„Félvezető termoelem és Peltier-elem vizsgálata (régi)” változatai közötti eltérés
60. sor: | 60. sor: | ||
===Félvezető termoelem=== | ===Félvezető termoelem=== | ||
− | Ha két fémből (1 és 2) termoelemet hozunk létre (1/a ábra), az A és B pontok között mérhető feszültség a C pont T hőmérséklete és az A és B pont közös | + | Ha két fémből ('''1''' és '''2''') termoelemet hozunk létre (1/a ábra), az '''A''' és '''B''' pontok között mérhető feszültség a '''C''' pont $T$ hőmérséklete és az '''A''' és '''B''' pont közös $T_0$ hőmérsékletének különbségétől ($T-T_0$), valamint a két fém anyagi minőségétől függ. A kapott feszültség nem függ a két fém '''C''' pontban történ összeforrasztására használt harmadik fém anyagi minőségétől. A fém termoelemhez hasonlóan, két különböző módon szennyezett félvezetőből is létrehozhatunk termoelemet. Ezek érzékenysége kb. egy nagyságrenddel nagyobb, mint a fémből készült termoelemeké. A félvezető termoelem vázlata az 1/b ábrán, perspektivikus rajza pedig az 1/c ábrán látható. |
− | A félvezető termoelem vázlata az 1/b ábrán, perspektivikus rajza pedig az 1/c ábrán látható. | + | |
− | + | ||
− | + | ||
− | + | A termoelem egyik jellemzője az 1.1 részben bevezetett Seebeck-együttható, ami az l°C hőmérséklet-különbség hatására kialakuló termofeszültséget adja meg. | |
+ | Az első közelítésben a termoelem üresjárási feszültségének hőmérsékletfüggése az $$U_0=\alpha_{12}\left(T-T_0\right)$$ összefüggéssel adható meg. | ||
− | + | A vizsgálat tárgyát képező félvezető termoelem $k$ darab p-n átmenetet tartalmaz, amelyek elektromosan sorba kapcsolódnak (1/d ábra), így feszültségük összeadódik: $$U=kU_0$$ | |
− | A vizsgálat tárgyát képező félvezető termoelem k darab p-n átmenetet tartalmaz, amelyek elektromosan sorba kapcsolódnak (1/d ábra), így feszültségük összeadódik: | + | |
− | + | Az átmenetek két alumínium lemezhez csatlakoznak, jó hővezető, de elektromosan szigetelő réteggel (1/d ábra). Az alumínium lemezek közül az egyik (a meleg oldal) $T_1$ hőmérsékleten, míg a másik (a hideg oldal) $T_0$ hőmérsékleten van. Ilyen módon az elemek hőtani szempontból párhuzamosan kapcsolódnak. | |
− | + | Vizsgálatainkhoz a termoelemet két hőcserélő közé helyezzük (3/a ábra). A hideg oldalhoz csatlakozó hőcserélőn (alumínium tömb) csapvizet vezetünk keresztül és ennek az oldalnak a hőmérsékletét állandó ($T_0$) értéken tartjuk. A meleg oldalhoz csatlakozó alumínium tömbben ellenállás fűtőtest van, amit alacsony feszültségű külső áramforrás segítségével működtetünk. Így a meleg oldal hőmérsékletét változtatni tudjuk. | |
− | Vizsgálatainkhoz a termoelemet két hőcserélő közé helyezzük ( | + | |
− | + | ||
− | + | ||
− | + | Ha különböző $T_1$ hőmérsékletek mellett megmérjük a termoelem $U_0$ üresjárási feszültségét, az $U_0$ – $\left(T_1-T_0\right)$ összefüggést ábrázolva egyenest kapunk. Az egyenes meredeksége a Seebeck-együttható. | |
− | + | ||
− | + | A termoelem fontos jellemzője a belső ellenállása. A belső ellenállást a [[Hőmérsékletérzékelők hitelesítése]] című jegyzetben leírtak (6. feladat) szerint mérhető. | |
