus pontosságú mérésekre is. Az ábrán nem csak a tárgy éles képe, hanem középen egy igen fényes nyaláb, rá középpontosan tükrösen pedig egy szórt nyaláb is látható. Ez a három folt nem más, mint egy valódi hologram rekonstrukciójánál is látható három elhajlási rend. A középső folt a nem elhajló, áthaladó nulladrend, a két első rend közül az egyik vetített kép (itt ez látható éles képként), a másiknak pedig virtuális kép felel meg. (Mivel a rekonstruált hullám egy síkban van ábrázolva, ez a sík egy ernyőnek tekintendő, ezért lesz az ilyenkor látható éles kép valós.) Ha a rekonstrukciót az ellentétes irányban számoljuk ki -D távolságban, akkor az éles kép helyén szórt folt, az eredetileg szórt folt helyén pedig éles kép jelenik meg, azaz a két első elhajlási vagy hologramrend egymás konjugáltja, hasonlóan az analóg holográfiához.Mivel egy digitális hologramból a teljes komplex hullám kinyerhető, valamint a különböző elhajlási rendek térben szétválnak (azaz a rekonstruált kép különböző helyein jelennek meg), a tárgy éles képének területén a többi rend járuléka gyakorlatilag nulla: ezen a területen tisztán a tárgyhullám jelenik meg, amplitúdója és fázisa egyaránt ismert. Elvi akadálya tehát nincs, hogy interferometrikus elvű holografikus méréseket digitális változatban is megvalósítsunk. Ha rögzítünk egy digitális hologramot a tárgy alapállapotában, terheljük, majd rögzítünk egy másik hologramot ebben az állapotában is, a továbbiakban csak számítógépes feldolgozásra van szükség.
Az analóg holográfiában kétexpozíciós hologramnál a két állapothoz tartozó két hullám összege, azaz interferenciájuk jelenítené meg az elmozdulásmező kontúrvonalait, így most ezt kell szimulálni. Számoljuk ki a két digitális hologram numerikus rekonstrukcióját a megfelelő távolságban, mindkét hologramnál ugyanott, majd adjuk össze őket. Mivel a két tárgy hullámterét komplex mátrixok reprezentálják a számolásban, az összeadás is természetesen komplex, és mivel az összeadás pontművelet, nem keveri össze a már szétvált elhajlási rendeket. Az így kapott eredő komplex amplitúdóból képezzük pl. az intenzitást, amelyen interferenciacsíkok jelennek meg, vagy tekinthetjük közvetlenül a fázist is, hisz az egyaránt rendelkezésre áll. Ha összeadás helyett a két hullámot kivonjuk egymásból (összeadás ellenfázisban), akkor a fényes nulladrendű folt középen eltűnik. A csíkos interferenciaképet tulajdonképpen a hely szerint változó fáziseltérés (lásd a 9-es összefüggést) okozza a két hullám között, és a digitális holográfia lehetőségeinek köszönhetően ez meg is jeleníthető.
Szemcsekép interferometria, vagy TV holográfia
Ha a referenciaágba a kamerától épp tárgytávolságnyira egy mattüveg diffúzort helyezünk, az így rögzített digitális hologram lényegében már nem rekonstruálható, mert nem igazán ismert a diffúz nyaláb fázisa a kamera síkjában, tehát az R(x,y) komplex függvény. Ellenben ha ilyenkor a kamerára objektívet is csavarunk, és élesre állítjuk a tárgy képét, a rekonstrukciós lépésre nincs is szükség. Ilyenkor a tárgyfelület és a diffúzor mint referenciafelület képének interferenciáját rögzítjük. Mivel mindkét kép önmagában egy szemcsés kép lenne, az interferenciájuk is egy szemcsés kép, és innen származik az eljárás egyik neve. A másik neve onnan ered, hogy az így rögzített kép közvetlenül élőben nézhető egy monitoron, régebben TV képernyőn. Önmagában egyetlen szemcsekép interferogram semmi látványosat nem mutat, azonban ha a kétexpozíciós holográfiához hasonlóan egy tárgy két állapotában is rögzítünk ilyen szemcseképet, akkor ezekből már kinyerhető az okozott fázisváltozás információja. Ehhez ebben az esetben elég a két szemcsekép interferogram különbségének aboszlút értékét venni.
