„Állóhullámok megfeszített, rugalmas húrban” változatai közötti eltérés
(Új oldal, tartalma: „Szerkesztés alatt!”) |
|||
1. sor: | 1. sor: | ||
− | + | <wlatex> | |
+ | |||
+ | [[Kategória:Fizika BSC alapképzés]] | ||
+ | <!--[[Kategória:Fizika BSC alkalmazott fizika szakirány]]--> | ||
+ | <!--[[Kategória:Fizika BSC fizikus szakirány]]--> | ||
+ | <!--[[Kategória:Fizikus MSC alapképzés]]--> | ||
+ | <!--[[Kategória:Fizikus MSC alkalmazott fizika szakirány]]--> | ||
+ | <!--[[Kategória:Fizikus MSC kutatófizikus szakirány]]--> | ||
+ | <!--[[Kategória:Fizikus MSC nukleáris technika szakirány]]--> | ||
+ | <!--[[Kategória:Fizikus MSC orvosi fizika szakirány]]--> | ||
+ | <!--[[Kategória:Mechanika]]--> | ||
+ | [[Kategória:Elektromosságtan]] | ||
+ | <!--[[Kategória:Hőtan]]--> | ||
+ | <!--[[Kategória:Kvantummechanika]]--> | ||
+ | <!--[[Kategória:Statisztikus fizika]]--> | ||
+ | <!--[[Kategória:Nanofizika]]--> | ||
+ | <!--[[Kategória:Optika]]--> | ||
+ | <!--[[Kategória:Szilárdtestfizika]]--> | ||
+ | <!--[[Kategória:Mag és részecskefizika]]--> | ||
+ | <!--[[Kategória:Informatika]]--> | ||
+ | [[Kategória:Laborgyakorlat]] | ||
+ | <!--[[Kategória:Fizika laboratórium 1.]]--> | ||
+ | [[Kategória:Fizika laboratórium 2.]] | ||
+ | <!--[[Kategória:Fizika laboratórium 3.]]--> | ||
+ | <!--[[Kategória:Fizika laboratórium 4.]]--> | ||
+ | [[Kategória:Fizika Tanszék]] | ||
+ | <!--[[Kategória:Elméleti Fizika Tanszék]]--> | ||
+ | <!--[[Kategória:Atomfizika Tanszék]]--> | ||
+ | <!--[[Kategória:Nukleáris Technikai Intézet]]--> | ||
+ | <!--[[Kategória:Matematika Intézet]]--> | ||
+ | [[Kategória:Szerkesztő:Vankó]] | ||
+ | |||
+ | ''A mérés célja:'' | ||
+ | * az állóhullámokkal kapcsolatos ismeretek elmélyítése, | ||
+ | * az állóhullámokra és a hullámterjedésre vonatkozó legfontosabb összefüggések kísérleti ellenőrzése. | ||
+ | |||
+ | ''A cél érdekében:'' | ||
+ | * összefoglaljuk az állóhullámokra vonatkozó alapvető ismereteket, | ||
+ | * megvizsgáljuk egy mindkét végén rögzített húrban ki-alakuló állóhullámokat, | ||
+ | * hullámhossz- és frekvenciamérésekkel meghatározzuk a húrban a hang terjedési sebességét, és annak függését a húr jellemző adataitól. | ||
+ | |||
+ | __TOC__ | ||
+ | |||
+ | ==Elméleti összefoglaló== | ||
+ | |||
+ | Kísérleteink során mindkét végén rögzített húrban terjedő hullámokat vizsgálunk. A hullám leírásánál feltételezzük, hogy a hullámterjedés egydimenziósnak tekinthető (a hullám a húr mentén terjed), a hullám transzverzális (a húr pontjainak elmozdulásvektorai a húrra merőlegesek) és síkban polarizált (a pontok elmozdulásvektorai mindig ugyanabban a síkban vannak). Ez azt jelenti, hogy a húr pontjainak az egyensúlyi helyzetből való kitérése (elmozdulása) egyetlen skaláris mennyiséggel jellemezhető. A hullám leírására a fentiek alapján a húrral párhuzamosan választott $x$-tengely esetén a | ||
+ | {{eq|c^2\frac{\partial^2\psi(x,t)}{\partial x^2}{{=}}\frac{\partial^2\psi(x,t)}{\partial t^2}|eq:1|(1)}} | ||
+ | egydimenziós hullámegyenletet használhatjuk. Itt $x$ koordináta, $t$ az idő, a kitérés hely- és időfüggését megadó - tehát a hullám terjedését leíró - hullámfüggvény, $c$ pedig a hullám terjedési sebessége a húron. Ha a hullámegyenletet a húr esetére levezetjük, akkor kiderül, hogy a $c$ terjedési sebessége a húrt megfeszítő erőtől $(T)$ és a húr egységnyi hosszára jutó tömegtől $(\mu)$ függ, és ezekkel az alábbi módon fejezhető ki | ||
