„Granulált anyagok vizsgálata” változatai közötti eltérés
(Új oldal, tartalma: „Szerkesztés alatt!”) |
|||
1. sor: | 1. sor: | ||
− | + | <wlatex> | |
+ | |||
+ | [[Kategória:Fizika BSC alapképzés]] | ||
+ | <!--[[Kategória:Fizika BSC alkalmazott fizika szakirány]]--> | ||
+ | <!--[[Kategória:Fizika BSC fizikus szakirány]]--> | ||
+ | <!--[[Kategória:Fizikus MSC alapképzés]]--> | ||
+ | <!--[[Kategória:Fizikus MSC alkalmazott fizika szakirány]]--> | ||
+ | <!--[[Kategória:Fizikus MSC kutatófizikus szakirány]]--> | ||
+ | <!--[[Kategória:Fizikus MSC nukleáris technika szakirány]]--> | ||
+ | <!--[[Kategória:Fizikus MSC orvosi fizika szakirány]]--> | ||
+ | [[Kategória:Mechanika]] | ||
+ | <!--[[Kategória:Elektromosságtan]]--> | ||
+ | <!--[[Kategória:Hőtan]]--> | ||
+ | <!--[[Kategória:Kvantummechanika]]--> | ||
+ | [[Kategória:Statisztikus fizika]] | ||
+ | <!--[[Kategória:Nanofizika]]--> | ||
+ | <!--[[Kategória:Optika]]--> | ||
+ | <!--[[Kategória:Szilárdtestfizika]]--> | ||
+ | <!--[[Kategória:Mag és részecskefizika]]--> | ||
+ | <!--[[Kategória:Informatika]]--> | ||
+ | [[Kategória:Laborgyakorlat]] | ||
+ | <!--[[Kategória:Fizika laboratórium 1.]]--> | ||
+ | [[Kategória:Fizika laboratórium 2.]] | ||
+ | <!--[[Kategória:Fizika laboratórium 3.]]--> | ||
+ | <!--[[Kategória:Fizika laboratórium 4.]]--> | ||
+ | [[Kategória:Fizika Tanszék]] | ||
+ | <!--[[Kategória:Elméleti Fizika Tanszék]]--> | ||
+ | <!--[[Kategória:Atomfizika Tanszék]]--> | ||
+ | <!--[[Kategória:Nukleáris Technikai Intézet]]--> | ||
+ | <!--[[Kategória:Matematika Intézet]]--> | ||
+ | [[Kategória:Szerkesztő:Vankó]] | ||
+ | |||
+ | ''A mérés célja:'' | ||
+ | * megismerkedni a granulált anyagok viselkedésével. | ||
+ | |||
+ | ''Ennek érdekében:'' | ||
+ | * röviden ismertetjük a granulált anyagokkal foglalkozó szakirodalmat, | ||
+ | * mérjük különböző anyagok rézsűszögét, | ||
+ | * vizsgáljuk a különböző anyagok rázásakor kialakuló mintázatokat. | ||
+ | |||
+ | __TOC__ | ||
+ | |||
+ | ==Elméleti összefoglaló== | ||
+ | |||
+ | ===Granulált anyagok=== | ||
+ | |||
+ | A granulált (szemcsés, granuláris) anyagok nagyszámú, szilárd szemcséből állnak. A természetben és az ipari gyakorlatban nagyon sok egymástól különböző anyag tartozik ebbe a csoportba. A szemcsék mérete tág határok között változik a néhány mikrométeres festékporoktól a kőomlások méteres nagyságú szikladarabjaiig. Még nagyobb a változatosság a szemcsék alakjában a szabályos kis golyóktól a teljesen szabálytalan, szögletes formákig. | ||
+ | Jelentősen befolyásolja a granulált anyagok viselkedését a szemcsék közti teret kitöltő anyag (levegő, víz vagy más folyadék). A száraz és a nedves homok közti különbséget mindenki ismeri gyerekkorából: a száraz homok szinte folyadékként önthető, a nedves homokból viszont – a szemcsék közti kohéziónak köszönhetően – várat lehet építeni. A továbbiakban csak száraz granulált anyagokkal foglalkozunk, ahol a szemcsék közti kohézió elhanyagolható. | ||
+ | |||
+ | ====A granulált anyagok sztatikája==== | ||
+ | |||
