„Hőmérsékleti sugárzás vizsgálata” változatai közötti eltérés
(Új oldal, tartalma: „<wlatex> Szerkesztés alatt ''A mérés célja:'' *a hőmérsékleti sugárzás legfontosabb tulajdonságai-nak és törvényeinek megismerése. ''Ennek érdekében:''…”) |
|||
21. sor: | 21. sor: | ||
===Hőmérsékleti sugárzás és a jellemzésére szolgáló mennyiségek=== | ===Hőmérsékleti sugárzás és a jellemzésére szolgáló mennyiségek=== | ||
− | A testek által külső behatás nélkül kibocsátott | + | A testek által külső behatás nélkül kibocsátott elektromágneses sugárzás intenzitását a tapasztalat szerint alapvetően a test hőmérséklete határozza meg, és az intenzitás a test hőmérsékletétől igen erősen függ. A hőmérsékleti sugárzás során létrejött elektromágneses hullámban különböző hullámhosszú összetevők terjednek. A kibocsátott energiának a különböző hullámhosszú összetevők közötti eloszlása - a ''sugárzás spektrális eloszlása'' - szintén függ a test hőmérsékletétől. Ezek a tények indokolják azt, hogy az ilyen sugárzást ''hőmérsékleti sugárzás''nak nevezik. A sugárzás kibocsátásának és elnyelésének vizsgálatánál fontos szerepet játszik néhány alapvető fogalom és mennyiség, ezért először ezekkel foglalkozunk. |
− | Egy test által sugárzás útján kibocsátott energiát az emisszió képességgel jellemezzük. Ha a $T$ hőmérsékletű test egy $\Delta A$ nagyságú felületéről $\Delta t$ idő alatt egy $\lambda$ és $\lambda +d\lambda$ közé eső hullámhossztartományban $\Delta E$ energiát sugároz ki, akkor az adott hullámhosszra és hőmérsékletre | + | Egy test által sugárzás útján kibocsátott energiát az emisszió képességgel jellemezzük. Ha a $T$ hőmérsékletű test egy $\Delta A$ nagyságú felületéről $\Delta t$ idő alatt egy $\lambda$ és $\lambda +d\lambda$ közé eső hullámhossztartományban $\Delta E$ energiát sugároz ki, akkor az adott hullámhosszra és hőmérsékletre vonatkozó ''emisszió képessége'': |
+ | |||
+ | {{eq| \varepsilon (\lambda ,T){{=}} \frac{\Delta E}{\Delta A \Delta t \Delta \lambda}. |eq:1| (1)}} | ||
+ | |||
+ | Ha a kibocsátott energia hullámhossz szerinti (spektrális) eloszlása nem fontos számunkra, akkor a teljes spektrumban kibocsátott, ún. ''integrált emisszió képesség''et használhatjuk, amely | ||
+ | |||
+ | {{eq| E(T){{=}} \int_0^\infty \varepsilon (\lambda ,T) \, \mathrm{d} \lambda |eq:2| (2) }} | ||
+ | |||
+ | Megjegyezzük, hogy az integrált emisszió képesség értelmezhető a spektrum egyes részeire (pl. infravörös, látható, stb.) is, ilyenkor az integrálás a megfelelő hullámhossztartományra terjed ki. | ||
+ | |||
+ | A már kibocsátott, térben terjedő sugárzás energetikai jellemzésére az energia-áramsűrűséget használjuk. Ez természetesen szintén hullámhosszfüggő mennyiség. Ha a sugárzásban egy $\lambda$ és $\lambda + \Delta \lambda$ közé eső hullámhossztartományban a sugárzás haladási irányára merőleges $\Delta A$ nagyságú felületen $\Delta A$ idő alatt egy $\Delta E(\lambda)$ energia halad át, akkor az adott hullámhosszra vonatkozó energia-áramsűrűség | ||
+ | |||
+ | {{eq| I(\lambda) {{=}} \frac{\Delta E(\lambda)}{\Delta A \Delta t \Delta \lambda}. |eq:3| (3)}} | ||
+ | |||
+ | Ezt a mennyiséget a $\lambda$ ''hullámhosszú sugárzás intenzitásá''nak nevezzük. Ha a sugárzásban terjedő összes energiát akarjuk jellemezni, akkor a különböző hullámhoszszakra vonatkozó intenzitások összegzésével kapható ''teljes intenzitást'' kell megadnunk: | ||
+ | |||