+ | {{eq|c{{=}}\sqrt{\frac{T}{\mu} }.|eq:2|(2)}} | ||
+ | |||
+ | A húrban valamilyen külső gerjesztés hatására kialakuló hullám általában igen bonyolult. Tapasztalatból tudjuk azonban, hogy meghatározott frekvenciákon történő gerjesztés esetén a húron, a végekről visszaverődő hullámok interferenciája révén sajátos, állandósult hullámalakzat -- ún. állóhullám -- jön létre. Ennek jellegzetessége az, hogy a húr meghatározott szakaszán levő pontok azonos fázisban rezegnek, a rezgés amplitúdója pedig a hely függvénye. Ez matematikailag úgy fogalmazható meg, hogy az [[#eq:1|(1)]] egyenletnek létezik olyan megoldása, amely egy csak helytől és egy csak időtől függő függvény szorzata [az [[#eq:1|(1)]] parciális differenciálegyenletben a változók szeparálhatók]. Harmonikus gerjesztés esetén ez a megoldás a | ||
+ | {{eq|\psi(x,t){{=}}\varphi(x)\sin(\omega t+\alpha)|eq:3|(3)}} | ||
+ | alakban írható fel, ahol $\omega=2\pi\nu$ a rezgés körfrekvenciája ($\nu$ frekvencia, Hz), $\alpha$ pedig a fázisszög. | ||
+ | |||
+ | A [[#eq:3|(3)]] megoldást az [[#eq:1|(1)]] egyenletbe helyettesítve az időfüggő rész kiesik, a helyfüggő részre pedig -- amely a rezgés amplitúdójának a húr mentén való változását adja meg -- az alábbi közönséges másodrendű differenciál-egyenletet eredményezi: | ||
+ | {{eq|\frac{\mathrm{d}^2\varphi(x)}{\mathrm{d}x^2}+k^2\varphi(x){{=}}0.|eq:4|(4)}} | ||
+ | Az egyenletben bevezettük a $k$ hullámszámot, amelyet a $k=\frac{\omega}{c}$ összefüggés definiál. | ||
+ | |||
+ | A [[#eq:4|(4)]] egyenlet általános megoldása | ||
+ | {{eq|\varphi(x){{=}}A\sin(kx)+B\cos(kx),|eq:5|(5)}} | ||
+ | ahol $A$ és $B$ tetszőleges állandók, melyeket a konkrét fizikai feltételek határoznak meg. Esetünkben az egyik ilyen feltétel az, hogy a húr két vége rögzített, ami azt jelenti, hogy itt a kitérés mindig nulla. Emiatt a matematikailag lehetséges [[#eq:5|(5)]] általános megoldásnak csak olyan alakjai lehetnek elfogadhatóak, amelyekre fennáll, hogy | ||
+ | {{eq|\varphi(0){{=}}0,|eq:6a|(6a)}} | ||
+ | {{eq|\varphi(L){{=}}0,|eq:6b|(6b)}} | ||
+ | (koordinátarendszerünk kezdőpontja a húr egyik vége, így a másik végpont koordinátája $L$, a húr hossza). | ||
+ | |||
+ | Könnyen belátható, hogy a [[#eq:6a|(6a)]] határfeltétel csak $B=0$ esetén elégíthető ki, vagyis a megoldás csak egy | ||
+ | $$\varphi(x)=A\sin(kx)$$ | ||
+ | típusú függvény lehet, de a [[#eq:6b|(6b)]] feltétel miatt ez is csak akkor, ha a k hullámszám értéke a | ||
+ | {{eq|k_n{{=}}n\frac{\pi}{L},\quad (n{{=}}1,\,2,\,3,\dots)|eq:7|(7)}} | ||
+ | összefüggéssel meghatározott értékeket veszi fel. | ||
+ | |||
+ | Mivel a $k$ hullámszám a $\lambda$ hullámhosszal egyértelmű kapcsolatban van $\left(k=\frac{2\pi}{\lambda}\right)$, a [[#eq:7|(7)]] feltétel azt jelenti, hogy állóhullám csak meghatározott | ||
+ | {{eq|\lambda_n{{=}}\frac{2L}{n},\quad (n{{=}}1,\,2,\,3,\dots)|eq:8|(8)}} | ||
+ | hullámhosszak esetén jön létre. Ez a $\nu=\frac{c}{\lambda}$ összefüggés miatt egyben azt is jelenti, hogy meghatározott $c$ terjedési sebességgel [ami húrnál a [[#eq:2|(2)]] egyenlet miatt meghatározott feszítőerőt és lineáris sűrűséget jelent] a húr $\nu$ rezgési frekvenciája sem lehet tetszőleges, hanem csak a | ||
+ | {{eq|\nu_n{{=}}n\frac{c}{2L},\quad (n{{=}}1,\,2,\,3,\dots)|eq:9|(9)}} | ||
+ | értékeket veheti fel. Ezek a frekvenciák a húr rezonancia-frekvenciái. | ||