+ | Ha a kohézió elhanyagolható, akkor a granulált anyag egyensúlyát a gravitáción kívül kizárólag a szemcsék közti és a külső határolófelületek által kifejtett nyomó és súrlódási erők határozzák meg. A probléma azonban ennek ellenére nagyon bonyolult: nemcsak a szemcsék nagy száma és általában szabálytalan alakja, hanem a tapadási súrlódási erők következtében létrejövő befeszülések, beékelődések miatt is. A nyugalomban lévő granulált anyag termodinamikai szempontból tipikus nemegyensúlyi rendszer. A lehetséges minimális értéknél jóval nagyobb potenciális energiájú elrendeződések is "befagyhatnak", hiszen az atomi méreteknél jóval nagyobb szemcsék aktiválásához szobahőmérsékleten a termikus gerjesztés nagyon kevés, a külső mechanikai hatások megszűnése után a szemcsék rugalmatlan ütközései pedig hamar felemésztik a rendszer kinetikus energiáját. | ||
+ | |||
+ | A granulált anyagok sztatikájának legegyszerűbb kísérleti vizsgálata a ''rézsűszög mérése''. Játszótéri tapasztalatból mindenki ismeri, hogy bár a száraz granulált anyag folyadékként önthető, ha egy nyíláson (például tölcséren) át kiöntjük az anyagot egy sík felületre, akkor – a folyadékokkal ellentétben – nem folyik szét teljesen, hanem egy többé-kevésbé szabályos kúpot alkot. A kúp alkotójának vízszintessel bezárt $\alpha$ szöge a rézsűszög. A szemcsék méretétől, alakjától, anyagi minőségétől, nedvességétől függő rézsűszöggel jól jellemezhető egy granulált anyag – bár a kialakuló szög függ a lejtő létrehozásának módjától is. Erről és további granulált anyagokkal való érdekességekről lásd {{cite|1}}-et. A rézsűszög fontos gyakorlati szempontból is: például annak meghatározásához, hogy egy adott mennyiségű szemcsés anyagot mekkora területen lehet ömlesztve tárolni. | ||
+ | |||
+ | A szemcsék közti bonyolult kölcsönhatás kifejezésére szokás bevezetni a $\mu^*=\text{tg}\alpha$ makroszkopikus súrlódási együtthatót, ahol $\alpha$ a rézsűszög. (A definíció alapja, hogy egy szemcse akkor lehet egyensúlyban egy hajlásszögű lejtőn, ha a szemcse és a lejtő közt legalább $\mu^*$ a súrlódási együttható.) A szemcsék egymás közötti és a határolófelületekkel való súrlódásának egyik érdekes, a gyakorlati életben szintén fontos következménye, hogy egy tartályba töltött granulált anyag a folyadékoktól eltérően terheli a tartály alaplapját és oldalfalát. Példaképp vizsgáljunk egy $r$ sugarú, $h$ magasságú hengeres tartályt, ahol $h\gg r$. Ha a tartályba granulált anyagot töltünk, a tartály aljára ható nyomás kezdetben a folyadékok hidrosztatikai nyomásához hasonlóan növekszik. A beöntött anyag mennyiségével azonban nő az oldalfalra és a szemcsék között ható nyomás, és ezzel együtt az oldalfalon és a szemcsék közt fellépő súrlódás is növekszik. Ha egy $\Delta h$ vastagságú szemcserétegre a fal nagyobb súrlódási erőt fejt ki, mint a réteg súlya, akkor a nyomás nem növekszik tovább: | ||
+ | $$p_{\text{max} }2r\pi\Delta h\mu^*=r^2\pi\Delta h\rho g,$$ | ||
+ | ahol $\mu^*$ a korábban definiált szemcsék közti makroszkopikus súrlódási együttható és a szemcsék és a fal közti súrlódási együttható közül a kisebbik. (Attól függően, hogy melyik együttható kisebb, vagy a szemcsék egymáson, vagy pedig a szemcsék a tartály falán csúsznak meg.) Ebből a maximális nyomás és a tartály aljára ható maximális erő | ||
+ | $$o_{\text{max} }=\frac{r\rho g}{2\mu^*}\quad\text{és}\quad F_{\text{max}}=p_{\text{max}}r^2\pi=\frac{r^3\pi\rho g}{2\mu^*}.$$ | ||