− | ahol c és m az alumínium fajhője ill. a tömb tömege. | + | Termoelemünk termikus energia hatására termel villamos energiát. Mekkora hatásfokkal teszi ezt? |
− | + | Erre a kérdésre a következő módon kaphatunk feleletet: | |
+ | A termoelemet belső ellenállásával azonos nagyságú ellenállással terheljük. Ekkor tudjuk kivenni a maximális elektromos teljesítményt. Ehhez a melegoldali alumínium tömböt kb. 20 W villamos teljesítménnyel felfűtjük, majd a fűtést kikapcsolva mérjük az időben csökkenő hőmérsékletet és a terhelő ellenálláson jelentkező villamos teljesítményt. Ha feltételezzük, hogy rendszerünk a környezettől jól szigetelt, akkor azt mondhatjuk, hogy a fűtött alumínium tömb által leadott hő hatására nyerünk elektromos teljesítményt. A leadott hőteljesítmény: $$P_h=\frac{{\rm d}Q}{{\rm d}t}=cm\frac{{\rm d}T}{{\rm d}t}$$ ahol $c$ és $m$ az alumínium fajhője ill. a tömb tömege. | ||
− | + | A fentiek alapján termoelem hatásfoka úgy állapítható meg, hogy a $T(t)$ hűlési görbe vizsgált pontján meghatározzuk ${\rm d}T/{\rm d}t$ értékét és az előzőképlet alapján számítjuk a hőteljesítményt ($P_h$-t), miközben mérjük az ugyanezen időponthoz tartozó villamos teljesítményt: $$P_v=\frac{U^2}{R}$$ | |
− | Az átalakítás hatásfoka ezek után: | + | Az átalakítás hatásfoka ezek után: $$\etha=\frac{P_h}{P_v}$$ |
− | + | A fentiekből a hatásfok hőmérséklet-különbség függése [az $\etha(\Delta T)$ kapcsolat] is meghatározható. | |
− | + | ||
− | A fentiekből a hatásfok hőmérséklet-különbség függése [az | + | |
===Peltier-elem=== | ===Peltier-elem=== |
A lap 2012. szeptember 1., 13:20-kori változata
A mérés célja:
- elmélyíteni a hallgatók termoelektromos effektusokkal kapcsolatos ismereteit,
- megismertetni a hallgatókat a félvezető termoelemmel és a Peltier-elemmel (termoelektromos hűtő elemmel).
Ennek érdekében:
- összefoglaljuk a félvezető termoelemmel és a Peltier-elemmel kapcsolatos elméleti tudnivalókat,
- mérések segítségével meghatározzuk a félvezető termoelem és a Peltier-elem fontosabb jellemzőit.
Tartalomjegyzék |
Elméleti összefoglaló
A Hőmérsékletérzékelők hitelesítése című mérés elméleti részében részletesebben foglalkoztunk a két vezetőből készült termoelemek működésével és alkalmazásával. Most az ott elmondottakra is támaszkodunk.
Termoelektromos jelenségek
A félvezető termoelem és a Peltier-elem működését termoelektromos és hőtani folyamatok határozzák meg. A termoelektromos jelenségek elektromos és hőtani folyamatok közötti kapcsolatokat adnak meg. Összefoglalónkat ezen effektusok (a Seebeck-, a Peltier-, a Thomson-effektus) és a Joule-hő ismertetésével kezdjük, majd a tisztán hőtani folyamatok leírásával folytatjuk, míg végül megvizsgáljuk ezek együttes hatását a termoelem és a Peltier-elem viselkedésére.
A termoelektromos jelenségek fémek esetében is fellépnek, de az effektusok sokkal erősebbek félvezetők alkalmazásakor: például egy félvezető termoelem hőfoktényezője egy nagyságrenddel nagyobb, mint egy fém termoelemé. Ezért a gyakorlatban használt Peltier-elemek (termoelektromos hűtőelemek) is félvezetőkből készülnek és a mérésen is ilyet használunk.