+ | |||
+ | A fentiek alapján a határfeltételeket kielégítő megoldások az alábbi alakban írhatók fel: | ||
+ | |||
+ | {{eq|\varphi_n(x){{=}}A_n\sin\left(\frac{n\pi}{L}x\right).\quad (n{{=}}1,\,2,\,3,\dots)|eq:10|(10)}} | ||
+ | |||
+ | Az $A_n$ állandót - vagyis az amplitúdó maximális értékét - a gerjesztés körülményei (a kezdeti feltételek) határozzák meg, ez azonban vizsgálataink szempontjából érdektelen. Feltételezve, hogy a húrban egyetlen $n$ értéknek megfelelő állóhullám-alakzat jött létre, az [[#eq:1|(1)]] egyenlet megoldása végül az alábbi módon irható fel: | ||
+ | {{eq|\varphi_n(x,t){{=}}A_n\sin\left(\frac{2\pi}{\lambda_n}x\right)\sin(\omega_n t+\alpha_n).\quad (n{{=}}1,\,2,\,3,\dots)|eq:11|(11)}} | ||
+ | |||
+ | {{fig|Állóhullámok_megfeszített,_rugalmas_húrban_1.png|fig:1|1. ábra}} | ||
+ | |||
+ | A létrejött állóhullám lehetséges amplitúdó-eloszlásait a [[#eq:10|(10)]] megoldás adja meg. A megfelelő - csomópontokat és duzzadóhelyeket tartalmazó - amplitúdó-eloszlások az [[#fig:1|1. ábrán]] láthatók néhány $n$ érték esetén. A [[#eq:10|(10)]] egyenletből az is látszik, hogy adott $n$ esetén a csomópontok egymástól mért $d_n$ távolsága | ||
+ | $$d_n=\frac{L}{n}=\frac{\lambda_n}{2}.$$ | ||
+ | |||
+ | A különböző $n$ értékekhez – a [[#eq:9|(9)]] összefüggésnek megfelelően – különböző frekvenciák ill. hangmagasságok tartoznak. A szokásos elnevezés szerint az $n=l$ értékhez tartozó hang a húr alaphangja, míg a magasabb értékekhez tartozók a felharmonikusok. | ||
+ | |||
+ | Itt jegyezzük meg, hogy egy húr szokásos gerjesztésekor (pl.: pengetéssel, vonóval) általában sok lehetséges rezgési forma jelenik meg egyidejűleg. [Matematikailag ez azt jelenti, hogy a hullámegyenlet megoldása az egyes rezgési formákhoz tartozó [[#eq:11|(11)]] típusú megoldások összege.] Egy húrnak azért lehet mégis meghatározott hangmagassága, mert az alaphang amplitúdója rendszerint sokkal nagyobb, mint a felharmonikusoké. Mindig megszólalnak azonban a felharmonikusok is: ezek határozzák meg a húr hangjának hangszínét. | ||
+ | |||
+ | Méréseink során harmonikus (szinuszos) gerjesztést alkalmazunk, ezért a húrban a frekvencia megfelelő megválasztásával különböző $n$ értékekhez tartozó állóhullám-formákat tudunk létrehozni. Mivel azonban a gerjesztés meglehetősen bonyolult folyamat, a létrejött hullámalakzat meghatározásánál legyünk óvatosak és azt ne a gerjesztő rezgés frekvenciája alapján, hanem közvetlen mérés útján próbáljuk azonosítani. A gerjesztés során ugyanis – minden igyekezetünk ellenére – a húrban több rezgési forma gerjesztődik és előfordulhat, hogy ezek közül nem a gerjesztő rezgés frekvenciájának, hanem valamelyik felharmonikusának megfelelő forma válik dominánssá. Így a gerjesztett rezgés frekvenciája a gerjesztő frekvencia egészszámú többszöröse is lehet. | ||
+ | |||
+ | |||
+ | ==A mérőberendezés és használata== | ||
+ | |||
+ | {{fig|Állóhullámok_megfeszített,_rugalmas_húrban_2.png|fig:2|2. ábra}} | ||
+ | |||
+ | A mérőberendezés ([[#fig:2|2. ábra]]) egy alaplapra (1) szerelt, megfeszített acél húr (2), melynek végei egy csavarral (3) mozgatható alumínium tömbhöz (4), ill. a kétkarú emelőhöz (5) csatlakoznak. A húrhosszúság csúsztatható támaszokkal (6) szabályozható. A rezgést egy függvénygenerátorral (7) meghajtott gerjesztő tekercs (8) hozza létre mágneses csatolás révén, melynek hatására transzverzális- és gyakorlatilag síkban polarizált hullámok keletkeznek a húron. A létrejövő rezgést egy detektor-tekerccsel (9) észleljük, melynek jelét (a gerjesztő jellel együtt) kétsugaras oszcilloszkópon (10) jelenítjük meg. A húrt feszítő erőt az (5) emelő megfelelő karjára (a hosszabb, a használat során a vízszintes kar) akasztott súllyal (11) hozzuk létre. | ||