+ | {{eq| I_o {{=}} \int_0^\infty I(\lambda) \mathrm{d} \lambda |eq:4| (4)}} | ||
+ | |||
+ | Az integrált emisszió képességhez hasonlóan, a sugárzási intenzitás is definiálható meghatározott hullámhossz-tartományra . | ||
+ | |||
+ | Ha egy testet sugárzás ér, akkor a testtel való kölcsönhatás következtében a sugárzás (és a szállított energia) több részre bomlik [[#fig:1|(1. ábra)]]. A sugárzás egy része ''abszorbeálódik'' (elnyelődik) a testben. Az intenzitás abszorbeált részének jelölésére az $I_A (\lambda,T)$ szimbólumot használjuk. A sugárzás másik része a test felületéről ''reflektálódik'' (visszaverődik): $I_R (\lambda,T)$, a sugárzás fennmaradó részét pedig a test átereszti: ID (,T). A fenti szimbólumokban a testet érő sugárzás hullámhossza, $T$ pedig a sugárzásnak kitett test hőmérséklete, a tapasztalat szerint ugyanis egy test elnyelési-, visszaverési- és áteresztési tulajdonságai általában függnek ezektől a mennyiségektől. | ||
+ | A sugárzásnak a test által elnyelt hányadát, vagyis az | ||
+ | |||
+ | {{eq| a(\lambda,T) {{=}} \frac{I_A(\lambda,T) }{I(\lambda)} |eq:5| (5) }} | ||
+ | |||
+ | hányadost a $T$ hőmérsékletű test $\lambda$ hullámhosszú sugárzásra vonatkozó ''abszorpció képességé''nek nevezik. | ||
+ | Hasonló módon definiálható a $T$ hőmérsékletű test $\lambda$ hullámhosszú sugárzásra vonatkozó ''reflexió képessége'' | ||
+ | |||
+ | {{eq| r(\lambda, T) {{=}} \frac{I_R(\lambda,T)}{I(\lambda} |eg:6| (6) }} | ||
+ | |||
+ | {{eq| d(\lambda, T) {{=}} \frac{I_D(\lambda,T)}{I(\lambda} |eg:7| (7) }} | ||
+ | |||
+ | Ha a testnek csak az összes beérkező sugárzással kapcsolatos viselkedése érdekel bennünket, akkor a fenti hullámhossztól függő (spektrális) jellemzők helyett in-tegrált jellemzőket használunk. A test ''integrált abszorpció képesség''e ennek megfelelően | ||
+ | |||
+ | {{eq| a(T) {{=}} \frac{\int_0^\infty I_A (\lambda,T) \, \mathrm{d} \lambda}{\int_0^\infty I (\lambda) \, \mathrm{d} \lambda} {{=}} \frac{I_A(T)}{I} |eq:8| (8) }} | ||
+ | |||
+ | ''Hasonlóan kapható az integrált reflexió képesség'' | ||
+ | |||
+ | {{eq| a(T) {{=}} \frac{\int_0^\infty I_R (\lambda,T) \, \mathrm{d} \lambda}{\int_0^\infty I (\lambda) \, \mathrm{d} \lambda} {{=}} \frac{I_R(T)}{I} |eq:9| (9) }} | ||
+ | |||
+ | ''és az integrált áteresztő képesség'' | ||
+ | |||
+ | {{eq| a(T) {{=}} \frac{\int_0^\infty I_D (\lambda,T) \, \mathrm{d} \lambda}{\int_0^\infty I (\lambda) \, \mathrm{d} \lambda} {{=}} \frac{I_D(T)}{I} |eq:10| (10) }} | ||
+ | |||
+ | A fenti jellemzőket - az integrált emisszió képességhez és a sugárzás intenzitásához hasonlóan - szintén lehet de-finiálni egy véges hullámhossztartományra is. Az energia-megmaradás tételéből következik, hogy a fenti jellemzőkre fennállnak az alábbi összefüggések: | ||
+ | $a(\lambda,T)+r(\lambda,T)+d(\lambda,T)=1$, ill | ||
+ | |||
+ | {{eq|a(T)+r(T)+d(T){{=}}1 |eq:11| (11)}} | ||
+ | |||
+ | A testek sugárzási tulajdonságainak vizsgálatánál igen fontos szerepet játszik az a speciális test, amely a hőmérsékletétől- és a ráeső sugárzás spektrális eloszlásától függetlenül az összes ráeső sugárzást elnyeli. Az ilyen testet ''abszolút fekete test''nek, vagy rövidebben ''fekete testnek'' nevezzük, és definíciójának megfelelően, abszorpció képességére $(a_f)$ fennáll, hogy | ||
+ | |||
+ | {{eq|a_f(\lambda,T){{=}}a_f(T){{=}}a_f{{=}}1. |eq:12| (12) }} | ||
+ | |||
+ | (A fekete testre vonatkozó mennyiségeket $f$ indexszel jelöljük.) | ||