+ | |||
+ | A beöntött anyag súlyának egy részét az oldalfal fogja megtartani, amelyre a folyadékoktól eltérően nemcsak vízszintes, hanem függőleges erők is hatnak. A problémát tovább bonyolítja, hogy ha a granulált anyagot beöntés közben, vagy utólag (pl. rázással) tömörítjük, a részecskék közti és az edény falára ható nyomás ennél nagyobb is lehet, a tapadási súrlódási erők pedig nem csak tarthatják, hanem akár lefelé is nyomhatják az anyagot – tovább növelve a nyomást. Az ilyen jellegű befeszülések granulált anyagok tárolására szolgáló hatalmas épületek (pl. cement- vagy gabonatároló silók) "érthetetlen" összeomlását is okozhatják. | ||
+ | |||
+ | ====A granulált anyagok dinamikája==== | ||
+ | |||
+ | A granulált anyag folyamatosan mozgásban tartható, ha a szemcsék rugalmatlan ütközése során elvesző (elsősorban hővé alakuló) energiát külső mechanikai gerjesztéssel (rázással, keveréssel, öntögetéssel, stb.) folyamatosan pótoljuk. A granulált anyagok dinamikai leírása a sztatikai leíráshoz hasonlóan bonyolult. A jelenségek nagy részének egyelőre hiányos az elméleti magyarázata, a számítógépes szimulációk pedig a részecskék nagy száma és bonyolult kölcsönhatása miatt szintén csak komoly egyszerűsítésekkel készülnek. A következőkben csak a mérésen is vizsgált két fontos jelenséget tárgyalunk. | ||
+ | |||
+ | =====Szegregáció===== | ||
+ | |||
+ | Az egyik legmeglepőbb jelenség a különböző részecskékből álló granulált anyagok mozgatásakor a szinte törvényszerűen fellépő szegregáció, azaz a különböző anyagú, sűrűségű, méretű, alakú, felületű részecskék spontán szétválása. Rázás, forgódobos keverés, átöntés hatására a különböző szemcsék a várakozással ellentétben nem összekeverednek, hanem térben szétválnak. Különböző rézsűszögű szemcsékből álló keverékek öntésekor a szegregáció következtében spontán rétegződés jöhet létre. Ha a keverék összetevői különböző színűek, és az anyag két átlátszó és párhuzamos lemez közé ömlik, akkor a rétegek jól megfigyelhetőek. (Ez a mérés első része.) A jelenség részleteiről szintén {{cite|1}}-ben lehet olvasni. | ||
+ | |||
+ | =====Mintázatképződés===== | ||
+ | |||
+ | A mérés második részében granulált anyag rázásakor kialakuló mintázatok vizsgálata a feladat. A rázás hatására, ha a maximális gyorsulás nagyobb, mint g, a szemcsék egymáshoz képest is mozogni kezdenek, egymással és az edény falával ütköznek, az ütközések között pedig a gravitáció és a közegellenállás által meghatározott pályán repülnek. | ||
+ | |||
+ | Egyetlen szabadeséssel függőlegesen mozgó és egy harmonikusan rezgő vízszintes lemezzel ütköző golyó mozgásának leírása se könnyű, hiszen a kialakuló mozgás nem periodikus. Nagyon nagy számú szemcse háromdimenziós mozgása (amit kis szemcseméret esetén a közegellenállás is jelentősen befolyásol) és (az általában szabálytalan alak miatt különösen) bonyolult ütközései teljesen kiszámíthatatlan mozgást sejtet. | ||
+ | |||
+ | Ezzel szemben a tapasztalat szerint a szemcsék rezgetésekor gyakran többé-kevésbé szabályos mintázatok keletkeznek. Miközben az egyes szemcsék mozgása hosszútávon valóban teljesen megjósolhatatlan, a sokaság kollektív mozgása mégis rendezettnek tűnik. A szemcsék tulajdonságainak, a rázott granulált anyag mennyiségének, valamint a rázási frekvenciának és amplitúdónak a függvényében nagyon változatos formák jelenhetnek meg: állóhullámok, négyszöges és hatszöges mintázatok, örvénylés, "fortyogás", dombképződés, stb. | ||