+ | |||
+ | A húr rögzítése: Az (5) emelő karján levő résbe a húr egyik végét úgy helyezzük be, hogy a rajta levő sárgaréz bütyök megakadjon, a másik végén levő fület pedig a (4) tömbön levő csavarra akasztjuk. Ehhez a tömböt a (3) csavarral a szükséges mértékben elmozdítjuk. Ezután ugyanezen csavarral a húrt megfeszítjük, úgy hogy az emelő erőkarja vízszintes legyen. | ||
+ | |||
+ | A berendezéssel a mérés szempontjából fontos paraméterek az alábbi módon változtathatók: | ||
+ | * A húr vizsgált hosszát a (6) támaszok eltolásával változtathatjuk. | ||
+ | * A húrt feszítő erő az erőkarra akasztott tömeg helyének (az erőkar hosszának) változtatásával szabályozható. Az emelő kialakítása olyan, hogy a feszítő erő megegyezik a felakasztott tömeg súlyával, ha az a tengelytől számított első vájatban van, az erő kétszeres, ha második vájatban van, stb. (A súly felhelyezése után a (3) csavarral mindig állítsuk be az erőkar vízszintes helyzetét). | ||
+ | * A húr egységnyi hosszra eső tömegét a húr kicserélésével tudjuk változtatni. Az egyes húrok $\mu$ értéke az átmérő méréséből (csavarmikrométer) az acél ismert (7800 kgm<sup>−3</sup>) sűrűségének felhasználásával számolható ki. | ||
+ | * A húron létrejövő állóhullám alakzatot a függvénygenerátor frekvenciájának változtatásával módosíthatjuk. | ||
+ | |||
+ | A mérés során a függvénygenerátort szinuszos rezgésre állítsuk, a gerjesztő tekercset pedig az egyik támaszhoz közel (kb. 5 cm) helyezzük el (leghatékonyabban csomópont közelében működik). A detektor tekercset kezdetben a vizsgált húrszakasz közepe tájához tegyük, majd a feladatnak megfelelően változtassuk meg helyét. (A detektor a legnagyobb jelet a duzzadóhely közelében adja.) | ||
+ | |||
+ | A különböző állóhullám alakzatok (rezonanciák) keresésekor a gerjesztő frekvenciát kb. 50 Hz-től kezdve lassan növeljük, közben figyeljük a detektor jelét és a húr hangját: stabil állóhullám alakzat (rezonancia) elérésekor a jelnek és a hang erősségének maximuma van. Ha a jel kicsi, először próbáljuk a detektor tekercset elmozdítani, ha ez sem segít, akkor növeljük a gerjesztő jel amplitúdóját. A maximum észlelése után a detektort húzzuk végig a húr mentén, és a jel-amplitúdó helyfüggéséből állapítsuk meg az állóhullám jellegét és a hozzátartozó $n$ értékét. | ||
+ | |||
+ | Az állóhullám frekvenciáját mindig a detektor jelének vizsgálatával határozzuk meg: vagy a jel periódus-idejének közvetlen mérésével az oszcilloszkópon, vagy - ha kétsugaras oszcilloszkópot használunk - a gerjesztő jellel való összehasonlítás útján. | ||
+ | |||
+ | ===Mérési felszerelés=== | ||
+ | |||
+ | PASCO állóhullám berendezés (húr befogó + feszítő, gerjesztő, érzékelő), hanggenerátor, kétsugaras oszcilloszkóp, multiméter, kábelek, terhelő súly. | ||
+ | |||
+ | ==Mérési feladatok== | ||
+ | |||
+ | ===Kvantált hullámhossz ellenőrzése=== | ||
