„A kényszerrezgés vizsgálata” változatai közötti eltérés
106. sor: | 106. sor: | ||
==Mérési feladatok== | ==Mérési feladatok== | ||
− | + | *''A mérés elvégzéséhez és a mérési napló elkészítéséhez a dőlt betűs részekben adunk segítséget.'' | |
+ | |||
+ | '''1.''' A rugóállandó mérése | ||
+ | |||
Állítsa be a zsinór hosszát úgy, hogy a mérőrúd 17 cm-es jele a rúdvezető alsó szélével egy vonalba essék! Erősítse az egyik 50 g-os rézsúlyt a mérőrúd és a csillapítórúd közé! Mérje le a rugó sztatikus megnyúlását! Ezután helyezze fel a második rézsúlyt is, és mérje meg az újabb megnyúlást! Számítsa ki a rugó rugóállandóját! | Állítsa be a zsinór hosszát úgy, hogy a mérőrúd 17 cm-es jele a rúdvezető alsó szélével egy vonalba essék! Erősítse az egyik 50 g-os rézsúlyt a mérőrúd és a csillapítórúd közé! Mérje le a rugó sztatikus megnyúlását! Ezután helyezze fel a második rézsúlyt is, és mérje meg az újabb megnyúlást! Számítsa ki a rugó rugóállandóját! | ||
− | + | '''2.''' Csillapítatlan rendszer lengésideje | |
+ | |||
Szabályozza be a készüléket! (Beállítás A és B pontok alapján) Ehhez a méréshez szerelje le a csillapító mágnes-pofákat! ''FUNKCIÓ'' kapcsolót állítsa ''PERIÓDUS-MÉRÉSRE''. Húzza a mérőrudat kb. 5 cm-rel az egyensúlyi helyzete alá, aztán engedje el! A digitális kijelző ekkor a rezgés ''PERIÓDUSIDEJÉT'' (s) mutatja. A mérést üres mérőrúddal, majd 50 és 100 g-os terhelésekkel is végezze el! Az eredményeket foglalja táblázatba és vesse össze az elmélet alapján kiszámolt értékekkel! | Szabályozza be a készüléket! (Beállítás A és B pontok alapján) Ehhez a méréshez szerelje le a csillapító mágnes-pofákat! ''FUNKCIÓ'' kapcsolót állítsa ''PERIÓDUS-MÉRÉSRE''. Húzza a mérőrudat kb. 5 cm-rel az egyensúlyi helyzete alá, aztán engedje el! A digitális kijelző ekkor a rezgés ''PERIÓDUSIDEJÉT'' (s) mutatja. A mérést üres mérőrúddal, majd 50 és 100 g-os terhelésekkel is végezze el! Az eredményeket foglalja táblázatba és vesse össze az elmélet alapján kiszámolt értékekkel! | ||
− | + | '''3.''' Kényszerrezgés amplitúdójának és sebesség-amplitúdójának vizsgálata a kényszerítő frekvencia függvényében | |
+ | |||
A méréseket két különböző csillapítás esetén, mindkét esetben kétféle tömeggel (mérőrúd + 50 g, mérőrúd + 100 g) végezze el! Szerelje vissza a csillapító mágnespofákat! A kis csillapításhoz a csillapító mágnespofákat egymástól a lehető legtávolabb állítsa be! A nagy csillapításhoz tekerje a mágnespofákat a lehető legközelebb, de csak annyira, hogy ne érjenek hozzá a csillapítórúdhoz! Ekkor mérje meg és jegyezze fel a mágnespofák távolságát! | A méréseket két különböző csillapítás esetén, mindkét esetben kétféle tömeggel (mérőrúd + 50 g, mérőrúd + 100 g) végezze el! Szerelje vissza a csillapító mágnespofákat! A kis csillapításhoz a csillapító mágnespofákat egymástól a lehető legtávolabb állítsa be! A nagy csillapításhoz tekerje a mágnespofákat a lehető legközelebb, de csak annyira, hogy ne érjenek hozzá a csillapítórúdhoz! Ekkor mérje meg és jegyezze fel a mágnespofák távolságát! | ||
121. sor: | 126. sor: | ||