Mérési feladatok
Reflexiós (látvány-) hologram készítése
A mérési gyakorlat első részében egy kb. -es hologramlemezre egy hasonló méretű erősen reflektáló, lehetőleg csillogó tárgyról készítünk fehérfényű hologramot. A fényforrás egy névleges teljesítményű, hullámhosszúságú vörös fényű diódalézer, mely táplálás mellett kb. áramot vesz fel, és fix befogóval rendelkezik. Ez a lézerdióda „csupasz”, így nyalábja eleve tágul. A hologramlemezek LITIHOLO RRT20 típusú, ~500-660 nm hullámhossztartományra érzékeny, ún. instant filmmel (amely fotopolimer emulziót tartalmaz) bevont üveglemezek. Az RRT20 film megfelelő expozíciójához -en minimálisan (átlagos) energiasűrűség szükséges, felső korlátja ennek a mennyiségnek nincs, de az emulzió rendelkezik egy alsó (és a véges sebességű monomerdiffúzió miatt felső) átlagintezitás-küszöbbel is, így a laborban gyenge szórt fény is jelen lehet. A fényérzékeny réteg -es vastagsága jóval nagyobb a megvilágító hullámhossznál, ami a 2. pontban leírtak szerint azt jelenti, hogy a használt hologramlemezek alkalmasak vastag hologramok rögzítésére. Exponáláskor az instant filmben a megvilágítás intenzitásától függő törésmutató-változás rögzül. Az interferenciakép tehát törésmutató-moduláció formájában valós időben kódolódik a film anyagában. Ennek az anyagnak az egyik fő előnye, hogy exponálás után semmilyen, a hagyományos holografikus emulziók esetén használatos kémiai eljárást (előhívás, halványítás, rögzítés), vagy más fotopolimereknél szükséges UV illetve hőkezelést nem igényel, mivel a holografikus rács a beírás folyamán végleges formájában rögzül az anyagban. A hologramlemezek fényzáró dobozban találhatók, melyet csak gyenge háttérfény esetén, közvetlenül az exponálás előtt szabad kinyitni, majd egy lemezt kiemelve rögtön visszazárni.
Állítsa össze a 2/a. ábra elrendezését az optikai asztalon látható felnyitható tetejű fadoboz belsejében, és dokumentálja a ténylegesen használt elrendezést lehetőleg digitális fénykép készítésével, vagy megfelelő eszköz hiányában méretarányos rajzzal, mely nagyságrendileg szöghelyes és rajta a jellemző távolságok is fel vannak tüntetve. Az elemek egy része mágneses talpakon található, melyeket forgatógombbal lehet lazítani illetve rögzíteni. A többi állítási lehetőséget a szárnyas anyát használó befogások jelentik. Használja a mérőhelyen található próbalemezt és azonos méretű papírt a beállításhoz, a nyaláb követéséhez. Helyezze a tárgyat egy hasábra a megfelelő magasság eléréséhez. A lemezt speciális tartóba lehet helyezni, mely csavarokkal szorítja a lemezt a helyére. Ellenőrizze, hogy a lemez majdnem teljes felülete és a tárgy megfelelő oldala is elegendően nagy felületen árnyékmentesen meg van világítva. Helyezze a tárgyat és a lemezt a lehető legközelebb egymáshoz. Segíti a későbbi rekonstrukciót, ha a megvilágítás valamennyire ferdén felülről érkezik a függőleges helyzetű lemezre. A lemez egyik oldalán található a fényérzékeny fólia, ennek célszerű a tárgy felőli oldalra kerülnie. Ellenőrizze, hogy a rögzítések megfelelőek, nincs-e „nyitva” hagyott mágneses talp, vagy laza szárnyas anya.
Exponálás előtt mutassa meg az elrendezést a mérésvezetőnek. Jóváhagyás után megkezdődhet az exponálás. Ehhez kapcsolja le a szoba mennyezeti fénycsöveit, eressze le majdnem teljesen a sötétítőket, kapcsolja le a lézert (tápegységen output off), majd vegyen ki egy lemezt a tartódobozból, és azt zárja vissza. Fogja be a lemezt a tartóba, majd fél perces várakozást követően kapcsolja vissza a lézert. Az exponálás időtartamára az anyag viselkedése miatt szintén minimumfeltétel vonatkozik, ez kb. 5 perc. Exponálás közben a lemez átlátszósága megnövekszik, mivel a kiépülő hologram rekonstruált képe egyre több fényt juttat a tárgyra, így az exponálás folyamata élőben is "követhető", illetve megállapítható a vége. Ha bizonytalan az időt illetően, inkább exponáljon tovább 2 perccel. A hologram készítése közben kerülni kell a zavaró fényeket, mozgást és rezgést, így a többi mérőcsoport figyelmét is fel kell hívni a megfelelő viselkedésre.