+ | Állítsa be a 60 cm-es húrhosszúságot, majd feszítse meg a húrt kb. 60 N erővel (pl. 2 kg tömeget az emelő erőkarjának harmadik vájatába akasztva)! A gerjesztő frekvencia változtatásával állítsa elő az első öt $(n=1,\,2,\,\dots 5)$ állóhullám alakzatot! Mindegyiknél mérje meg a frekvenciát, az egyes csomópontok és duzzadóhelyek koordinátáit (pl. a húr egyik végétől mérve) és a ''mért koordináták alapján'' állapítsa meg az állóhullám hullámhosszát! Az eredményeket foglalja táblázatba! Ellenőrizze, hogy teljesül-e a [[#eq:8|(8)]] összefüggés! | ||
+ | |||
+ | ===Határozza meg a hang terjedési sebességét állóhullámok segítségével!=== | ||
+ | Ábrázolja az egyes állóhullám-alakzatok frekvenciáját ($\nu_n$) az alakzat $n$ sorszámának függvényében, és illesszen egyenest a pontokra! Mérje meg a húr $L$ hosszát, majd az egyenes meredekségéből számítsa ki a hang c terjedési sebességét a húrban! Vesse össze az értéket a [[#eq:2|(2)]] összefüggésből számolt hangsebességgel! | ||
+ | |||
+ | ===Határozza meg a hang terjedési sebességét a húr hosszának változtatásával!=== | ||
+ | Állítsa elő az $n=1$-hez tartozó állóhullámot változatlan feszítő erő, de négy másik hosszúság esetén is, és mindegyik esetben mérje meg a rezgés frekvenciáját! Ábrázolja a frekvenciát a húr hosszúság reciprokának függvényében, majd illesszen a mérési pontokra egyenest! Határozza meg ismét a hang terjedési sebességét, vesse össze a korábban kapott értékekkel! | ||
+ | |||
+ | ===Határozza meg a hang terjedési sebességét különböző feszítő erők és húrok esetén!=== | ||
+ | Kiválasztva az egyik húrt, állítson be kb. 60 cm-es húrhosszúságot, akasszon egy súlyt az emelő erőkarjának első vájatába, majd a gerjesztő frekvencia változtatásával állítsa be az első állóhullám alakzatot ($n=1$)! Mérje meg az állóhullám hullámhosszát és frekvenciáját és a $c=\lambda\cdot\nu$ összefüggés alapján számítsa ki a hang terjedési sebességét a húrban! Készítsen táblázatot és írja be a $T$ feszítő erő, a $\mu$ lineáris sűrűség, a $\nu$ alapfrekvencia és a $c$ terjedési sebesség értékeit! Ismételje meg a mérést még négy különböző feszítő erővel (a súlyt helyezze egyre távolabb az emelő tengelyétől) és írja be ismét az adatokat a táblázatba! Ezután közepes feszítő erőnél ismételje meg a mérést a mérőhelyen található többi húrral, és ismét írja be az adatokat a táblázatba! | ||
+ | |||
+ | ===Ellenőrizze a hang terjedési sebességét leíró összefüggést!=== | ||
+ | Az [[#Határozza meg a hang terjedési sebességét különböző feszítő erők és húrok esetén!|4. pontban]] kapott táblázat alapján ellenőrizze a [[#eq:2|(2)]] egyenletet! (Az egyenlet szerint ''állandó'' $\mu$ mellett a $c\propto T^{\tfrac{1}{2}}$ összefüggés lineáris, ''állandó'' $T$ mellett pedig a $c\propto \mu^{-\tfrac{1}{2}}$ összefüggés lineáris.) Ha a táblázat alapján elkészítjük ezeket a grafikonokat, akkor a pontoknak egy egyenesen kell lenniük és a meredekség az első esetben $\sqrt{\frac{1}{\mu}}$, második esetben pedig $\sqrt{T}$. | ||
+ | |||
+ | </wlatex> |
A lap 2012. február 13., 15:53-kori változata
A mérés célja:
- az állóhullámokkal kapcsolatos ismeretek elmélyítése,
- az állóhullámokra és a hullámterjedésre vonatkozó legfontosabb összefüggések kísérleti ellenőrzése.
A cél érdekében:
- összefoglaljuk az állóhullámokra vonatkozó alapvető ismereteket,
- megvizsgáljuk egy mindkét végén rögzített húrban ki-alakuló állóhullámokat,
- hullámhossz- és frekvenciamérésekkel meghatározzuk a húrban a hang terjedési sebességét, és annak függését a húr jellemző adataitól.