+ | |||
+ | Egy adott tulajdonságú és rétegvastagságú granulált anyag rezgetésekor kialakuló mintázatok a gyorsulás- frekvencia $(a-f)$ fázistérben szemléltethetőek. A mérés során használt szemcseméret esetén a 10-30 Hz-es frekvenciatartományban és a néhányszor $g$ nagyságú gyorsulástartományban figyelhetőek meg mintázatok. (A rezgetés maximális gyorsulását $g$ egységekben szokás mérni.) A vizsgálatot nehezíti, hogy egy adott frekvencia és gyorsulásérték esetén kialakuló mintázat függ a rendszer „előéletétől” is, azaz nem mindegy, hogy $a$ vagy $f$ értéke növekszik-e vagy csökken. | ||
+ | |||
+ | A granulált anyag rázásakor megfigyelhető egyik legérdekesebb jelenség az oszcillon. Az oszcillon egy hosszabb ideig stabilan megmaradó, az edény frekvenciájának felével rezgő lokalizált gerjesztés. Az oszcillon a rezgetés egy teljes periódusa alatt kúpszerű kiemelkedés, majd egy teljes perióduson keresztül kúpszerű bemélyedés. A leggyakrabban hivatkozott publikáció.{{cite|2}}. A híres oszcillon kép megtalálható {{cite|1}}-ben is. | ||
+ | |||
+ | ===A mintázatképződés vizsgálatához használt eszközök=== | ||
+ | |||
+ | A ''rázógép'' függőleges tengelyű hengeres műanyag edényét egy hangszórómembrán hozza függőleges irányú rezgőmozgásba. A rezgés frekvenciája és amplitúdója a hangszórómembránra kapcsolt szinuszos jel frekvenciájától és nagyságától függ. A frekvencia 0 és 100 Hz között változtatható. Az amplitúdó maximum 7 mm lehet, és nagysága a rákapcsolt feszültség nagyságán kívül a frekvenciától és a terheléstől is függ. A rázógép meghajtására egy más mérésekből már ismert PASCO gyártmányú ''hanggenerátor'' szolgál. A hanggenerátor frekvenciáját egy erre a célra szolgáló kimeneten megjelenő, a frekvenciával arányos egyenfeszültség segítségével lehet mérni. A rázógép maximális gyorsulása a frekvenciából és az amplitúdóból meghatározható: | ||
+ | $$a_{\text{max} }=A\omega^2=A(2\pi f)^2.$$ | ||
+ | Az amplitúdó azonban nehezen mérhető, ezért előnyös az edény gyorsulását egy ''gyorsulásérzékelő'' csippel közvetlenül mérni. Az ANALOG DEVICES által gyártott ADXL78 gyorsulásmérő csip a gyorsulás hatására elmozduló miniatürizált alkatrész elmozdulását – és ezen keresztül a gyorsulást – egy visszacsatolt kapacitásmérő híd segítségével méri. Az eszköz működéséhez 5 V tápfeszültség szükséges, amit 4 darab Ni-MH tölthető ceruzaelem biztosít. A felépítés és a működés részletei megtalálhatóak az eszközismertetőben{{cite|3}}. A teljes mechanika és elektronika egyetlen 5 mm x 5 mm x 2 mm-es IC-ben található. Az IC kimenetén 2,5 V $\pm$ a gyorsulással arányos feszültség jelenik meg. (Az érzékelő természetesen nem tudja megkülönböztetni a tényleges gyorsulást és a Föld gravitációs terét, ezért a nullapont $g$-nek megfelelő értékkel eltolódik.) A rázógépre egy $\pm 35\,\text{g}$ tartományban mérő eszköz (AD22279) van szerelve, ennek érzékenysége $55\,\text{mV/g}\pm 5\%$. A gyorsulással lineárisan változó feszültséget ''oszcilloszkóp'' segítségével lehet vizsgálni. Az oszcilloszkópról nem csak a maximális gyorsulás olvasható le, hanem a rezgés harmonikus jellege (és a frekvenciája) is ellenőrizhető. | ||