Exponálás után vegye ki a helyéről a tárgyat, és a lézer fényében figyelje meg a rekonstruált virtuális képet. Ezután vegye ki a tartóból a hologramot, és a laborban található színes és fehér nagyteljesítményű LED-ek fényében is rekonstruálja a virtuális képet. Milyen színben látható fehér LED esetén a tárgy virtuális képe? És ha nagyon ferdén nézzük és világítjuk meg? Mi látható, ha a lemezt az oldalán átfordítva nézzük? Jegyezze fel tapasztalatait, és lehetőleg dokumentálja a látottakat (akár utólag otthon) digitális fényképpel is!
Megjegyzés: Az előbbi feladathoz saját tárgyakat is lehet hozni, de rendelkezünk jól bevált tárgykészlettel. Alkalmas tárgyak: érmék, kulcsok, fém dísztárgyak (méretkorláttal), és arany vagy ezüst festékkel csillogóra festett egyéb tárgyak, macskaszem prizma. Korlátozottan alkalmasak fehér, sima felületű tárgyak, kis plüssfigurák (rövid szőrrel), fehér LEGO elemek.
Elmozdulásmező vizsgálata real-time holografikus interferometriával reflexiós elrendezésben
Az előző mérési feladattal lényegében megegyező elrendezést kell itt is használni, mindössze a tárgyat kell kicserélni a laborban található középen megnyomható membránra, és annak felületére merőleges megvilágításra van szükség. A merőlegességet a (9) képlet alkalmazásánál fogjuk felhasználni. A membrán közepét egy mikrométerorsó nyomja, mely mikronos osztású, és egy fordulata. Ezt az orsót egy hozzá rögzített karon keresztül forgatjuk, melynek végét egy ugyanilyen orsó mozgatja. Mérje meg, hogy milyen hosszú a „külső“ orsó karja, azaz hol érinti azt a „belső“ orsó tengelyétől számítva, és határozza meg, hogy a külső orsó egy fordulata mennyivel nyomja meg a membrán közepét. A kar általában úgy van ráerősítve a "belső" mikrométer orsóra, hogy a kar mozgatásakor az már felütközik a membrán belső felületén. Hogy ez tényleg így van, vagy valamilyen hallgatói beavatkozás miatt mégsem, arról úgy lehet megyőződni, hogy a membrán felüleltén lézeres megvilágítás esetén látható úgynevezett lézerszemcsék a kar mozgatásakor radiális mozgást végeznek-e vagy sem.
A real-time interferogram készítéséhez a membránról reflexiós hologramot kell készíteni az előző mérési feladattal megegyező módon. Ezután nem szabad semmit el- vagy megmozdítani a külső orsó kivételével! Mivel a holografikus rács már ilyenkor is diffraktál, a membránt részben a referencia és részben a tárgyhullám világítja meg (azaz a saját virtuális képe). Továbbra is sötétben lassan tekerjen a külső orsón néhány egész fordulatot, és közben figyelje a membrán felületét a hologramlemezen keresztül. A növekvő deformációval egyre sűrűbb csíkrendszer áll elő, amely a membrán alap és deformált állapota közötti interferencia eredményeképp jön létre. Ez a real-time interferogram. Két-három különböző mértékben benyomott állapotban rögzítse az orsó tekeréseinek számát, és számlálja le a hozzá tartozó csíkszámot a membrán felületén csík pontossággal, majd a mérés kontúrtávolságával (lásd korábbi interferométeres mérések) szorozva állapítsa meg a membrán közepén fellépő legnagyobb elmozdulás névleges(mikrométerről leolvastható) és mért (interferogramról leolvasható) értékeit. Ha a leolvasások végeztével kicsit elmozdítja akár a tárgyat, akár a hologramlemezt, mit tapasztal? Mit árul el a csíkok alakja az elmozdulásmezőről? Értelmezze a látottakat. (Megj.: Ha a feladat végeztével az edereti tárgy nélküli rekonstrukciókor látható valamilyen kétexpozíciós csíkrendszer a virtuális tárgyfelületen, arról a látványról is érdemes fényképet készíteni a jegyzőkönyv számára.)
Holografikus optikai elem készítése
Ismételje meg az első feladatot merőleges megvilágítással és tárgyként a mérőhelyen található domború tükröt használva. Vizsgálja meg a kész holografikus tükör működését, és jegyezze fel tapasztalatait. Hogyan jelenik meg a domború tükörnek megfelelő tükörkép? Hogyan viselkedik az optikai elemünk, ha a másik oldalát használjuk? Mi változik, ha a beeső fénysugarak és a megfigyelés is ferdék? Lehetséges valós, vetített képet készíteni az elemmel? Használja a mérőhelyen található piros és fehér LED fényforrásokat, vagy egy mobiltelefon vakuzó LED-jét folytonos üzemben. Lehetőség szerint dokumentálja is a látottakat digitális fényképekkel.