Elméleti összefoglaló
Kísérleteink során mindkét végén rögzített húrban terjedő hullámokat vizsgálunk. A hullám leírásánál feltételezzük, hogy a hullámterjedés egydimenziósnak tekinthető (a hullám a húr mentén terjed), a hullám transzverzális (a húr pontjainak elmozdulásvektorai a húrra merőlegesek) és síkban polarizált (a pontok elmozdulásvektorai mindig ugyanabban a síkban vannak). Ez azt jelenti, hogy a húr pontjainak az egyensúlyi helyzetből való kitérése (elmozdulása) egyetlen skaláris mennyiséggel jellemezhető. A hullám leírására a fentiek alapján a húrral párhuzamosan választott -tengely esetén a
egydimenziós hullámegyenletet használhatjuk. Itt koordináta, az idő, a kitérés hely- és időfüggését megadó - tehát a hullám terjedését leíró - hullámfüggvény, pedig a hullám terjedési sebessége a húron. Ha a hullámegyenletet a húr esetére levezetjük, akkor kiderül, hogy a terjedési sebessége a húrt megfeszítő erőtől és a húr egységnyi hosszára jutó tömegtől függ, és ezekkel az alábbi módon fejezhető ki
A húrban valamilyen külső gerjesztés hatására kialakuló hullám általában igen bonyolult. Tapasztalatból tudjuk azonban, hogy meghatározott frekvenciákon történő gerjesztés esetén a húron, a végekről visszaverődő hullámok interferenciája révén sajátos, állandósult hullámalakzat -- ún. állóhullám -- jön létre. Ennek jellegzetessége az, hogy a húr meghatározott szakaszán levő pontok azonos fázisban rezegnek, a rezgés amplitúdója pedig a hely függvénye. Ez matematikailag úgy fogalmazható meg, hogy az (1) egyenletnek létezik olyan megoldása, amely egy csak helytől és egy csak időtől függő függvény szorzata [az (1) parciális differenciálegyenletben a változók szeparálhatók]. Harmonikus gerjesztés esetén ez a megoldás a
alakban írható fel, ahol a rezgés körfrekvenciája ( frekvencia, Hz), pedig a fázisszög.
A (3) megoldást az (1) egyenletbe helyettesítve az időfüggő rész kiesik, a helyfüggő részre pedig -- amely a rezgés amplitúdójának a húr mentén való változását adja meg -- az alábbi közönséges másodrendű differenciál-egyenletet eredményezi:
Az egyenletben bevezettük a hullámszámot, amelyet a összefüggés definiál.
A (4) egyenlet általános megoldása
ahol és tetszőleges állandók, melyeket a konkrét fizikai feltételek határoznak meg. Esetünkben az egyik ilyen feltétel az, hogy a húr két vége rögzített, ami azt jelenti, hogy itt a kitérés mindig nulla. Emiatt a matematikailag lehetséges (5) általános megoldásnak csak olyan alakjai lehetnek elfogadhatóak, amelyekre fennáll, hogy
(koordinátarendszerünk kezdőpontja a húr egyik vége, így a másik végpont koordinátája , a húr hossza).
Könnyen belátható, hogy a (6a) határfeltétel csak esetén elégíthető ki, vagyis a megoldás csak egy
típusú függvény lehet, de a (6b) feltétel miatt ez is csak akkor, ha a k hullámszám értéke a
összefüggéssel meghatározott értékeket veszi fel.
Mivel a hullámszám a hullámhosszal egyértelmű kapcsolatban van , a (7) feltétel azt jelenti, hogy állóhullám csak meghatározott
hullámhosszak esetén jön létre. Ez a összefüggés miatt egyben azt is jelenti, hogy meghatározott terjedési sebességgel [ami húrnál a (2) egyenlet miatt meghatározott feszítőerőt és lineáris sűrűséget jelent] a húr rezgési frekvenciája sem lehet tetszőleges, hanem csak a
értékeket veheti fel. Ezek a frekvenciák a húr rezonancia-frekvenciái.
A fentiek alapján a határfeltételeket kielégítő megoldások az alábbi alakban írhatók fel:
Az állandót - vagyis az amplitúdó maximális értékét - a gerjesztés körülményei (a kezdeti feltételek) határozzák meg, ez azonban vizsgálataink szempontjából érdektelen. Feltételezve, hogy a húrban egyetlen értéknek megfelelő állóhullám-alakzat jött létre, az (1) egyenlet megoldása végül az alábbi módon irható fel:
A létrejött állóhullám lehetséges amplitúdó-eloszlásait a (10) megoldás adja meg. A megfelelő - csomópontokat és duzzadóhelyeket tartalmazó - amplitúdó-eloszlások az 1. ábrán láthatók néhány érték esetén. A (10) egyenletből az is látszik, hogy adott esetén a csomópontok egymástól mért távolsága
A különböző értékekhez – a (9) összefüggésnek megfelelően – különböző frekvenciák ill. hangmagasságok tartoznak. A szokásos elnevezés szerint az értékhez tartozó hang a húr alaphangja, míg a magasabb értékekhez tartozók a felharmonikusok.