+ | |||
+ | ===Irodalom (ajánlott olvasmányok)=== | ||
+ | |||
+ | {{ref|1|Jánosi Imre: A homok titkai, Természet Világa 129 pp19-22 (1998. január), http://www.kfki.hu/~cheminfo/TermVil/tv98/tv9801/sand.html}} | ||
+ | {{ref|2|P.B. Umbanhowar, F. Melo, H.L. Swinney: Localized excitations in a vertically vibrated granular leyer. Nature 382 p793 (1996)}} | ||
+ | {{ref|3|ANALOG DEVICES ADXL78, http://www.analog.com/static/imported-files/data_sheets/ADXL78.pdf}} | ||
+ | |||
+ | ==Mérési feladatok== | ||
+ | |||
+ | ===Rézsűszög mérése beöntésnél=== | ||
+ | Öntse bele először az egyik homogén granulált anyagot a párhuzamos falú edénybe, és mérje meg a rézsűszögét! Ismételje meg a kísérletet egészen lassú beöntéssel is! Öntse vissza az anyagot a dobozába, és tisztítsa ki az edényt! | ||
+ | Végezze el a mérést a másik homogén anyaggal is! | ||
+ | Az edény kitisztítása után töltse bele a keveréket! Mérje meg a rézsűszöget és a kialakuló rétegek vastagságát! Ismételje meg a kísérletet egészen lassú beöntéssel is! | ||
+ | A mérés után öntse vissza a keveréket a dobozába és tisztítsa ki az edényt! | ||
+ | |||
+ | ===Rézsűszög mérése forgatásnál=== | ||
+ | Az állvány alján lévő csavarok segítségével vízszintezze be a rázóedényt! | ||
+ | Öntsön kb. 1 mm vastagon 0,15 mm átmérőjű üveggyöngyöt a rázógép edényébe! | ||
+ | Vizsgálja az anyag viselkedését a 10-30 Hz frekvencia- és a $g - 5g$ gyorsulástartományban. A rezgés amplitúdóját semmiképp ne növelje annyira, hogy a rázóedény hozzáütődjön az alapzathoz! A jellegzetes mintázatokról készítsen fényképet! | ||
+ | Ábrázolja a mintázatok kialakulását az a-f fázistérben! | ||
+ | Ismételje meg a mérést 3 mm vastag üveggyöngyréteggel! | ||
+ | A mérés után tisztítsa ki az edényt, majd ismételje meg a mérést 1 mm vastag homokréteggel is! | ||
+ | |||
+ | </wlatex> |
A lap 2012. február 13., 16:07-kori változata
A mérés célja:
- megismerkedni a granulált anyagok viselkedésével.
Ennek érdekében:
- röviden ismertetjük a granulált anyagokkal foglalkozó szakirodalmat,
- mérjük különböző anyagok rézsűszögét,
- vizsgáljuk a különböző anyagok rázásakor kialakuló mintázatokat.
Tartalomjegyzék |
Elméleti összefoglaló
Granulált anyagok
A granulált (szemcsés, granuláris) anyagok nagyszámú, szilárd szemcséből állnak. A természetben és az ipari gyakorlatban nagyon sok egymástól különböző anyag tartozik ebbe a csoportba. A szemcsék mérete tág határok között változik a néhány mikrométeres festékporoktól a kőomlások méteres nagyságú szikladarabjaiig. Még nagyobb a változatosság a szemcsék alakjában a szabályos kis golyóktól a teljesen szabálytalan, szögletes formákig. Jelentősen befolyásolja a granulált anyagok viselkedését a szemcsék közti teret kitöltő anyag (levegő, víz vagy más folyadék). A száraz és a nedves homok közti különbséget mindenki ismeri gyerekkorából: a száraz homok szinte folyadékként önthető, a nedves homokból viszont – a szemcsék közti kohéziónak köszönhetően – várat lehet építeni. A továbbiakban csak száraz granulált anyagokkal foglalkozunk, ahol a szemcsék közti kohézió elhanyagolható.