A korábban megmért görbék valamennyi pontjánál (a kitérési amplitúdó és frekvencia ismeretében) számítsa ki a sebeség-amplitúdó $(A\cdot 2\pi f=A\omega)$ értékeket! Foglalja táblázatba és ábrázolja diagrammon a sebesség-amplitúdó - frekvencia görbéket! | A korábban megmért görbék valamennyi pontjánál (a kitérési amplitúdó és frekvencia ismeretében) számítsa ki a sebeség-amplitúdó $(A\cdot 2\pi f=A\omega)$ értékeket! Foglalja táblázatba és ábrázolja diagrammon a sebesség-amplitúdó - frekvencia görbéket! | ||
− | + | '''4.''' Csillapítási tényező és jósági tényező meghatározása | |
+ | |||
A csillapítási tényező kísérleti meghatározásának egyik lehetséges módszere a [[#eq:3|(3)]] egyenleten alapul. Ekkor egymás utáni lengések amplitúdó csökkenéseit mérjük. Ennek észlelése akkor pontos, ha a lengő rendszer periódusideje eléggé nagy (kb. 3<sup>−10</sup>s). Az alkalmazott rugónál a lengésidő rövidebb, emiatt egy másik módszer alkalmazása előnyösebb. A csillapítási- és jósági tényezők a sebesség-amplitúdó frekvenciafüggéséből meghatározhatók. A sebesség-amplitúdó kifejezése: | A csillapítási tényező kísérleti meghatározásának egyik lehetséges módszere a [[#eq:3|(3)]] egyenleten alapul. Ekkor egymás utáni lengések amplitúdó csökkenéseit mérjük. Ennek észlelése akkor pontos, ha a lengő rendszer periódusideje eléggé nagy (kb. 3<sup>−10</sup>s). Az alkalmazott rugónál a lengésidő rövidebb, emiatt egy másik módszer alkalmazása előnyösebb. A csillapítási- és jósági tényezők a sebesség-amplitúdó frekvenciafüggéséből meghatározhatók. A sebesség-amplitúdó kifejezése: | ||
{{eq|A\omega{{=}}\frac{F\omega}{m\sqrt{(\omega_0^2-\omega^2)^2+4\delta^2\omega^2} },|eq:6|(6)}} | {{eq|A\omega{{=}}\frac{F\omega}{m\sqrt{(\omega_0^2-\omega^2)^2+4\delta^2\omega^2} },|eq:6|(6)}} | ||
136. sor: | 142. sor: | ||
Illesszen a [[#Kényszerrezgés amplitúdójának és sebesség-amplitúdójának vizsgálata a kényszerítő frekvencia függvényében|3. pontban]] mért sebességamplitúdó adatokra a [[#eq:6|(6)]] egyenletnek megfelelő görbét és határozza meg a maximális sebesség-amplitúdó értékét, majd állapítsa meg azt a két frekvenciát melyeknél sebesség-amplitúdó a maximális érték fele! Számítsa ki a [[#eq:7|(7)]] és [[#eq:8|(8)]] képletek segítségével a csillapítási és jósági tényezőket! | Illesszen a [[#Kényszerrezgés amplitúdójának és sebesség-amplitúdójának vizsgálata a kényszerítő frekvencia függvényében|3. pontban]] mért sebességamplitúdó adatokra a [[#eq:6|(6)]] egyenletnek megfelelő görbét és határozza meg a maximális sebesség-amplitúdó értékét, majd állapítsa meg azt a két frekvenciát melyeknél sebesség-amplitúdó a maximális érték fele! Számítsa ki a [[#eq:7|(7)]] és [[#eq:8|(8)]] képletek segítségével a csillapítási és jósági tényezőket! | ||
− | + | '''5.''' Lebegés vizsgálata | |
{{fig|A_kényszerrezgés_vizsgálata_5.png|fig:5|5. ábra}} | {{fig|A_kényszerrezgés_vizsgálata_5.png|fig:5|5. ábra}} |
A lap 2012. február 13., 16:23-kori változata
A harmonikus rezgés alapvető fizikai jelenség. Vibrációk, oszcillációk harmonikus rezgéssel modellezhetők, ha az amplitúdók elég kicsinyek. A harmonikus mozgás differenciálegyenlete nem csupán a klasszikus fizikában (mechanika, villamosságtan), de a kvantumfizikában, a szilárdtestfizikában és az optikában is gyakran előfordul.