Egy n- és p-típusú félvezetőből kialakított termoelemet mutat az 1/b ábra. Ha az A és B pont hőmérsékleten van és C pont hőmérséklete , () az A és B pont között feszültséget mérhetünk. Ez a Seebeck-effektus. Az effektusra jellemző az anyagtól és hőmérséklettől függő állandót az egyenlettel definiáljuk.Ha a fenti összeállításon áram folyik, az áram irányától függően a C pontban hő szabadul fel, vagy hő nyelődik el. Ez a Peltier-effektus.
Az egységnyi idő alatt felszabaduló vagy elnyelt hőnek megfelelő hőteljesítmény () arányos az árammal: ahol a hő, a Peltier-együttható, az abszolút hőmérséklet, míg a Seebeck-együttható. Amikor áram folyik olyan homogén vezetőben, amelyben az áram irányába eső gradiens van, az áram és a hőmérséklet gradiens irányától, valamint a vezető anyagától függően hő szabadul fel, vagy nyelődik el. Ez a Thomson-effektus. Az időegység alatt a vezető egységnyi hosszúságú részében fejlődő Thomson-hő arányos az áramerősséggel és a hőmérséklet gradienssel: ahol a vezető anyagától és a hőmérséklettől függő előjeles mennyiség, a Thomson-állandó. A Thomson-hő pozitív előjelű – azaz hő szabadul fel – ha pozitív előjelű és az áram a magasabb hőmérsékletű hely felől az alacsonyabb hőmérsékletű hely felé folyik. Az árammal átjárt vezetőben hő szabadul fel: az úgynevezett Joule-hő. A Joule-törvény értelmében a teljesítmény, ha ellenállású vezetőn áram folyik: Az eszköz működésével kapcsolatos "tisztán" hőtani folyamatok közül egyedül az elem belsejében lejátszódó hővezetés hatását vesszük figyelembe. Ha a meleg oldal és a hideg oldal hőmérsékletű (), akkor a meleg oldalról a hideg oldal felé lejátszódó hővezetés teljesítménye: ahol a hővezető-képesség, az elem keresztmetszetének területe és a vastagság. A termoelemként és Peltier-elemként is használható eszköz vázlata a 1/d ábrán látható.1. ábra: Termoelem felépítése |
Félvezető termoelem
Ha két fémből (1 és 2) termoelemet hozunk létre (1/a ábra), az A és B pontok között mérhető feszültség a C pont hőmérséklete és az A és B pont közös hőmérsékletének különbségétől (), valamint a két fém anyagi minőségétől függ. A kapott feszültség nem függ a két fém C pontban történ összeforrasztására használt harmadik fém anyagi minőségétől. A fém termoelemhez hasonlóan, két különböző módon szennyezett félvezetőből is létrehozhatunk termoelemet. Ezek érzékenysége kb. egy nagyságrenddel nagyobb, mint a fémből készült termoelemeké. A félvezető termoelem vázlata az 1/b ábrán, perspektivikus rajza pedig az 1/c ábrán látható.
A termoelem egyik jellemzője az 1.1 részben bevezetett Seebeck-együttható, ami az l°C hőmérséklet-különbség hatására kialakuló termofeszültséget adja meg.
Az első közelítésben a termoelem üresjárási feszültségének hőmérsékletfüggése az összefüggéssel adható meg. A vizsgálat tárgyát képező félvezető termoelem darab p-n átmenetet tartalmaz, amelyek elektromosan sorba kapcsolódnak (1/d ábra), így feszültségük összeadódik:Az átmenetek két alumínium lemezhez csatlakoznak, jó hővezető, de elektromosan szigetelő réteggel (1/d ábra). Az alumínium lemezek közül az egyik (a meleg oldal) hőmérsékleten, míg a másik (a hideg oldal) hőmérsékleten van. Ilyen módon az elemek hőtani szempontból párhuzamosan kapcsolódnak.