+ | Jó közelítéssel fekete testnek tekinthető egy üreges test falán lévő kis nyílás [[#fig:2|(2. ábra)]], mivel a nyíláson bejutó sugárzásnak az üregből való kijövetele igen kis valószínűségű a nyílás kis mérete miatt. A fekete test jelentős szerepet játszik a sugárzások tanulmányozásánál, mivel a rá vonatkozó törvények elméletileg levezethetőek, és a nem fekete testek esetén is hasznosíthatók. | ||
+ | |||
+ | ===A fekete test sugárzása=== | ||
+ | |||
+ | A fekete test által kisugárzott energia elméleti úton meghatározható. Az emisszióképesség hullámhossztól és a test hőmérsékletétől való függésére a kísérleti eredményekkel egyező összefüggést Max Planck vezette le itt nem részletezett meggondolások alapján (ekkor vezette be a foton fogalmát). Az összefüggés egyik gyakran használt alakja a következő: | ||
+ | |||
+ | {{eq| \varepsilon_f(\lambda,T){{=}}\frac{c_1\lambda^{-5} }{exp \left(\frac{c_2}{\lambda T} \right) -1}. |eq:13| (13) }} | ||
+ | |||
+ | Ez a ''Planck-féle sugárzási törvény'' ($c_1$ és $c_2$ állandók). Az emisszióképesség hullámhosszfüggése néhány hőmérsékleten a [[#fig:3|3. ábrán]] látható. Adott hőmérsékleten a fekete test emisszióképessége maximumot mutat. A maximumnak megfelelő hullámhossz növekvő hőmérséklettel csökken. | ||
+ | Az ábrán feltüntetett $\varepsilon_f(\lambda,T)$ mennyiség a fekete test által az egységnyi hullámhossz intervallumban (egységnyi felületről) kisugárzott teljesítményt adja meg. Ennek megfelelően a $d\lambda$ intervallumhoz tartozó teljesítmény | ||
+ | |||
+ | {{eq| \mathrm{d}E_f{{=}}\varepsilon_f (\lambda,T)\mathrm{d}\lambda {{=}}\frac{c_1\lambda^{-5} }{exp \left(\frac{c_2}{\lambda T} \right) -1} \mathrm{d}\lambda |eq:14| (14) }} | ||
+ | |||
+ | Könnyen belátható, hogy ennek számértékét az ábrán a bevonalkázott terület adja meg. A $T$ hőmérsékletű fekete test egységnyi felületéről a teljes spektrumban kisugárzott teljesítmény [[#eg:14|(14)]] integrálásával kapható meg: | ||
+ | |||
+ | {{eq| E_f (T){{=}}\int_0^\infty \frac{c_1\lambda^{-5} }{exp \left(\frac{c_2}{\lambda T} \right) -1} \mathrm{d}\lambda |eq:15| (15) }} | ||
+ | |||
+ | Az integrálás eredménye a következő: | ||
+ | |||
+ | {{eq| E_f(T){{=}}\sigma T^4 |eq:16| (16) }} | ||
+ | |||
+ | Ez a ''Stefan-Boltzmann'' törvény, mely szerint a T hőmérsékletű fekete test egységnyi felülete által egységnyi idő alatt kisugárzott teljes energia arányos a test hőmérsékletének negyedik hatványával. A törvényben szereplő $\sigma$ állandó értéke $5.4*10^{-8} \frac{W}{m^2K^4}$. | ||
+ | |||
+ | A Stefan-Boltzmann törvény a fekete test által minden irányban kisugárzott összteljesítményt adja meg. A tapasztalat szerint azonban egy felületről ugyanolyan térszögbe kisugárzott energia függ a felülethez viszonyított iránytól. A sugárzás intenzitásának irányfüggését fekete test esetén a Lambert-törvény adja meg, amely szerint egységnyi felület által a felület '''n''' normálisával $d\varphi$ szöget bezáró irányban a $d\Omega$ térszögben egységnyi idő alatt kisugárzott energia [[#fig:4|(4. ábra)]]: | ||
+ | |||
+ | {{eq| \mathrm{d}E_\varphi (T) {{=}}\frac{\sigma}{\pi}T^4 \mathrm{d} \Omega cos\varphi |eq:17| (17) }} | ||
+ | |||
+ | ===Nem fekete testek sugázása=== |
A lap 2013. január 27., 18:37-kori változata
Szerkesztés alatt
A mérés célja:
- a hőmérsékleti sugárzás legfontosabb tulajdonságai-nak és törvényeinek megismerése.