Tartalomjegyzék |
Elméleti összefoglaló
Csillapítatlan rezgések
Ha egy tömegű anyagi pontra rugalmas erő hat, akkor a mozgásegyenlet alakú, ahol a rugóállandó, a tömegpont kitérése az egyensúlyi helyzetből, a tömeg, és a a gyorsulás. A mozgásegyenlet megoldása
ahol a kitérési amplitúdó, a fázisállandó,
a csillapítatlan rezgő rendszer körfrekvenciája (, ahol a megfelelő frekvencia). A harmonikus rezgőmozgás sebessége
ahol a maximális sebesség, a sebesség-amplitúdó.
Csillapodó rezgések
A csillapodást okozó erők gyakran a sebességgel arányosak. Ekkor a tömegpont mozgásegyenlete: , ami a csillapodási tényező ( a súrlódásra jellemző mennyiség) és (2) felhasználásával az alábbi alakra hozható:
A differenciálegyenlet megoldása esetén időben csökkenő amplitúdójú lengéseket eredményez:
A rezgés körfrekvenciája
Az amplitúdó változás jellemzésére különböző mennyiségeket használnak. A csillapodási hányados két, azonos irányban egymás után kővetkező amplitúdó hányadosa , ahol . Használatos még a K csillapodási hányados logaritmusa, az ún. logaritmikus dekrementum:
Kényszerrezgések
Egy m tömegre motor és excenter segítségével időben periodikusan változó erőt alkalmazva egy átmeneti időszak után időben állandósult rezgés alakul ki, melynek frekvenciája megegyezik a kényszerítő erő frekvenciájával, míg amplitúdója függ az erőtől, a rugóállandótól, a tömegtől, a csillapítástól valamint a gerjesztő frekvenciától. Az anyagi pont mozgásegyenlete ekkor: . Az (1) egyenletnél bevezetett jelöléseket alkalmazva másodrendű lineáris, inhomogén differenciálegyenletet kapunk:
ahol a kényszererő maximális értéke. Az egyenlet megoldása:
melynek második tagja írja le az állandósult állapotot. A fázisállandó nem az időmérés kezdetétől függ, hanem a kényszerítő erő fázisától való eltérés. Az állandósult állapot amplitúdójának maximuma van az
frekvenciánál, míg a fázisállandó
A kényszerrezgés energiaviszonyainak jellemezésére az egy periódus alatt disszipált energia és a rendszerben tárolt átlagos energia hányadosával arányos jósági tényezőt használjuk
A kísérleti berendezés leírása
A kísérleti berendezés az 1. ábrán látható. Az alul elhelyezkedő elektronikai egység hátsó lapján található a kényszererőt létrehozó excenter. A kényszererő amplitúdója az amplitúdó-rúd helyzetének változtatásával szabályozható, ami a kényszert kifejtő zsinór rögzítési pontja és az excenter középpontja közötti távolságot befolyásolja (2. ábra). A kényszert továbbító zsinór a tartóoszlop tetején található két csiga vájatain áthaladva egy hurokkal kapcsolódik a vizsgálandó rugó egyik végéhez. A másik véghez a skálával ellátott mérőrúd és a hozzá erősített ún. csillapító rúd csatlakozik. E két rúd alkotja a rezgőmozgást végző "alaptömeget", melynek értéke 50 g.