Vizsgálatainkhoz a termoelemet két hőcserélő közé helyezzük (3/a ábra). A hideg oldalhoz csatlakozó hőcserélőn (alumínium tömb) csapvizet vezetünk keresztül és ennek az oldalnak a hőmérsékletét állandó () értéken tartjuk. A meleg oldalhoz csatlakozó alumínium tömbben ellenállás fűtőtest van, amit alacsony feszültségű külső áramforrás segítségével működtetünk. Így a meleg oldal hőmérsékletét változtatni tudjuk.
Ha különböző hőmérsékletek mellett megmérjük a termoelem üresjárási feszültségét, az – összefüggést ábrázolva egyenest kapunk. Az egyenes meredeksége a Seebeck-együttható.
A termoelem fontos jellemzője a belső ellenállása. A belső ellenállást a Hőmérsékletérzékelők hitelesítése című jegyzetben leírtak (6. feladat) szerint mérhető.
Termoelemünk termikus energia hatására termel villamos energiát. Mekkora hatásfokkal teszi ezt? Erre a kérdésre a következő módon kaphatunk feleletet:
A termoelemet belső ellenállásával azonos nagyságú ellenállással terheljük. Ekkor tudjuk kivenni a maximális elektromos teljesítményt. Ehhez a melegoldali alumínium tömböt kb. 20 W villamos teljesítménnyel felfűtjük, majd a fűtést kikapcsolva mérjük az időben csökkenő hőmérsékletet és a terhelő ellenálláson jelentkező villamos teljesítményt. Ha feltételezzük, hogy rendszerünk a környezettől jól szigetelt, akkor azt mondhatjuk, hogy a fűtött alumínium tömb által leadott hő hatására nyerünk elektromos teljesítményt. A leadott hőteljesítmény: ahol és az alumínium fajhője ill. a tömb tömege. A fentiek alapján termoelem hatásfoka úgy állapítható meg, hogy a hűlési görbe vizsgált pontján meghatározzuk értékét és az előzőképlet alapján számítjuk a hőteljesítményt (-t), miközben mérjük az ugyanezen időponthoz tartozó villamos teljesítményt: Az átalakítás hatásfoka ezek után:\[\etha=\frac{P_h}{P_v}\]
\setbox0\hbox{$\etha(\Delta T)$}% \message{//depth:\the\dp0//}% \box0%kapcsolat] is meghatározható.
Peltier-elem
Az 1.1 részben áttekintett effektusok eredményeként röviden összefoglalva a vizsgált Peltier-elem belsejében a következő folyamatok játszódnak le: 1. Az áram irányától függően a Peltier-effektus miatt az egyik oldalon az átmenetnél hő nyelődik el (hideg oldal, T0 hőmérsékleten), másik oldalon hő szabadul fel (meleg oldal, T1 hőmérsékleten). 2. A Thomson-effektus következtében a félvezető elemek anyagától függően az elem belsejében hő szabadul fel vagy nyelődik el. 3. A Joule-hő következtében az elem belsejében hő fejlődik. Ezt egyszerűség kedvéért úgy tekintjük, hogy egyenlő arányban jut a két felületre. 4. A hővezetés eredménye egy a meleg oldalról a hideg oldal felé történő hőáramlás: Az elmondottak alapján a Peltier-elem hideg oldalán a hűtőteljesítmény:
. (11)
A meleg oldal fűtő teljesítménye:
. (12)
Az elektromos teljesítmény:
. (13)
A Peltier-elem energetikai folyamatait a 2. ábra szemlélteti. A hőerőgépek és a hűtőgépek működése az ideális Carnot-körfolyamat segítségével közelíthető. Hőerőgépként a Carnot-gép W munkát végez, miközben a rendszer a magasabb T1 hőmérsékletű hőtartályból Q1 hőmennyiséget vesz fel, míg a kisebb T0 hőmérsékletű hőtartálynak Q0 hőt ad le. Az így nyert munka . A gép hatásfoka illetve maximális hatásfoka pedig rendre ill. . (Így működik a termoelem.) Hűtőgépként (hőszivattyúként) a Peltier-elem fordított Carnot-gépnek tekinthető. Külső W munka befektetése árán a hidegebb T0 oldalról Q0 hőt von ki, míg a melegebb oldalon hőt ad le. A folyamat teljesítménytényezője ill. . Vegyük észre, hogy is lehet. A hatásfok ill. teljesítményté-nyező a megfelelő teljesítmények segítségével is kifejezhető.