Ennek érdekében:
- összefoglaljuk a hőmérsékleti sugárzásra vonatkozó ismereteket,
- kimérjük egy pontszerű forrás sugárzási intenzitásá-nak távolságfüggését,
- meghatározzuk a fekete test sugárzási intenzitásának hőmérsékletfüggését (Stefan-Boltzmann törvény),
- megvizsgáljuk különböző anyagok abszorpció- és emisszióképességét.
Tartalomjegyzék |
Elméleti összefoglaló
A tapasztalat szerint két különböző hőmérsékletű test között akkor is végbemegy energiaátadás, ha a hővezetés és a konvektív hőcsere gyakorlatilag elhanyagolható. Az energia ilyenkor elektromágneses sugárzás révén jut át az egyik testről a másikra. Ezt az anyagoknak két alapvető tulajdonsága teszi lehetővé: egyrészt az anyagok külső behatás nélkül - a bennük atomi, molekuláris szinten lezajló mozgások következtében - szünet nélkül, és minden hőmérsékleten elektromágneses sugárzást bocsátanak ki, másrészt az anyagok a rájuk eső elektromágneses sugárzást - ugyancsak atomi, molekuláris mechanizmusok révén - képesek elnyelni. Így egy A test által kibocsátott sugárzásnak egy részét (és az általa szállított energiát) a sugárzás útjába eső B test elnyeli, de ugyanígy, a B test által kibocsátott sugárzás (energia) egy részét az A test nyeli el: szakkifejezéssel élve, az A és B test sugárzási kölcsönhatásban áll egymással. A tapasztalat azt mutatja, hogy az energiacsere eredményeképpen végül is a melegebb testről a hidegebbre megy át energia, tehát a melegebb test hűlni fog, a hidegebb pedig melegedni. Azt azonban, hogy ez a folyamat részleteiben hogyan zajlik le, tehát például adott idő alatt mennyi az átadott energia, csak a sugárzás kibocsátásának illetve elnyelésének részletes tanulmányozásával tudhatjuk meg.
Hőmérsékleti sugárzás és a jellemzésére szolgáló mennyiségek
A testek által külső behatás nélkül kibocsátott elektromágneses sugárzás intenzitását a tapasztalat szerint alapvetően a test hőmérséklete határozza meg, és az intenzitás a test hőmérsékletétől igen erősen függ. A hőmérsékleti sugárzás során létrejött elektromágneses hullámban különböző hullámhosszú összetevők terjednek. A kibocsátott energiának a különböző hullámhosszú összetevők közötti eloszlása - a sugárzás spektrális eloszlása - szintén függ a test hőmérsékletétől. Ezek a tények indokolják azt, hogy az ilyen sugárzást hőmérsékleti sugárzásnak nevezik. A sugárzás kibocsátásának és elnyelésének vizsgálatánál fontos szerepet játszik néhány alapvető fogalom és mennyiség, ezért először ezekkel foglalkozunk.
Egy test által sugárzás útján kibocsátott energiát az emisszió képességgel jellemezzük. Ha a hőmérsékletű test egy nagyságú felületéről idő alatt egy és közé eső hullámhossztartományban energiát sugároz ki, akkor az adott hullámhosszra és hőmérsékletre vonatkozó emisszió képessége:
Ha a kibocsátott energia hullámhossz szerinti (spektrális) eloszlása nem fontos számunkra, akkor a teljes spektrumban kibocsátott, ún. integrált emisszió képességet használhatjuk, amely
Megjegyezzük, hogy az integrált emisszió képesség értelmezhető a spektrum egyes részeire (pl. infravörös, látható, stb.) is, ilyenkor az integrálás a megfelelő hullámhossztartományra terjed ki.
A már kibocsátott, térben terjedő sugárzás energetikai jellemzésére az energia-áramsűrűséget használjuk. Ez természetesen szintén hullámhosszfüggő mennyiség. Ha a sugárzásban egy és közé eső hullámhossztartományban a sugárzás haladási irányára merőleges nagyságú felületen idő alatt egy energia halad át, akkor az adott hullámhosszra vonatkozó energia-áramsűrűség
Ezt a mennyiséget a hullámhosszú sugárzás intenzitásának nevezzük. Ha a sugárzásban terjedő összes energiát akarjuk jellemezni, akkor a különböző hullámhoszszakra vonatkozó intenzitások összegzésével kapható teljes intenzitást kell megadnunk:
Az integrált emisszió képességhez hasonlóan, a sugárzási intenzitás is definiálható meghatározott hullámhossz-tartományra .