A mérőkészlethez tartozik két 50 g tömegű rézkorong is. A korongokat a mérőrudat és csillapitórudat összekötő csavarmenetre lehet felerősíteni. A tartóoszlop középmagasságánál látható a rúdvezető, melyben optikai érzékelő van. A mérőrudat a rúdvezető téglalap alakú nyílásán kell átvezetni.
Helyes beállítás után a rezgés csillapodása - melyet a légellenállás ill. a berendezés egyes elemei között fellépő súrlódás okoz - igen kicsi. Ezért a csillapítás változtatása (növelése) céljából a kővetkezőképpen járhatunk el.
A tartórúdra egy olyan mágnes-párt szerelünk fel, melynek pofái között a távolság változtatható. Ezen mágnespofák között mozog az alumíniumból készült csillapítórúd. A mágneses tér hatására a mozgó fémrúdban örvényáramok keletkeznek, melyek Joule-hőjének disszipációja okozza a rendszer csillapodását. A mágnespofák közötti távolság csökkentésével a mágneses térerősség növelhető, azaz a disszipáció, vagyis a csillapítás fokozható.
Beállítás
- Ha a készülék jól van beállítva, a mérőrúd úgy függ, hogy egyik oldala sem ér hozzá a rúdvezető nyílásának falához (3. ábra). A nem jó a beállítás a 3. ábrán látható "b" vagy "c" esetben fordul elő. A "b" esetet az elektronika doboz változtatható magasságú lábainak megfelelő állításával korrigálhatjuk (vízszintezés). A "c" eset a mérőrúd felfüggesztésével javítható.
- A fázis és amplitúdó pontos méréséhez úgy kell felfüggeszteni a mérőrudat, hogy egyensúlyi helyzetben középvonala egybeessen a rúdvezető optikai érzékelőjével. Hogy ezt beállíthassa:
- Kapcsolja be az elektronika doboz hátoldalán levő kapcsolót. Figyelje a rúdvezető LED-et. Ha a mérőrúd középvonala (8,5 cm) feljebb van, mint a rúdvezető felső éle, akkor a LED kialszik. Ha a középvonal lejjebb került, akkor a LED kigyullad.
- Mozgassa úgy a mérőrudat, fel és le, hogy a középvonala áthaladjon a rúdvezetőn. Közben figyelje a FÁZIS kijelzést. Amikor a mérőrúd középvonala lefelé halad keresztül a rúdvezetőn, egy LED villog a fázisskálán. Annyira fordítsa el a kényszerkereket, hogy a fázist jelző LED éppen 0° fázishelyzetet mutasson.
- Most pontosítsa a zsinór hosszát. Ez a zsinóron található plasztikcsattal állítható. Finom állítások a tartóoszlop tetején levő csavarral végezhetők. A zsinórhossz akkor megfelelő, ha egészen kicsi oszcillációknál a fázis LED ki-be kapcsol.
Az elektronika doboz a 4. ábrán látható. Az elülső lapon található a DRIVE kapcsoló. Ezzel indítható a motor, mely a kényszer kereket forgatja. A FREKVENCIA gombbal változtatható a kényszer frekvenciája. Óramutató járásával megegyezően forgatva növeli a frekvenciát. A FUNKCIÓ kapcsoló határozza meg azt, hogy az alábbi három változóból melyiket írja ki a digitális kijelző. A kijelző jobb oldalán egy LED mutatja, hogy melyik változó értéket olvashatjuk le.
- FREQ. - A kényszerkerék frekvenciája (Hz)
- AMPL. - A mérőrúd csúcstól-csúcsig amplitúdója (ez az amplitúdó kétszerese) (mm)
- PERIOD - A mérőrúd egy teljes rezgésének periódusideje (s).
Mérési feladatok
- A mérés elvégzéséhez és a mérési napló elkészítéséhez a dőlt betűs részekben adunk segítséget.