Transzmissziós hologram készítése
Állítson össze transzmissziós hologram elrendezést az 1/a. ábra szerint, és dokumentálja azt az első feladathoz hasonlóan. Ellenőrizze, hogy a lemez helyéről mi látszik a tárgyból, illetve hogy szóródik-e róla fény a lemez felé. Törekedjen arra, hogy a referencia és a tárgynyaláb egymással bezért szöge 30-45 fok körül legyen, valamint az úthosszak különbsége se legyen 10 centinél sokkal nagyobb. A lemezt úgy kell a tartóba helyezni, hogy a fóliázott rész a beérkező nyalábok felé nézzen. Az exponálást az első feladatban leírtaknak megfelelően kell végezni. A kész hologram csak lézerfényben tekinthető meg. Nézze meg az eredményt az 1/b. és az 1/c. ábrák elrendezésében is, utóbbihoz egy másik, nem táguló nyalábú lézer szükséges. Hogyan jelenik meg a holografikus kép térbelisége? Működhet-e a rekonstrukció más színű lézerrel? Lehetőség szerint készítsen digitális fényképet a rekonstrukciókor látottakról.
Elmozdulásmező vizsgálata digitális holográfiával
A mérési gyakorlat második részében megmérjük egy membrán közepén a síkra merőleges elmozdulás legnagyobb értékét. A méréshez a 4. ábrán látható elrendezést használjuk, de a valóságos kitágított nyalábjaink nem tökéletes síkhullámok. A fényforrás egy 35 mW teljesítményű 632,8 nm-es vörös fényű léghűtéses He-Ne gázlézer. A képeket egy Baumer Optronics MX13 típusú 1280x1024 képpont felbontású monokróm CCD kamerával rögzítjük, melynek képpontmérete 6,7 μm x 6,7 μm, és saját kezelőprogrammal rendelkezik. Ebben a kamera élőképe is megtekinthető (jobb oldalon a kék film gomb, a szürke azonnali lefagyást okoz!), valamint kézzel állíthatók az exponálás (záridő, erősítés) paraméterei a távcső ikonnal ellátott gomb alatti gombbal. Az erősítés optimális értéke 100-120 körüli az állító csúszka középső tartományában. A rögzített 8 bites színmélységű kép hisztogramja (különböző szürkeségi szintű pixelek számának eloszlása) egy másik programmal tekinthető meg. Ebben a Hisztogram gombra kattintva a mintavevő ablak a címsorát egérrel elhúzva a megfelelő képterületre helyezhető, majd dupla kattintással rögzül. Ezután a Timer gombbal ki/be kapcsolható a hisztogram élő követése. A hisztogram ábra és a felette található limitszámlálók értéke alapján állapítható meg pontosan, hogy a kép esetleg alul- vagy túlexponált. (A hisztogram funkció számos digitális fényképezőgépben is megtalálható már.) Az elrendezésben található BS1 nyalábosztó forgatható, ezáltal az intenzitás osztásaránya változtatható a tárgy- és a referenciaág között, de a referenciaágban található még egy forgatható nyalábosztó, amelyet további gyengítésre használunk. A digitális hologramokat egy HoloVision 2.2 nevű szabadon felhasználható programmal rekonstruáljuk (projekt honlap).
A tényleges mérés előtt ellenőrizzük az elrendezést és annak beállításait. Mérje meg a kamera és a tárgy távolságát. Az elrendezésben a megfigyelés merőleges a membrán felületére, a megvilágítás azonban nem. Mérje meg ennek szögét távolságokból, és az adatok alapján a (9) összefüggés alkalmazásával határozza meg azt a síkra merőleges elmozdulásértéket, amelynél az okozott fázisváltozás 2π. (Ehhez vegyen fel egy derékszögű koordinátarendszert a membránhoz igazodva.) Ez lesz a mérés ún. kontúrtávolsága, azaz lényegében alapvető nagyságrendje.
Ellenőrizze a rögzíthető képek exponáltságát kitakart referencia és tárgynyaláb esetén, valamint kitakarás nélkül. Szükség esetén állítson az expozíció paraméterein és a forgatható nyalábosztókon: se a tárgynyaláb, se a referencianyaláb ne legyen önmagában túl sötét, az interferenciaképük viszont ne legyen túl világos. Figyelje meg, mi látható a kamera élőképén, ha a BS2 osztótükröt finoman rezgetjük? Hogyan néz ki a kép hisztogramja megfelelő beállítások esetén?