A Peltier-elem vizsgálatához használt eszköz a félvezető elemből és a két oldalára szerelt fémtömbökből áll (3/b ábra). Az egyik tömb vízzel hűthető (így T0 hőmérséklete közel állandó), míg a másik oldal hőszigetelt és fűthető. Ennek megfelelően, a változó hőmérsékletű oldal hőháztartását az alábbi egyenlet írja le:
(14)
ahol c és m a tömb tömege ill. fajhője, Ph a hőszivattyúként működtetett Peltier-elem által kivont hőteljesítmény, Pf a fűtőteljesítmény, míg a harmadik tag a Peltier-elemen keresztül hővezetéssel átjutó ismeretlen hőteljesítmény. Termikus egyensúlyban a baloldal 0, vagyis a jobboldali tagok kiejtik egymást. Legyen kezdetben . Ha a Peltier-elemet a fűtés bekapcsolása nélkül elektromos teljesítmény befektetése mellett működtetjük, T olyan értékre áll be, melynél . Pp növelésével Ph, és ezzel a hőmérséklet-különbség is nő. Mivel azonban ismeretlen, a teljesítménytényező így nem határozható meg. Az teljesítménytényező meghatározásához állandó teljesítménnyel működtetjük a Peltier-elemet, miközben változó Pf fűtőteljesítmény mellett vizsgáljuk a kialakuló egyensúlyi hőmérséklet-különbségeket. Alkalmasan választott fűtőteljesítmény esetén a két oldal közti hőmérséklet-különbség eltűnik. Ekkor a fűtőteljesítmény éppen megegyezik a Peltier-elem által a vízhűtött oldalra átszivattyúzott Ph hőteljesítménnyel ( ), vagyis a teljesítménytényező a összefüggés alapján számítható.
Akkor amikor a hőmérséklet-különbség eltűnik, meghatározható a Peltier-elem belső ellenállása és a Peltier-együttható értéke is.
estében nem keletkezik termofeszültség, így a Peltier-elem belső ellenállása az (15)
képlettel meghatározható.
estében nincsen hővezetés (és Thomson-hő) se, így a Peltier-együttható a (2) képlet alapján könnyen kifejezhető: . (16)
(A Peltier-elemnek a fűtőellenállás által leadott teljesítményt és a Peltier-elemre kapcsolt, Joule-hőként felszabaduló elektromos teljesítmény felét kell átszivattyúznia.)
Mérési elrendezés
A termoelem és a Peltier-elem vizsgálatához – kicsit különböző elrendezésben – ugyanazt az eszközt használjuk (3/a és 3/b ábra). A mérőeszköz két 50 g-os alumínium tömbből ill. közöttük elhelyezkedő 98 db sorba kötött p-n átmenetből áll. Az eszköznek a külső környezettel történő hőcseréjét többrétegű szigetelés akadályozza. Az egyik tömb hőmérsékletét vízhűtés rögzíti, míg a másik oldal egy tápegységgel (max. 25 V, 5 A) fűthető. A fűtőteljesítményt áram- és feszültségmérés alapján, az alumínium tömbök hőmérsékletét a Pt-hőmérők ellenállásából a
(17)
összefüggés alapján számítjuk. A termoelem kimenetén mérhető a termofeszültség és a terhelő áram (3/a. ábra). A Peltier-elem működtetéséhez egy másik tápegységet (max. 40 V, 10 A) használunk (3/b ábra). A Peltier-teljesítményt áram- és feszültségmérés alapján számítjuk.
Mérési feladatok
- A mérés elvégzéséhez és a mérési napló elkészítéséhez a dőlt betűs részekben adunk segítséget.