Itt jegyezzük meg, hogy egy húr szokásos gerjesztésekor (pl.: pengetéssel, vonóval) általában sok lehetséges rezgési forma jelenik meg egyidejűleg. [Matematikailag ez azt jelenti, hogy a hullámegyenlet megoldása az egyes rezgési formákhoz tartozó (11) típusú megoldások összege.] Egy húrnak azért lehet mégis meghatározott hangmagassága, mert az alaphang amplitúdója rendszerint sokkal nagyobb, mint a felharmonikusoké. Mindig megszólalnak azonban a felharmonikusok is: ezek határozzák meg a húr hangjának hangszínét.
Méréseink során harmonikus (szinuszos) gerjesztést alkalmazunk, ezért a húrban a frekvencia megfelelő megválasztásával különböző értékekhez tartozó állóhullám-formákat tudunk létrehozni. Mivel azonban a gerjesztés meglehetősen bonyolult folyamat, a létrejött hullámalakzat meghatározásánál legyünk óvatosak és azt ne a gerjesztő rezgés frekvenciája alapján, hanem közvetlen mérés útján próbáljuk azonosítani. A gerjesztés során ugyanis – minden igyekezetünk ellenére – a húrban több rezgési forma gerjesztődik és előfordulhat, hogy ezek közül nem a gerjesztő rezgés frekvenciájának, hanem valamelyik felharmonikusának megfelelő forma válik dominánssá. Így a gerjesztett rezgés frekvenciája a gerjesztő frekvencia egészszámú többszöröse is lehet.
A mérőberendezés és használata
A mérőberendezés (2. ábra) egy alaplapra (1) szerelt, megfeszített acél húr (2), melynek végei egy csavarral (3) mozgatható alumínium tömbhöz (4), ill. a kétkarú emelőhöz (5) csatlakoznak. A húrhosszúság csúsztatható támaszokkal (6) szabályozható. A rezgést egy függvénygenerátorral (7) meghajtott gerjesztő tekercs (8) hozza létre mágneses csatolás révén, melynek hatására transzverzális- és gyakorlatilag síkban polarizált hullámok keletkeznek a húron. A létrejövő rezgést egy detektor-tekerccsel (9) észleljük, melynek jelét (a gerjesztő jellel együtt) kétsugaras oszcilloszkópon (10) jelenítjük meg. A húrt feszítő erőt az (5) emelő megfelelő karjára (a hosszabb, a használat során a vízszintes kar) akasztott súllyal (11) hozzuk létre.
A húr rögzítése: Az (5) emelő karján levő résbe a húr egyik végét úgy helyezzük be, hogy a rajta levő sárgaréz bütyök megakadjon, a másik végén levő fület pedig a (4) tömbön levő csavarra akasztjuk. Ehhez a tömböt a (3) csavarral a szükséges mértékben elmozdítjuk. Ezután ugyanezen csavarral a húrt megfeszítjük, úgy hogy az emelő erőkarja vízszintes legyen.
A berendezéssel a mérés szempontjából fontos paraméterek az alábbi módon változtathatók:
- A húr vizsgált hosszát a (6) támaszok eltolásával változtathatjuk.
- A húrt feszítő erő az erőkarra akasztott tömeg helyének (az erőkar hosszának) változtatásával szabályozható. Az emelő kialakítása olyan, hogy a feszítő erő megegyezik a felakasztott tömeg súlyával, ha az a tengelytől számított első vájatban van, az erő kétszeres, ha második vájatban van, stb. (A súly felhelyezése után a (3) csavarral mindig állítsuk be az erőkar vízszintes helyzetét).
- A húr egységnyi hosszra eső tömegét a húr kicserélésével tudjuk változtatni. Az egyes húrok értéke az átmérő méréséből (csavarmikrométer) az acél ismert (7800 kgm−3) sűrűségének felhasználásával számolható ki.
- A húron létrejövő állóhullám alakzatot a függvénygenerátor frekvenciájának változtatásával módosíthatjuk.