1. A rugóállandó mérése
Állítsa be a zsinór hosszát úgy, hogy a mérőrúd 17 cm-es jele a rúdvezető alsó szélével egy vonalba essék! Erősítse az egyik 50 g-os rézsúlyt a mérőrúd és a csillapítórúd közé! Mérje le a rugó sztatikus megnyúlását! Ezután helyezze fel a második rézsúlyt is, és mérje meg az újabb megnyúlást! Számítsa ki a rugó rugóállandóját!
2. Csillapítatlan rendszer lengésideje
Szabályozza be a készüléket! (Beállítás A és B pontok alapján) Ehhez a méréshez szerelje le a csillapító mágnes-pofákat! FUNKCIÓ kapcsolót állítsa PERIÓDUS-MÉRÉSRE. Húzza a mérőrudat kb. 5 cm-rel az egyensúlyi helyzete alá, aztán engedje el! A digitális kijelző ekkor a rezgés PERIÓDUSIDEJÉT (s) mutatja. A mérést üres mérőrúddal, majd 50 és 100 g-os terhelésekkel is végezze el! Az eredményeket foglalja táblázatba és vesse össze az elmélet alapján kiszámolt értékekkel!
3. Kényszerrezgés amplitúdójának és sebesség-amplitúdójának vizsgálata a kényszerítő frekvencia függvényében
A méréseket két különböző csillapítás esetén, mindkét esetben kétféle tömeggel (mérőrúd + 50 g, mérőrúd + 100 g) végezze el! Szerelje vissza a csillapító mágnespofákat! A kis csillapításhoz a csillapító mágnespofákat egymástól a lehető legtávolabb állítsa be! A nagy csillapításhoz tekerje a mágnespofákat a lehető legközelebb, de csak annyira, hogy ne érjenek hozzá a csillapítórúdhoz! Ekkor mérje meg és jegyezze fel a mágnespofák távolságát!
Gondosan állítsa be a mérőrúd helyzetét úgy, hogy már egészen kis kitéréseknél villogjon a digitális kijelző (beállítás 2/2 pont)! A FUNKCIÓ kapcsolót állítsa FREKVENCIA mérésre és a DRIVE kapcsolóval indítsa el a kényszerrezgést! A FREKVENCIA szabályozó gombbal lassan (fokozatosan) növelje a frekvenciát, és időről-időre váltson át az AMPLITÚDÓ funkcióra! (Itt a kijelző mm-ben megadja a csúcstól-csúcsig amplitúdót – ez az amplitúdó kétszerese.) Figyelje eközben a fázisállandót jelző LED értékét! Amikor a kényszerítő frekvencia megegyezik az sajátfrekvenciával, a fázisszög 90°. Keresse meg az rezonanciafrekvenciát, ahol az amplitúdó maximális! [A rezonanciafrekvencia – különösen nagy csillapítás esetében – eltér a sajátfrekvenciától (5).] Amennyiben a rezgések amplitúdója túl nagy vagy túl kicsi lenne, úgy kapcsolja ki a készüléket és csökkentse, illetve növelje a kényszererő amplitúdóját, majd ellenőrizze a kitérést a rezonanciafrekvenciánál!
Amennyiben mindent rendben talál, vegye fel táblázatosan a rezonanciafrekvenciánál 1 Hz-el kisebb és 1 Hz-el nagyobb frekvenciák közötti intervallumban 0,1 Hz-enként (és a rezonancia frekvencia közelében ennél sűrűbben is) a kitérési amplitúdókat! Ábrázolja az azonos tömeggel, de különböző csillapítással felvett görbéket közös diagrammon! Adja meg minden esetben értékét!
A korábban megmért görbék valamennyi pontjánál (a kitérési amplitúdó és frekvencia ismeretében) számítsa ki a sebeség-amplitúdó értékeket! Foglalja táblázatba és ábrázolja diagrammon a sebesség-amplitúdó - frekvencia görbéket!