Ha egy testet sugárzás ér, akkor a testtel való kölcsönhatás következtében a sugárzás (és a szállított energia) több részre bomlik (1. ábra). A sugárzás egy része abszorbeálódik (elnyelődik) a testben. Az intenzitás abszorbeált részének jelölésére az szimbólumot használjuk. A sugárzás másik része a test felületéről reflektálódik (visszaverődik): , a sugárzás fennmaradó részét pedig a test átereszti: ID (,T). A fenti szimbólumokban a testet érő sugárzás hullámhossza, pedig a sugárzásnak kitett test hőmérséklete, a tapasztalat szerint ugyanis egy test elnyelési-, visszaverési- és áteresztési tulajdonságai általában függnek ezektől a mennyiségektől. A sugárzásnak a test által elnyelt hányadát, vagyis az
hányadost a hőmérsékletű test hullámhosszú sugárzásra vonatkozó abszorpció képességének nevezik. Hasonló módon definiálható a hőmérsékletű test hullámhosszú sugárzásra vonatkozó reflexió képessége
Ha a testnek csak az összes beérkező sugárzással kapcsolatos viselkedése érdekel bennünket, akkor a fenti hullámhossztól függő (spektrális) jellemzők helyett in-tegrált jellemzőket használunk. A test integrált abszorpció képessége ennek megfelelően
Hasonlóan kapható az integrált reflexió képesség
és az integrált áteresztő képesség
A fenti jellemzőket - az integrált emisszió képességhez és a sugárzás intenzitásához hasonlóan - szintén lehet de-finiálni egy véges hullámhossztartományra is. Az energia-megmaradás tételéből következik, hogy a fenti jellemzőkre fennállnak az alábbi összefüggések: , ill
A testek sugárzási tulajdonságainak vizsgálatánál igen fontos szerepet játszik az a speciális test, amely a hőmérsékletétől- és a ráeső sugárzás spektrális eloszlásától függetlenül az összes ráeső sugárzást elnyeli. Az ilyen testet abszolút fekete testnek, vagy rövidebben fekete testnek nevezzük, és definíciójának megfelelően, abszorpció képességére fennáll, hogy
(A fekete testre vonatkozó mennyiségeket indexszel jelöljük.) Jó közelítéssel fekete testnek tekinthető egy üreges test falán lévő kis nyílás (2. ábra), mivel a nyíláson bejutó sugárzásnak az üregből való kijövetele igen kis valószínűségű a nyílás kis mérete miatt. A fekete test jelentős szerepet játszik a sugárzások tanulmányozásánál, mivel a rá vonatkozó törvények elméletileg levezethetőek, és a nem fekete testek esetén is hasznosíthatók.
A fekete test sugárzása
A fekete test által kisugárzott energia elméleti úton meghatározható. Az emisszióképesség hullámhossztól és a test hőmérsékletétől való függésére a kísérleti eredményekkel egyező összefüggést Max Planck vezette le itt nem részletezett meggondolások alapján (ekkor vezette be a foton fogalmát). Az összefüggés egyik gyakran használt alakja a következő:
Ez a Planck-féle sugárzási törvény ( és állandók). Az emisszióképesség hullámhosszfüggése néhány hőmérsékleten a 3. ábrán látható. Adott hőmérsékleten a fekete test emisszióképessége maximumot mutat. A maximumnak megfelelő hullámhossz növekvő hőmérséklettel csökken. Az ábrán feltüntetett mennyiség a fekete test által az egységnyi hullámhossz intervallumban (egységnyi felületről) kisugárzott teljesítményt adja meg. Ennek megfelelően a intervallumhoz tartozó teljesítmény
Könnyen belátható, hogy ennek számértékét az ábrán a bevonalkázott terület adja meg. A hőmérsékletű fekete test egységnyi felületéről a teljes spektrumban kisugárzott teljesítmény (14) integrálásával kapható meg:
Az integrálás eredménye a következő:
Ez a Stefan-Boltzmann törvény, mely szerint a T hőmérsékletű fekete test egységnyi felülete által egységnyi idő alatt kisugárzott teljes energia arányos a test hőmérsékletének negyedik hatványával. A törvényben szereplő állandó értéke .
A Stefan-Boltzmann törvény a fekete test által minden irányban kisugárzott összteljesítményt adja meg. A tapasztalat szerint azonban egy felületről ugyanolyan térszögbe kisugárzott energia függ a felülethez viszonyított iránytól. A sugárzás intenzitásának irányfüggését fekete test esetén a Lambert-törvény adja meg, amely szerint egységnyi felület által a felület n normálisával szöget bezáró irányban a térszögben egységnyi idő alatt kisugárzott energia (4. ábra):