A mérés során a függvénygenerátort szinuszos rezgésre állítsuk, a gerjesztő tekercset pedig az egyik támaszhoz közel (kb. 5 cm) helyezzük el (leghatékonyabban csomópont közelében működik). A detektor tekercset kezdetben a vizsgált húrszakasz közepe tájához tegyük, majd a feladatnak megfelelően változtassuk meg helyét. (A detektor a legnagyobb jelet a duzzadóhely közelében adja.)
A különböző állóhullám alakzatok (rezonanciák) keresésekor a gerjesztő frekvenciát kb. 50 Hz-től kezdve lassan növeljük, közben figyeljük a detektor jelét és a húr hangját: stabil állóhullám alakzat (rezonancia) elérésekor a jelnek és a hang erősségének maximuma van. Ha a jel kicsi, először próbáljuk a detektor tekercset elmozdítani, ha ez sem segít, akkor növeljük a gerjesztő jel amplitúdóját. A maximum észlelése után a detektort húzzuk végig a húr mentén, és a jel-amplitúdó helyfüggéséből állapítsuk meg az állóhullám jellegét és a hozzátartozó értékét.
Az állóhullám frekvenciáját mindig a detektor jelének vizsgálatával határozzuk meg: vagy a jel periódus-idejének közvetlen mérésével az oszcilloszkópon, vagy - ha kétsugaras oszcilloszkópot használunk - a gerjesztő jellel való összehasonlítás útján.
Mérési felszerelés
PASCO állóhullám berendezés (húr befogó + feszítő, gerjesztő, érzékelő), hanggenerátor, kétsugaras oszcilloszkóp, multiméter, kábelek, terhelő súly.
Mérési feladatok
Kvantált hullámhossz ellenőrzése
Állítsa be a 60 cm-es húrhosszúságot, majd feszítse meg a húrt kb. 60 N erővel (pl. 2 kg tömeget az emelő erőkarjának harmadik vájatába akasztva)! A gerjesztő frekvencia változtatásával állítsa elő az első öt állóhullám alakzatot! Mindegyiknél mérje meg a frekvenciát, az egyes csomópontok és duzzadóhelyek koordinátáit (pl. a húr egyik végétől mérve) és a mért koordináták alapján állapítsa meg az állóhullám hullámhosszát! Az eredményeket foglalja táblázatba! Ellenőrizze, hogy teljesül-e a (8) összefüggés!
Határozza meg a hang terjedési sebességét állóhullámok segítségével!
Ábrázolja az egyes állóhullám-alakzatok frekvenciáját () az alakzat sorszámának függvényében, és illesszen egyenest a pontokra! Mérje meg a húr hosszát, majd az egyenes meredekségéből számítsa ki a hang c terjedési sebességét a húrban! Vesse össze az értéket a (2) összefüggésből számolt hangsebességgel!
Határozza meg a hang terjedési sebességét a húr hosszának változtatásával!
Állítsa elő az -hez tartozó állóhullámot változatlan feszítő erő, de négy másik hosszúság esetén is, és mindegyik esetben mérje meg a rezgés frekvenciáját! Ábrázolja a frekvenciát a húr hosszúság reciprokának függvényében, majd illesszen a mérési pontokra egyenest! Határozza meg ismét a hang terjedési sebességét, vesse össze a korábban kapott értékekkel!
Határozza meg a hang terjedési sebességét különböző feszítő erők és húrok esetén!
Kiválasztva az egyik húrt, állítson be kb. 60 cm-es húrhosszúságot, akasszon egy súlyt az emelő erőkarjának első vájatába, majd a gerjesztő frekvencia változtatásával állítsa be az első állóhullám alakzatot ()! Mérje meg az állóhullám hullámhosszát és frekvenciáját és a összefüggés alapján számítsa ki a hang terjedési sebességét a húrban! Készítsen táblázatot és írja be a feszítő erő, a lineáris sűrűség, a alapfrekvencia és a terjedési sebesség értékeit! Ismételje meg a mérést még négy különböző feszítő erővel (a súlyt helyezze egyre távolabb az emelő tengelyétől) és írja be ismét az adatokat a táblázatba! Ezután közepes feszítő erőnél ismételje meg a mérést a mérőhelyen található többi húrral, és ismét írja be az adatokat a táblázatba!
Ellenőrizze a hang terjedési sebességét leíró összefüggést!
Az 4. pontban kapott táblázat alapján ellenőrizze a (2) egyenletet! (Az egyenlet szerint állandó mellett a összefüggés lineáris, állandó mellett pedig a összefüggés lineáris.) Ha a táblázat alapján elkészítjük ezeket a grafikonokat, akkor a pontoknak egy egyenesen kell lenniük és a meredekség az első esetben , második esetben pedig .