A granulált anyagok sztatikája
Ha a kohézió elhanyagolható, akkor a granulált anyag egyensúlyát a gravitáción kívül kizárólag a szemcsék közti és a külső határolófelületek által kifejtett nyomó és súrlódási erők határozzák meg. A probléma azonban ennek ellenére nagyon bonyolult: nemcsak a szemcsék nagy száma és általában szabálytalan alakja, hanem a tapadási súrlódási erők következtében létrejövő befeszülések, beékelődések miatt is. A nyugalomban lévő granulált anyag termodinamikai szempontból tipikus nemegyensúlyi rendszer. A lehetséges minimális értéknél jóval nagyobb potenciális energiájú elrendeződések is "befagyhatnak", hiszen az atomi méreteknél jóval nagyobb szemcsék aktiválásához szobahőmérsékleten a termikus gerjesztés nagyon kevés, a külső mechanikai hatások megszűnése után a szemcsék rugalmatlan ütközései pedig hamar felemésztik a rendszer kinetikus energiáját.
A granulált anyagok sztatikájának legegyszerűbb kísérleti vizsgálata a rézsűszög mérése. Játszótéri tapasztalatból mindenki ismeri, hogy bár a száraz granulált anyag folyadékként önthető, ha egy nyíláson (például tölcséren) át kiöntjük az anyagot egy sík felületre, akkor – a folyadékokkal ellentétben – nem folyik szét teljesen, hanem egy többé-kevésbé szabályos kúpot alkot. A kúp alkotójának vízszintessel bezárt szöge a rézsűszög. A szemcsék méretétől, alakjától, anyagi minőségétől, nedvességétől függő rézsűszöggel jól jellemezhető egy granulált anyag – bár a kialakuló szög függ a lejtő létrehozásának módjától is. Erről és további granulált anyagokkal való érdekességekről lásd [1] -et. A rézsűszög fontos gyakorlati szempontból is: például annak meghatározásához, hogy egy adott mennyiségű szemcsés anyagot mekkora területen lehet ömlesztve tárolni.
A szemcsék közti bonyolult kölcsönhatás kifejezésére szokás bevezetni a makroszkopikus súrlódási együtthatót, ahol a rézsűszög. (A definíció alapja, hogy egy szemcse akkor lehet egyensúlyban egy hajlásszögű lejtőn, ha a szemcse és a lejtő közt legalább a súrlódási együttható.) A szemcsék egymás közötti és a határolófelületekkel való súrlódásának egyik érdekes, a gyakorlati életben szintén fontos következménye, hogy egy tartályba töltött granulált anyag a folyadékoktól eltérően terheli a tartály alaplapját és oldalfalát. Példaképp vizsgáljunk egy sugarú, magasságú hengeres tartályt, ahol . Ha a tartályba granulált anyagot töltünk, a tartály aljára ható nyomás kezdetben a folyadékok hidrosztatikai nyomásához hasonlóan növekszik. A beöntött anyag mennyiségével azonban nő az oldalfalra és a szemcsék között ható nyomás, és ezzel együtt az oldalfalon és a szemcsék közt fellépő súrlódás is növekszik. Ha egy vastagságú szemcserétegre a fal nagyobb súrlódási erőt fejt ki, mint a réteg súlya, akkor a nyomás nem növekszik tovább:
ahol a korábban definiált szemcsék közti makroszkopikus súrlódási együttható és a szemcsék és a fal közti súrlódási együttható közül a kisebbik. (Attól függően, hogy melyik együttható kisebb, vagy a szemcsék egymáson, vagy pedig a szemcsék a tartály falán csúsznak meg.) Ebből a maximális nyomás és a tartály aljára ható maximális erő
A beöntött anyag súlyának egy részét az oldalfal fogja megtartani, amelyre a folyadékoktól eltérően nemcsak vízszintes, hanem függőleges erők is hatnak. A problémát tovább bonyolítja, hogy ha a granulált anyagot beöntés közben, vagy utólag (pl. rázással) tömörítjük, a részecskék közti és az edény falára ható nyomás ennél nagyobb is lehet, a tapadási súrlódási erők pedig nem csak tarthatják, hanem akár lefelé is nyomhatják az anyagot – tovább növelve a nyomást. Az ilyen jellegű befeszülések granulált anyagok tárolására szolgáló hatalmas épületek (pl. cement- vagy gabonatároló silók) "érthetetlen" összeomlását is okozhatják.