4. Csillapítási tényező és jósági tényező meghatározása
A csillapítási tényező kísérleti meghatározásának egyik lehetséges módszere a (3) egyenleten alapul. Ekkor egymás utáni lengések amplitúdó csökkenéseit mérjük. Ennek észlelése akkor pontos, ha a lengő rendszer periódusideje eléggé nagy (kb. 3−10s). Az alkalmazott rugónál a lengésidő rövidebb, emiatt egy másik módszer alkalmazása előnyösebb. A csillapítási- és jósági tényezők a sebesség-amplitúdó frekvenciafüggéséből meghatározhatók. A sebesség-amplitúdó kifejezése:
melynek maximuma -nál van, ahol
.A maximum felének megfelelő frekvenciáknál (, illetve ) -nél
-nél
Négyzetre emelés és átrendezés után ill. adódik, míg -t behelyettesítve . Ezek alapján a csillapítási tényező
míg a jósági tényező
Illesszen a 3. pontban mért sebességamplitúdó adatokra a (6) egyenletnek megfelelő görbét és határozza meg a maximális sebesség-amplitúdó értékét, majd állapítsa meg azt a két frekvenciát melyeknél sebesség-amplitúdó a maximális érték fele! Számítsa ki a (7) és (8) képletek segítségével a csillapítási és jósági tényezőket!
5. Lebegés vizsgálata
Két, kis mértékben különböző frekvenciájú, szinusz-hullám szuperpozíciójakor "lebegés" alakul ki (5. ábra). Ha időpontban a rezgések éppen fázisban vannak, akkor a hullámok összeadódnak és az eredő rezgés maximális amplitúdójú lesz. Egy későbbi időpontban azonban a frekvencia különbség miatt a rezgések ellentétes fázisba kerülnek, és egymás hatását csökkentve minimális amplitúdót eredményeznek. Az amplitúdó változások burkológörbéje szintén szinuszos. A burkológörbe frekvenciája , ahol és a két összetevő rezgés frekvenciája. A differenciálegyenlet megoldása (4) képlet tartalmazza a bekapcsolás után kialakuló két fajta frekvenciát. Az egyik szinusz-hullám körfrekvenciája , a másiké . Lebegés akkor figyelhető meg, ha a kényszererő körfrekvenciája közelében van, valamint, ha a csillapodás kicsi. Amint a tranziens elhal, a lebegés is megszűnik.
Szerelje le újra a csillapító mágnespofákat és állítsa be pontosan a mérőrúd helyzetét. Határozza meg a rendszer sajátfrekvenciáját! (A 2. méréshez hasonlóan használja a készülék kijelzőjén a PERIÓDUS állást! ) Állítsa a kényszerkeréken az amplitúdót 2 mm-re! Kapcsolja be a kényszermozgást és szabályozza annak frekvenciáját úgy, hogy 0,1 Hz-el legyen alacsonyabb, mint ! Jegyezze fel mindét frekvencia értékét és kapcsolja ki a kényszert! Várjon, amíg a mérőrúd megáll! Állítsa a funkciókapcsolót AMPLITÚDÓ mérésre.
Helyezze a mérőrúd alá az ultrahangos érzékelőt! Indítsa el a számítógépen a Logger Lite programot. A program felismeri a rákapcsolt szenzort. Végezze el a következő beállításokat: Experiment - Data Collection - Length: 120 s; Options - Graph Options - Axes Options - Scaling: Autoscale (mindkét tengelyen).
Indítsa el az adatgyűjtést, majd kapcsolja be a kényszerrezgést! A lebegés megszűntéig mérjen! Utána a mérési adatok a File- Export as paranccsal menthetők.
Ábrázolja az amplitúdót az idő függvényében! Határozza meg a burkoló szinusz-görbe periódusidejét és frekvenciáját! Vesse össze az elmélet alapján várható értékekkel!