1. Határozza meg a félvezető termoelem elektromotoros erejét és belső ellenállását a hőmérséklet függvényében! Ábrázolja az elektromotoros erő – hőmérséklet-különbség összefüggést és határozza meg a Seebeck-állandót. A fűtőellenállásra kezdetben kb. 2 V, majd egyre nagyobb (max. 20 V) feszültséget kapcsolva folyamatosan fűtse a meleg oldalt, és néhány percenként olvassa le a hőmérséklet (ellenállás), üresjárati feszültség és terhelő áram értékeket. Az ellenállás alapján számított hőmérséklet:
2. Határozza meg a termoelem hatásfokát a hőmérséklet függvényében! Az első feladat utolsó fűtőteljesítményének beállított értékén folytassa a fűtést a véghőmérséklet eléréséig. Ekkor a termoelem kivezetésére először ne kapcsoljon semmit, kapcsolja ki a fűtőtest tápegységét, és egyidejűleg indítsa meg a stoppert! A meleg oldal alumínium tömbje a tökéletlen hőszigeteés miatt hűlni fog. 50 °C és 40 °C között Δt = 30 s időközönként olvassa le az alumínium tömb hőmérsékletét, illetve a termoelem feszültségét! A Δt időtartamok félidejénél a hőteljesítmény:
.
Ezután kapcsolja be a fűtőtest ellenállását és folytassa a fűtést addig, amíg újra eléri a véghőmérsékletet. Ekkor kapcsoljon a termoelemre egy, a belső ellenállással egyező értékre beállított ellenállásdekádot! Kapcsolja ki a fűtőtest tápegységét, és egyidejűleg indítsa meg a stoppert! 50 °C és 40 °C között Δt = 30 s időközönként olvassa le az alumínium tömb hőmérsékletét, illetve a termoelem feszültségét! A Δt időtartamok félidejénél a villamos teljesítmény:
,
a hőteljesítmény:
,
a hatásfok pedig:
,
ahol az UA , UB feszültségek, és a TA , TB a hőmérsékletek a Δt = 30 s időintervallum elején ill. végén felvett értékeket jelölik, R a terhelő ellenállás, c = 900 J/kgK, m = 5•10-2 kg az alumínium fajhője ill. a tömb tömege.
3. Mérje meg 5 W Peltier-teljesítmény esetén (a fűtőtest kiiktatásával) a kialakuló hőmérséklet-különbséget! Mérje a hőmérsékletet 10 percig és a függelékben megadott összefüggések illesztésével határozza meg a kialakuló max. (állandósult) hőmérséklet-különbséget!
4. Mérje rögzített Peltier-teljesítmény és különböző fűtőteljesítmények mellett a kialakuló hőmérséklet-különbségeket és ábrázolja ezeket! Peltier-teljesítmény 5 W, fűtőteljesítmények: 3-11 W között 3-4 értéken mérve. A Peltier-elemet működtető tápegységet áramgenerátoros üzemmódban használja, és minden esetben írja fel az áram és feszültségértékeket is! Mérje a hőmérsékletet esetenként 10 percig és a függelékben megadott összefüggések illesztésével határozza meg a fenti teljesítményeknél kialakuló max. hőmérséklet-különbségeket!
5. Az állandósult hőmérséklet-különbség fűtőteljesítmény kapcsolat alapján számítsa ki a Peltier-elem teljesítmény-tényezőjét!
6. Határozza meg a Peltier-elem belső ellenállását!
7. Határozza meg a Peltier-együtthatót! A Seebeck-együttható és a Peltier-együttható ismeretében számítsa ki a T0 abszolút hőmérsékletet!
Függelék A termikus egyensúly beállása viszonylag hosszú időt igényel. Ezért a véghőmérséklet meghatározásánál kihasználjuk, hogy a fűthető oldal hőmérsékletének (T) időbeli változása jó közelítéssel exponenciális jellegű:
,
ahol a hőmérséklet kezdeti értéke, míg a hőmérséklet-változás karakterisztikus ideje.