A granulált anyagok dinamikája
A granulált anyag folyamatosan mozgásban tartható, ha a szemcsék rugalmatlan ütközése során elvesző (elsősorban hővé alakuló) energiát külső mechanikai gerjesztéssel (rázással, keveréssel, öntögetéssel, stb.) folyamatosan pótoljuk. A granulált anyagok dinamikai leírása a sztatikai leíráshoz hasonlóan bonyolult. A jelenségek nagy részének egyelőre hiányos az elméleti magyarázata, a számítógépes szimulációk pedig a részecskék nagy száma és bonyolult kölcsönhatása miatt szintén csak komoly egyszerűsítésekkel készülnek. A következőkben csak a mérésen is vizsgált két fontos jelenséget tárgyalunk.
Szegregáció
Az egyik legmeglepőbb jelenség a különböző részecskékből álló granulált anyagok mozgatásakor a szinte törvényszerűen fellépő szegregáció, azaz a különböző anyagú, sűrűségű, méretű, alakú, felületű részecskék spontán szétválása. Rázás, forgódobos keverés, átöntés hatására a különböző szemcsék a várakozással ellentétben nem összekeverednek, hanem térben szétválnak. Különböző rézsűszögű szemcsékből álló keverékek öntésekor a szegregáció következtében spontán rétegződés jöhet létre. Ha a keverék összetevői különböző színűek, és az anyag két átlátszó és párhuzamos lemez közé ömlik, akkor a rétegek jól megfigyelhetőek. (Ez a mérés első része.) A jelenség részleteiről szintén [1] -ben lehet olvasni.
Mintázatképződés
A mérés második részében granulált anyag rázásakor kialakuló mintázatok vizsgálata a feladat. A rázás hatására, ha a maximális gyorsulás nagyobb, mint g, a szemcsék egymáshoz képest is mozogni kezdenek, egymással és az edény falával ütköznek, az ütközések között pedig a gravitáció és a közegellenállás által meghatározott pályán repülnek.
Egyetlen szabadeséssel függőlegesen mozgó és egy harmonikusan rezgő vízszintes lemezzel ütköző golyó mozgásának leírása se könnyű, hiszen a kialakuló mozgás nem periodikus. Nagyon nagy számú szemcse háromdimenziós mozgása (amit kis szemcseméret esetén a közegellenállás is jelentősen befolyásol) és (az általában szabálytalan alak miatt különösen) bonyolult ütközései teljesen kiszámíthatatlan mozgást sejtet.
Ezzel szemben a tapasztalat szerint a szemcsék rezgetésekor gyakran többé-kevésbé szabályos mintázatok keletkeznek. Miközben az egyes szemcsék mozgása hosszútávon valóban teljesen megjósolhatatlan, a sokaság kollektív mozgása mégis rendezettnek tűnik. A szemcsék tulajdonságainak, a rázott granulált anyag mennyiségének, valamint a rázási frekvenciának és amplitúdónak a függvényében nagyon változatos formák jelenhetnek meg: állóhullámok, négyszöges és hatszöges mintázatok, örvénylés, "fortyogás", dombképződés, stb.
Egy adott tulajdonságú és rétegvastagságú granulált anyag rezgetésekor kialakuló mintázatok a gyorsulás- frekvencia fázistérben szemléltethetőek. A mérés során használt szemcseméret esetén a 10-30 Hz-es frekvenciatartományban és a néhányszor nagyságú gyorsulástartományban figyelhetőek meg mintázatok. (A rezgetés maximális gyorsulását egységekben szokás mérni.) A vizsgálatot nehezíti, hogy egy adott frekvencia és gyorsulásérték esetén kialakuló mintázat függ a rendszer „előéletétől” is, azaz nem mindegy, hogy vagy értéke növekszik-e vagy csökken.
A granulált anyag rázásakor megfigyelhető egyik legérdekesebb jelenség az oszcillon. Az oszcillon egy hosszabb ideig stabilan megmaradó, az edény frekvenciájának felével rezgő lokalizált gerjesztés. Az oszcillon a rezgetés egy teljes periódusa alatt kúpszerű kiemelkedés, majd egy teljes perióduson keresztül kúpszerű bemélyedés. A leggyakrabban hivatkozott publikáció.[2] . A híres oszcillon kép megtalálható [1] -ben is.
A mintázatképződés vizsgálatához használt eszközök
A rázógép függőleges tengelyű hengeres műanyag edényét egy hangszórómembrán hozza függőleges irányú rezgőmozgásba. A rezgés frekvenciája és amplitúdója a hangszórómembránra kapcsolt szinuszos jel frekvenciájától és nagyságától függ. A frekvencia 0 és 100 Hz között változtatható. Az amplitúdó maximum 7 mm lehet, és nagysága a rákapcsolt feszültség nagyságán kívül a frekvenciától és a terheléstől is függ. A rázógép meghajtására egy más mérésekből már ismert PASCO gyártmányú hanggenerátor szolgál. A hanggenerátor frekvenciáját egy erre a célra szolgáló kimeneten megjelenő, a frekvenciával arányos egyenfeszültség segítségével lehet mérni. A rázógép maximális gyorsulása a frekvenciából és az amplitúdóból meghatározható:
Az amplitúdó azonban nehezen mérhető, ezért előnyös az edény gyorsulását egy gyorsulásérzékelő csippel közvetlenül mérni. Az ANALOG DEVICES által gyártott ADXL78 gyorsulásmérő csip a gyorsulás hatására elmozduló miniatürizált alkatrész elmozdulását – és ezen keresztül a gyorsulást – egy visszacsatolt kapacitásmérő híd segítségével méri. Az eszköz működéséhez 5 V tápfeszültség szükséges, amit 4 darab Ni-MH tölthető ceruzaelem biztosít. A felépítés és a működés részletei megtalálhatóak az eszközismertetőben[3] . A teljes mechanika és elektronika egyetlen 5 mm x 5 mm x 2 mm-es IC-ben található. Az IC kimenetén 2,5 V a gyorsulással arányos feszültség jelenik meg. (Az érzékelő természetesen nem tudja megkülönböztetni a tényleges gyorsulást és a Föld gravitációs terét, ezért a nullapont -nek megfelelő értékkel eltolódik.) A rázógépre egy tartományban mérő eszköz (AD22279) van szerelve, ennek érzékenysége . A gyorsulással lineárisan változó feszültséget oszcilloszkóp segítségével lehet vizsgálni. Az oszcilloszkópról nem csak a maximális gyorsulás olvasható le, hanem a rezgés harmonikus jellege (és a frekvenciája) is ellenőrizhető.
Irodalom (ajánlott olvasmányok)
- Jánosi Imre: A homok titkai, Természet Világa 129 pp19-22 (1998. január), http://www.kfki.hu/~cheminfo/TermVil/tv98/tv9801/sand.html
- P.B. Umbanhowar, F. Melo, H.L. Swinney: Localized excitations in a vertically vibrated granular leyer. Nature 382 p793 (1996)
- ANALOG DEVICES ADXL78, http://www.analog.com/static/imported-files/data_sheets/ADXL78.pdf
Mérési feladatok
Rézsűszög mérése beöntésnél
Öntse bele először az egyik homogén granulált anyagot a párhuzamos falú edénybe, és mérje meg a rézsűszögét! Ismételje meg a kísérletet egészen lassú beöntéssel is! Öntse vissza az anyagot a dobozába, és tisztítsa ki az edényt! Végezze el a mérést a másik homogén anyaggal is! Az edény kitisztítása után töltse bele a keveréket! Mérje meg a rézsűszöget és a kialakuló rétegek vastagságát! Ismételje meg a kísérletet egészen lassú beöntéssel is! A mérés után öntse vissza a keveréket a dobozába és tisztítsa ki az edényt!
Rézsűszög mérése forgatásnál
Az állvány alján lévő csavarok segítségével vízszintezze be a rázóedényt! Öntsön kb. 1 mm vastagon 0,15 mm átmérőjű üveggyöngyöt a rázógép edényébe! Vizsgálja az anyag viselkedését a 10-30 Hz frekvencia- és a gyorsulástartományban. A rezgés amplitúdóját semmiképp ne növelje annyira, hogy a rázóedény hozzáütődjön az alapzathoz! A jellegzetes mintázatokról készítsen fényképet! Ábrázolja a mintázatok kialakulását az a-f fázistérben! Ismételje meg a mérést 3 mm vastag üveggyöngyréteggel! A mérés után tisztítsa ki az edényt, majd ismételje meg a mérést 1 mm vastag homokréteggel is!