Ha az exponálás már megfelelő, vegyen fel egy képet, és rekonstruálja azt a HoloVisionnel (Image/Reconstruct menüparancs). A digitális hologram hisztogramját és az expozíció paramétereit vegye bele a jegyzőkönyvbe. Értékelje a rekonstrukció intenzitásképének élességét a rögzítőkeret membránra vetett árnyéka alapján. Vizsgálja meg az élesség változását 5-10 centivel kisebb illetve nagyobb rekonstrukciós távolságok esetén. Hol a legélesebb a kép? Eltér ez a távolság a ténylegesen mérttől, ha igen vajon miért? Mekkora a képpontméret ebben a távolságban? Mennyire egyezik a képről leolvasható tárgyméret a valóságossal?
Vegyen fel egy hologramot a membránról, majd deformálja azt 5 μm-nél kisebb mértékben a hátulján található csavarmikrométerhez csatlakoztatott szerkezet segítségével (lásd a mérés első részében használt áttételezést) . Vegyen fel még egy képet. Adja össze a két hologramot (Image/Calculations menüparancs), majd rekonstruálja az összeget. Mi látható az intenzitásképen? Az eredményt mellékelje a jegyzőkönyvbe is. Most az összeg helyett rekonstruálja a különbséget. Miben tér el az intenzitáskép az előzőtől? A csíkrendszer kvalitatíve mit árul el az elmozdulásmezőről? Értelmezze a látottakat. Számlálja le a csíkokat a membrán szélétől a közepéig csík pontossággal, majd a mérés kontúrtávolságával szorozva állapítsa meg a legnagyobb elmozdulást (megnyomást). Vesse össze a mikrométerről „névlegesen” leolvasható értékkel.
Ha megfelelő interferogramokat kapott, térjen át a következő feladatra, szemcsekép interferogram készítésére. Csavarja rá a kamerára az ott található foto-objektívet, majd helyezze el a diffúzort a referencia nyaláb útjába úgy, hogy a kamera azonos távolságban érzékelje, mint a tárgyat. Állítsa élesre a tárgyon a keret önárnyékának képét kis rekeszérték (f/2.8) és így kis mélységélesség mellett. A rekeszállító gyűrű lépcsőzetes működésű. Ha a kép kellően éles, akkor nagy, f/16-os rekeszérték mellett a tárgy deformációjakor a rajta látható lézerszemcsék nem mozognak, csak a fényességük változik. Ha ez sikerült, végül állítsa f/16-os értékre a rekeszt. Az osztótükör és a referencia ágban található gyengítő forgatásával érje el, hogy a tárgyfelület és a diffúzor képe azonos fényességűnek látszódjon. Rögzítsen egy-egy szemcseképet a tárgy kétféle terhelési állapotában, majd képezze ezek különbségét a Holovisionnel, és jelenítse meg ennek "Modulus"-át, azaz abszolút értékét. Mit lát a képen? Hogyan értelmezhetők a látottak? Vajon miért nem ad hasonló eredményt a szemcseképek összegzése is, mint digitális holográfia esetén?
Egyéb információk
A jegyzőkönyvben: elméleti bevezető nem szükséges, de saját igény esetén se legyen több egy oldalnál. Foglalja össze a mérés során tapasztaltakat! Mellékelje a ténylegesen használt elrendezések rajzát vagy fényképét, és ha készültek digitális fényképek a rekonstrukciókról, azokat is. A nagy fájlméretű jegyzőkönyv elkerülése érdekében lehetőség szerint a beillesztés előtt a fényképeket redukálja 1000*1000 képpont felbontás alá. Térjen ki a mérési feladatokban megfogalmazott kérdésekre is, valamint a számításoknál előforduló eltérések lehetséges okaira!
Biztonsági tudnivalók: A direkt lézerfénybe ne nézzünk bele, különösen a digitális holográfia résznél használtba! A nem kitágított vagy nem szórt lézerfénnyel megvilágított pontokat lehetőleg ne nézzük hosszabb ideig, a szórt lézerfénybe pedig csak a szükséges ideig nézzünk! A csillogó ékszereket vagy karórákat vegyük le, az optikai asztalok magasságába ne hajoljunk le! Mozogjunk körültekintően a laborban: vigyázzunk az asztal széléhez közel lévő beállított elemekre, illetve a nyalábtágítókig található elemekre!
Linkek: