„Gamma spektroszkópia” változatai közötti eltérés

A Fizipedia wikiből
136. sor: 136. sor:
 
|-
 
|-
 
| width = "10%" |
 
| width = "10%" |
| width = "80%" | <div class="texdisplay"><latex display >\[ I = I_{0}e^{-\mu x} \]</latex></div>
+
| width = "80%" | <div class="texdisplay"><latex display >\[ y_{i}= \frac{y_{0}}{\sigma \sqrt {2\pi}} exp \]</latex></div>
| align = "right" | <span id="eq2"> (5) </span>
+
| align = "right" | <span id="eq2"> (6) </span>
 
|}
 
|}
  
 +
{| width = "100%"
 +
|-
 +
| width = "10%" |
 +
| width = "80%" | <div class="texdisplay"><latex display >\[ \sigma_{A_{x}}=\sqrt{{{\sigma^{2}}_{N}+\sigma^{2}}_{\eta}} \]</latex></div>
 +
| align = "right" | <span id="eq2"> (6) </span>
 +
|}
 
A csúcsok kiszélesedésének több oka is van, amelyek közül a jelent_sebb járulékot adó tag
 
A csúcsok kiszélesedésének több oka is van, amelyek közül a jelent_sebb járulékot adó tag
 
a detektorban lejátszódó fizikai folyamatok, illetve a jelfeldolgozó elektronikus egységek
 
a detektorban lejátszódó fizikai folyamatok, illetve a jelfeldolgozó elektronikus egységek

A lap 2013. március 19., 15:24-kori változata

Mérésleírás pdf formátumban

SZERKESZTÉS ALATT! Kérjük egyelőre mindenki a fenti pdf mérésleírást használja a felkészüléshez!



Tartalomjegyzék



Bevezetés

A gamma-spektrometria az atommagból valamilyen magfolyamat következtében (radioaktív bomlás, mesterséges vagy természetes magreakció) kilépő gamma sugárzás energiájának, intenzitásának, szögeloszlásának mérésével foglalkozik. A jelen laborgyakorlat lehetővé teszi az elméleti előadásokon hallott nukleáris méréstechnikai ismeretek elmélyítését és azok gyakorlati alkalmazásainak készségszintű elsajátítását. A gyakorlaton részt vevők betekintést nyernek a félvezető detektorra alapozott gamma-spektrometria alapjaiba, megismerik annak fontosabb eszközeit és a gamma-spektrumok kiértékelésének elemi lépéseit.

A gyakorlat alapvető mérőeszköze egy HPGe (High Purity Germanium) félvezető detektor, amely különböző mintákban lévő gamma-sugárzó izotópok azonosítására, azok abszolút és fajlagos aktivitásának meghatározására használható. A gamma spektrometria gyakorlati jelentőségét az adja, hogy számos területen alkalmazható a gamma-sugárzó izotópokkal kapcsolatos valamilyen analitikai vagy magfizikai probléma megoldásában. A magfizikai vonatkozású tudományos kutatásban a leggyakrabban az atommag energianívói energiájának és élettartamának meghatározására, izotópok bomlási sémáinak felderítésére, a belső konverziós együttható értékének mérésére, gamma-gamma szögkorreláció vizsgálatára stb. szokták alkalmazni.

A közvetlen gyakorlati célú hasznosítási területek a neutronaktivációs analízis, orvosi-, ipari-, mezőgazdasági nukleáris vonatkozású vizsgálatok a természetes és mesterséges radioizotópok analízisére, a környezet- és sugárvédelem gamma spektroszkópiai mérésekkel vizsgálható problémáinak megoldásában.

A gamma-spektrometriai gyakorlat során az alábbiakkal lehet megismerkedni:

  • gamma-sugárzás és az anyag közötti kölcsönhatások megfigyelése
  • gamma-spektrométer felépítése, az egyes részegységek spektroszkópiai jellemzői
  • HPGe detektorok jelfeldolgozó elektronika alkalmazása a gamma-spektrometriában
  • gamma-spektrumok kvantitatív kiértékelése
  • mérési adatok feldolgozása, azok bizonytalanságának becslése

Elméleti összefoglaló

Fotoeffektus, szórás, párkeltés, emisszió és abszorpció:

Az atommagok alfa- és béta-bomlásai, a maghasadás valamint a magreakciók gyakran a leánymag gerjesztett állapotához vezetnek. A magfolyamat során keletkezett atommag a gerjesztett állapotból általában egy vagy több gamma foton kibocsátásával tér vissza az alapállapotába. A radioaktív atommag bomlása során emittált gamma fotonok energiája, intenzitása vagy szögeloszlása információt hordoz a sugárzó atommag belső felépítéséről, szerkezetéről. Egy atommag több legerjesztődési folyamata is lehet, amit az ún. bomlássémával szoktak ábrázolni (1. ábra). Az 1. ábrán egy A tömegű és Z rendszámú atommag energianívóit a függőleges tengelyen, míg a vízszintes tengelyen a rendszámot ábrázoltuk.

Gamma_1

A különböző bomlási útvonalakhoz más-más átmeneti valószínűség tartozik, amit az adott béta vagy gamma-emisszió gyakoriságának nevezünk. A gyakorisági értékek az adott atommagra jellemző olyan nukleáris állandók, amik azt adják meg, hogy ha az adott magból 100 db elbomlik, akkor nagy valószínűséggel hány esetben emittál a mag adott energiájú béta-részecskét vagy gamma-fotont. A gamma-sugárzás és az anyag kölcsönhatása három alapvető folyamattal jellemezhető: fotoeffektus, Compton-szórás és párkeltés. Ezt a három alapvető fizikai folyamatot más elméleti tárgyak már részletesen elemezték ezért a jelen leírásban csak egy rövid áttekintést adunk.

A fotoeffektus során a gamma-foton átadja a teljes energiáját egy atom valamelyik kötött elektronjának, amely szabaddá válik, miközben az elektronburokban egy elektronhiányos állapot jön létre. A detektor anyagában lejátszódó fotoeffektus hatására a félvezető belsejében olyan elektronok lesznek jelen, amelyek elegendő energiával rendelkeznek, ahhoz, hogy részt vegyenek az elektromos vezetési folyamatban. A jelenség hatáskeresztmetszete az alábbi (1) formulával írható le, ahol Z az anyag rendszáma, N az anyag atomsűrűsége:

\[ \sigma_{f} \sim NZ^{5}(E_{\gamma})^{3,5} \]
(1)

A Compton-szórás során a foton az energiájának (E\setbox0\hbox{${\gamma}$}% \message{//depth:\the\dp0//}% \box0%) csak egy részét adja át a szabad vagy az E\setbox0\hbox{${\gamma}$}% \message{//depth:\the\dp0//}% \box0% energiához képest kis kötési energiával rendelkező atomi elektronnak. A folyamat során a foton energiája és iránya megváltozik. A szórt foton energiájának nagyságát a (2) egyenlet írja le, ahol 0 < \setbox0\hbox{${\vartheta}$}% \message{//depth:\the\dp0//}% \box0% < 180° a szórt foton iránya a primer foton irányához képest, m az elektron nyugalmi tömege, c a fénysebesség.

\[ E_{\gamma} = \frac {E_{\gamma}} {\frac {E_{\gamma}}{mc^2}}(1-cos\vartheta)+1 \]
(2)

A folyamat hatáskeresztmetszetét a Klein-Nishina formula írja le a (3) egyenlet szerint.

\[ \sigma_{KN} \sim \frac {NZ} {E_{\gamma}} ln (\frac {2E_{\gamma}}{mc^2}+0,5) \]
(3)

A fenti szórási folyamatban a meglökött elektron energiája egy meghatározott energiatartományba esik a \setbox0\hbox{${\vartheta}$}% \message{//depth:\the\dp0//}% \box0% szög értékétől függően, aminek következménye a gamma spektrumokban megjelenő Compton-él és plató. Például a 60Co bomlása során keletkező 1333 keV energiájú fotonhoz tartozó Compton-él energiája 1119 keV.

A párkeltés folyamata során egy gamma-foton a detektor anyaga egy atommagjának erőterében elektron-pozitron párrá alakulhat abban az esetben, ha a foton energiája nagyobb, mint a 2mc2 = 1.022 MeV. Ha E\setbox0\hbox{${\gamma}$}% \message{//depth:\the\dp0//}% \box0% > 1.022 MeV feltétel teljesül, azaz a foton energiája nagyobb, mint a két részecske nyugalmi tömegeinek összege, akkor a foton maradék energiája az elektron és pozitron kinetikus energiájára fordítódik. A pozitron később egyesül egy elektronnal, aminek eredményeképpen annihiláció következik be. A folyamat során két 0.511 MeV energiájú foton jelenik meg a detektorban. A párkeltés hatáskeresztmetszete az alábbi (4) kifejezéssel arányos:

\[ \sigma_{p} \sim NZ^{2}({E_{\gamma}} - 2mc^{2}) \]
(4)

A fenti három alapvet_ kölcsönhatási folyamat eredménye a gamma sugárzás abszorpciója, aminek egy gamma nyaláb intenzitására gyakorolt hatását az (5) egyenlettel írhatjuk le, ahol \setbox0\hbox{${\mu}$}% \message{//depth:\the\dp0//}% \box0% az abszorpciós együttható, x az abszorbeáló anyag rétegvastagsága, I0 a kezdeti, I az abszorbens réteg elhagyása utáni intenzitás.

\[ I = I_{0}e^{-\mu x} \]
(5)

A leggyakrabban alkalmazott félvezető-detektor alapanyagok a Ge és Si, ezért a 2. ábrán a fenti három alapvető fizikai folyamat hatáskeresztmetszetét ezekre az anyagokra adjuk meg a fotonenergia függvényében.

Megfigyelhető, hogy a fotoeffektus és a párkeltés hatáskeresztmetszete több nagyságrend értékben változik, ellentétben a Compton-szórás hatáskeresztmetszetével. Mindhárom folyamat eredménye olyan elektronok megjelenése a detektor anyagában, amelyek elegendő energiával rendelkeznek, ahhoz hogy az elektromos vezetési folyamatban részt vegyenek. Összegyűjtve az így létrehozott töltéshordozókat a detektor elektromos kimenetén feszültség- vagy áramimpulzus jelenik meg, melynek amplitúdója arányos az abszorbeált gamma-foton energiájával. A spektrométer elektronikus és digitalizáló egységeinek feladata ezen impulzusok paramétereinek számszerűsítése és ez által a detektált gamma spektrum energia-eloszlásának megjelenítése.

Gamma_2

A gamma-spektrometria eszközei

Detektor

A nukleáris spektroszkópiában két fajta félvezető-detektor a legelterjedtebb, a Ge és a Si alapanyagú egykristályok. A Si detektorok elsősorban béta és nehéz töltött részecskék mérésére alkalmasak. Az egykristályos Ge anyagban kb. 3 eV abszorbeált energia szükséges egy elektron-lyuk pár létrehozásához. Ez az érték kb. tizede a gáztöltésű detektor és századrésze a szcintillációs detektorok hasonló értékeihez képest. Így, azonos energia átadásával a félvezető-detektorban lényegesen több töltéshordozó keletkezik, mint a másik két detektorban. Mivel a nagyobb számú töltéshordozó számának relatív ingadozása lényegesen kisebb, ami a detektoranyagban abszorbeált foton-energia meghatározását sokkal pontosabbá teheti. Ez azt eredményezi, hogy a félvezető detektorokkal lényegesen jobb energiafelbontást lehet elérni, mint az egyéb detektortípusokkal. A kis sűrűségű, illetve relatíve kevés detektoranyagot tartalmazó gáztöltésű detektorok hatásfoka gamma- sugárzásra alacsony, míg a Ge nagyobb rendszáma és sűrűsége nagyobb detektálási hatásfokot eredményez, ami ideálissá teszi a gamma-sugárzás detektálására. A Si rendszáma kisebb, ezért elsősorban alacsony energiájú (3-60 keV) gamma- ill. Röntgen-sugárzás érzékelésére alkalmazzák.

A fentiekben részletezett méréstechnikai tulajdonság oka a félvezetőkben lejátszódó szilárdtestfizikai folyamatokkal magyarázható. Egy félvezető egykristályban az atomokhoz kötött elektronok által betöltött legfelső energia-sáv az u. n. valencia sáv, míg az atomokhoz nem kötött, szilárd félvezető belsejében szabadon mozogni képes elektronok energiasávja az u. n. vezetési sáv között található a tiltott sáv, amelyben nincs elektronállapot.

A tiltott sáv szélessége a félvezető anyagokban 1-2 eV. Radioaktív sugárzás, hő vagy fény hatására a valencia sáv egyes elektronjai átkerülhetnek a vezetési sávba és így részt vehetnek az elektromos vezetésben. Ha egy gamma-foton kölcsönhatásba lép a kristály elektronjaival, akkor átadja azoknak energiáját, ezáltal az elektronok a valencia sávból a vezetési sávba kerülnek. A gerjesztett elektronok egy elektronhiányos állapotot hagynak maguk után a valenciasávban. Egy ilyen elektron-lyuk pár keltéséhez Ge-ban kb. 2.8 eV, Si-ban 3.6 eV energia szükséges.

A detektorra kapcsolt feszültség hatására létrejövő kb. 1000 V/cm-es elektromos térerősség a töltéshordozók egyirányú áramlását idézi elő a detektor elektródáira. Az így létrejövő töltésekből álló impulzust a detektorhoz kapcsolt áramkörök alakítják tovább. Fontos, hogy az alkalmazott félvezetők anyagának fajlagos ellenállása kb 108 \setbox0\hbox{${\Omega}$}% \message{//depth:\the\dp0//}% \box0%cm, mivel ellenkező esetben a saját áramból eredő zaj igen nagy lenne. Mivel elektronok eljuthatnak a vezetési sávba úgy is, hogy energiájukat véletlenszerűen, a környezetből abszorbeált termikus fotonokból nyerik, ez által növelhetik a spektrométer áramát olyan módon, hogy annak oka nem gamma fotonok detektálása, azaz a jelenség zajt eredményez. A termikus zaj csökkentése érdekében a félvezető detektorokat alacsony hőmérsékleten (kb. 77°K) cseppfolyós nitrogénnel hűtve kell üzemeltetni. Ma már vannak Peltier-effektust alkalmazó hűtéssel felszerelt, valamint szobahőmérsékleten működő félvezető detektorok is (SDD = Silicon Drift Detector). A HPGe detektorok technikai-geometriai kialakítására számos egyedi megoldást dolgoztak ki a felhasználás céljától függően. A leggyakrabban alkalmazott geometriai elrendezések a 3. ábrán láthatóak. További részleteket a témával foglalkozó, idézett irodalomban illetve a Nukleáris méréstechnika tárgy keretein belül lehet találni. A jelen gyakorlat során egy p-típusú koaxiális detektort fogunk használni.

Gamma_3

Elektronikus jelfeldolgozó egységek

A gamma-spektrométerek egyes elektronikus egységeinek kiválasztását az adott nukleáris detektálási feladat szabja meg. Az előerősítő feladata a detektor és a főerősítő közötti illesztés illetve a jel erősítése annak továbbítása előtt oly módon, hogy a jel/zaj arány minél kedvezőbb legyen. A főerősítővel szemben támasztott követelmény a nagyfokú linearitás és időbeni stabilitás. Az alapszint helyreállító (base line restorer) nagy számlálási sebességek esetén fellépő alapszint-csökkenés mértékét (jelamplitúdó-változást) mérsékli. Az expander (nyújtó) erősítő a spektrum bizonyos részének széthúzását teszi lehetővé, abban az esetben, ha a spektrum struktúrájának részletesebb vizsgálatára van szükség. A stretcher (jelnyújtó) az analizátor bemenetének (ADC: analóg digital converter) egy elektronikailag kedvezőbb jelformát biztosít. A pulser vagy impulzusgenerátor egy stabil frekvenciával és amplitúdóval rendelkező impulzus-generátor a jelalak vizsgálathoz, illetve az automatikus holtidő-korrekcióhoz használatos. A sokcsatornás amplitúdó-analizátort két különböző típusú ADC-vel szokták alkalmazni: a lassúbb változat a Wilkinson típusú ADC, míg a gyorsabb a jelanalízis szukcesszív approximációján alapszik. A nagyfeszültségű tápegység biztosítja a detektor működéséhez szükséges feszültséget (2-5000 V). Félvezető-detektorok esetében nem kívánalom a nagy stabilitás, csak az alacsony elektronikus zaj. A kisfeszültségű tápegység (\setbox0\hbox{${\pm}$}% \message{//depth:\the\dp0//}% \box0%6, \setbox0\hbox{${\pm}$}% \message{//depth:\the\dp0//}% \box0%12, \setbox0\hbox{${\pm}$}% \message{//depth:\the\dp0//}% \box0%24 V) a különböző elektronikus egységek (erősítők, stb.) tápfeszültség forrása. A jelen gyakorlat során egy DSP jelfeldolgozó egységet használunk, amely elvégzi, a fentiekben felsorolt funkciókon kívül az analóg jelek digitalizálását és az egyes csatornatartalmakat közvetlenül a PC memóriájába tölti.

A gamma-spektrumok kiértékelése

A 4. ábrán egy monoenergetikus gamma-sugárzásról felvett spektrum elvi alakja látható. A teljesenergia-csúcs megjelenése elsősorban a fotoeffektus révén következik be, ezért fotocsúcsnak is szokták nevezni. Az 511 keV energiánál jelentkező ún. annihilációs csúcs vagy a párkeltési folyamat következménye, vagy egy pozitív béta-bomló izotóptól származik. A visszaszórási csúcs a detektor burkolatán, a mérőhely árnyékolásának belső falán szóródott fotonok detektálásának következménye. A gamma spektrumokban a csúcsok alatt található folytonos háttér nagysága, és ezzel egy adott izotóp kimutathatósági határa csökkenthető a szóró felületek távolabb helyezésével és az anyaguk rendszámának csökkentésével. A visszaszórási-, annihilációs-, stb. csúcsok a Compton kölcsönhatás miatt kialakuló ún. Compton tartományra szuperponálódnak.

A spektrum kiértékelésének alapvető célja az, hogy a teljesenergia-csúcsok területét meghatározzuk. Ehhez a következő lépéseket kell tenni:

  • a spektrum energia-kalibrációja
  • csúcskeresés
  • a csúcsokhoz tartozó izotópok azonosítása egy izotópkönyvtár alapján
  • az átlapoló csúcsok matematikai szétválasztása és a spektrum matematikai függvényekkel történő illesztése
  • csúcsterületek kiszámítása
  • az egyes csúcsokhoz tartozó izotópok aktivitásának/fajlagos aktivitásának számítása

A fenti feladatokat, a mérést vezérlő Genie-2000 szoftverrel végezzük, amely alapvető funkcióinak rövid útmutatója és használata a jelen jegyzethez mellékelt leírásban található.

Gamma_4

A gamma-spektrumok kiértékeléséhez szükséges fogalmak és azok számítása

A gamma-spektrométerek kvantitatív jellemzéséhez néhány alapvető paramétert kell definiálni. A detektor energia-felbontóképessége egy olyan, a gammafotonok energiától függő paraméter, amely megadja egy adott energiájú gamma csúcs félértékszélességét (FWHM= full width at half maximum) a csúcs centrumához tartozó energia függvényében. A gamma csúcsokat matematikailag egy Gauss-függvénnyel lehet leírni a (6) egyenlet szerint. A görbe kiszélesedését jellemezni lehet a maximum érték feléhez tartozó csúcsszélességgel (FWHM).

\[ y_{i}= \frac{y_{0}}{\sigma \sqrt {2\pi}} exp \]
(6)
\[ \sigma_{A_{x}}=\sqrt{{{\sigma^{2}}_{N}+\sigma^{2}}_{\eta}} \]
(6)

A csúcsok kiszélesedésének több oka is van, amelyek közül a jelent_sebb járulékot adó tag a detektorban lejátszódó fizikai folyamatok, illetve a jelfeldolgozó elektronikus egységek által keltett zaj miatt következik be. Az f értéke egy adott detektor esetén függ a gammaenergiától (annak növekedésével javul) és valamelyest a számlálási sebességt_l (ennek növekedésével romlik). Ge detektorok esetében a E _ 1.8 - 2.7 keV közötti érték_ 1333 keV (60Co) gamma energiánál. A félértékszélesség energiafüggését számos tényez_ befolyásolja, aminek eredményeképpen az FWHM az alábbi összefüggésben van a detektált gamma-fotonok energiájával. Az FWHM értékét befolyásoló folyamatokról b_vebb ismereteket az [1] és [2] irodalomban lehet megtalálni. A félértékszélesség energiafüggését a Genie-2000 szoftver a (7) összefüggéssel közelíteni FWHM a b E (7) ahol a k és r konstansok és E a gamma-fotonok energiája. Az abszolút vagy teljesenergia-csúcs hatásfok értéke azt adja meg, hogy a sugárforrásból kibocsátott, adott energiájú összes gamma fotonból hányat regisztrál a detektor a teljesenergia-csúcsban. A hatásfok számszer_ definícióját a (8) összefüggéssel lehet megadni, ahol N a teljesenergia-csúcs területe, amit egy, a mérés id_pontjában az A aktivitású sugárforrás gamma-sugárzásának detektálásával kaptunk, m t a mérés id_tartama és k a gamma-gyakoriság értéke. t Ak N m (8) Az abszolút hatásfok értéke csökken a gamma sugárzás energiájának növekedésével, növekszik a detektor térfogatával és jelent_sen befolyásolják a mérési geometria paraméterei: forrás-detektor távolság, forrás alakja, kiterjedtsége és a forrás anyaga. A félvezet_-detektorokat gyártó cégek megadják az u. n. relatív hatásfokot, amely egy 25 cm távolságban elhelyezett 60Co pontforrás 1333 KeV vonalának intenzitására vonatkozik a (9) egyenletnek megfelel_en Gamma-spektrometria HPGe detektorral 11 NaI Ge rel  , (9) ahol 1.2 103 NaI a fentek szerinti geometriában, egy 75x75 mm méret_ NaI(Tl) szcintillációs kristály abszolút teljesenergia-csúcs hatásfoka. Mérés alatti bomlás korrekciója Ha a mérend_ izotóp felezési ideje rövid a mérés id_tartamához viszonyítva, azaz összemérhet_ a minta mérési idejével, akkor az aktivitás meghatározása során figyelembe kell venni a mérés alatt bekövetkez_ bomlásokat is. A radioaktív bomlás id_függése alapján felírható a (10) egyenlet, ahol az izotóp bomlási állandója és m t a mérés id_tartama, 0 N a radioaktív preparátum aktivitása a mérés kezd_ id_pontjában és m N a mérés teljes id_tartama alatt mért aktivitás. m tm m m t t m e N t e dt N N        1

0 (10) Valódi koincidencia és a mintaösszetétel miatti korrekciók A gyakorlati gamma-spektroszkópiai méréseknél szükség lehet még további két különböz_ korrekció alkalmazására is. Az egyik ilyen jelenség a valódi-koincidencia, amely akkor jön létre, ha a mérend_ mintában olyan izotóp található, amely kaszkád bomlással több fotont emittál a spektrométer holtidején belüli id_tartamban (ilyen a 60Co, 152Eu izotópok). Az effektus valószín_sége növekszik a detektortérfogattal és a minta-detektor távolság csökkenésével de független a minta aktivitásától. A valódi koincidencia miatt a spektrumban megjelennek az összegcsúcsok, ami két valódi teljesenergia-csúcs összegéb_l áll el_, ezzel együtt a teljesenergia csúcsok területe kisebb lesz. A valódi koincidencia korrekcióba vétele általában bonyolult számítást jelent, amire a gyakorlat során alkalmazott Genie-2000 kiértékel_ szoftver fel van készítve. A nagy térfogatú minták mérése során a mintában bekövetkez_ önabszorpció jelent_s intenzitásváltozást okozhat. Ez akkor következik be, ha a detektortól távolabbi mintarészekb_l emittált fotonok csak a minta anyagán keresztül tudnak a detektorkristályba Gamma-spektrometria HPGe detektorral 12 jutni. Ekkor a minta abszorbciós tulajdonságaitól függ_en csökken a detektált fotonok száma. Ennek a jelneségnek a figyelmen kívül hagyása kis energiájú (kb. 150 keV alatti) - sugárzások mérésénél jelent_s mérték_ hibát okozhat. Az önabszorbció korrekciójának meghatározásához a hatásfok-kalibrációhoz használt forrásokat egy, a mintához hasonló abszorbciós tulajdonságú anyagba kevert izotópokkal kell elkészíteni. Megoldást jelenthet az is ha a minta összetétele ismeretében a korrekció mértékét elméleti számításokkal megbecsüljük. A csúcsterületek számítása: A gyakorlat során a Genie-2000 kiértékel_ szoftvert használjuk, ami a csúcsterület és annak hibája számitását automatikusan végzi a következ_ algoritmus szerint. A kiértékel_ szoftverrel átlapoló csúcsokból álló együttesek is kiértékelhet_ek. Ekkor a megfelel_ spektrumrészletre több matematikai függvényb_l álló összetett alakot illesztünk, amely eredményéb_l a csúcsok alatti nettó terület meghatározható. 6. ábra. A gamma csúcsok kiértékelésének elemei, ahol N a nettó csúcsterület, _N a csúcsterület statisztikus hibája.  N B y y N y b a N b i a a b i 2 2 1        N B a b a y b y i y Gamma-spektrometria HPGe detektorral 13 Mérési feladatok 1. Energiakalibráció Az energia-kalibráció elvégzéséhez helyezzen el a detektor elé ismert gamma-energiákat sugárzó, pontszer_, etalon sugárforrásokat (60Co, 137Cs). Vegyen fel egy gammaspektrumot! A teljesenergia-csúcsok helyének megkeresésével, az energiák ismeretében határozza meg a gamma-energia-csatornaszám függvényt! Gyakorlatban a mért adatpárokra els_- vagy másodfokú függvény illesztése szokásos. Ehhez a feladathoz használja a Genie- 2000 szoftver energia-kalibrációra vonatkozó menüpontját (Calibrate men_pont). Legegyszer_bb esetben legyen két ismert kalibráló energia E1 és E2, a hozzájuk tartozó csatornaszámok Cs1 és Cs2. Feltételezve, hogy a berendezés lineáris, a szoftver az alábbi két ponton átmen_ egyenes alapján számítja ki a kalibrációs egyenes meredekségét

     csat keV Cs Cs E E m 2 1 2 1 (11) Ahol a m az energia-kalibráció egyenesének meredeksége, amely két csatorna közötti intervallum energia értékét adja meg az adott er_sítés esetén. A (11) egyenletet célszer_ átrendezni a következ_ formára, ahol b a kalibrációs egyenes tengelymetszete. E mCs b (12) Az energia-kalibráció elvégzéséhez használja az Calibrate/Energy Only Calibration menüpontot, ahol a kalibrációhoz használt izotópok egyes vonalaira vonatkozóan be kell írni a vonal energiáját és a maximuma helyének csatornaszámát. A fenti m_velethez használja fel a kalibráló gammaforrásokra vonatkozó, az 1. táblázatban található adatokat. Mérje meg néhány, a gyakorlatvezet_t_l kapott néhány etalon sugárforrás gammaspektrumát. Ellen_rizze a kiszámolt energia-kalibrációs görbét, a gyakorlatvezet_t_l kapott források ismert energiájú vonalai felhasználásával. A méréseket úgy végezze el, hogy az egyes etalonokat mérés közben cserélje ki ez által egy olyan kevert spektrumot kap, ami tartalmazza az összes mért izotóp vonalait. A szükséges mérési id_t úgy válassza meg, hogy a gammacsúcsok területének statisztikus hibája 1-3%-nál ne legyen nagyobb! Gamma-spektrometria HPGe detektorral 14 Ügyeljen a holtid_ nagyságára is, amit a minta-detektor távolság helyes megválasztásával tud elérni: 0, 10, 50, 150 mm. A mérések során a holtid_ ne legyen nagyobb, mint 1-2%. 1. feladat: Energia-kalibráció meghatározása Izotóp Energia (keV) Csatornaszám m b 1. 133Ba 81.0 2. 57Co 122.1 3. 133Ba 276.4 4. 133Ba 356.0 5. 137Cs 661.7 6. 60Co 1173.2 7. 60Co 1332.5 Ismert sugárforrások vonalainak energiái Izotóp Energia (keV) (táblázat alapján) Energia (keV) (energiakalibráció alapján) 1. 241Am 2. 22Na 3. 152Eu 4. 5. 6. A feladattal kapcsolatos adatokat a részfeladathoz tartozó táblázatba jegyezze fel. Az árnyékolt mér_kamrában talál egy plexi állványt és egy mintatartó plexi lapot, amelynek tetejére kell elhelyezni az etalon-forrásokat. A plexi mintatartó magasságbeli helyzetét változtatva különböz_ minta-detektor távolság állítható be. Az egyes pozíciók helyzetéhez tartozó detektor-minta távolságok az adott pozíción fel vannak tüntetve. A Genie-2000 által Gamma-spektrometria HPGe detektorral 15 kiszámított paramétereket és az illesztett kalibrációs görbét a Calibrate/Energy show menüpont alatt találja. 2. A spektrométer energiafelbontásának meghatározása Ehhez a feladathoz használja az el_z_ pontban már felvett és tárolt „mix” spektrumot az ismert csúcsokkal. Határozza meg az egyes csúcsok FWHM értékét, majd ábrázolja az adatokat illessze rá a FWHM a b E függvényt az energia függvényében! 2. feladat: A spektrométer energia-felbontásának meghatározása Izotóp Energia (keV) FWHM (keV) a b 1. 133Ba 81.0 2. 57Co 122.1 3. 133Ba 276.4 4. 133Ba 356.0 5. 137Cs 661.7 6. 60Co 1173.2 7. 60Co 1332.5 3. A detektor abszolút hatásfok függvényének meghatározása Helyezzen ismert aktivitású és energiájú etalon pontforrásokat a detektor elé úgy, hogy mérés közben a holtid_ minden esetben kisebb legyen, mint 5%. Mérje meg az egyes izotóp források gammaspektrumát! Mivel a hatásfok függ a geometriai elrendezést_l, a mérések során végig azonos minta-detektor távolságot használjon! A mért spektrumokat értékelje ki a Genie-2000 segítségével és számítsa ki a teljesenergiacsúcs integrálját (N), majd határozza meg a hatásfok értékeit a mért csúcsok energiáinál a (8) összefüggés felhasználásával N t Ak m . Gamma-spektrometria HPGe detektorral 16 3. feladat: A detektor abszolút hatásfoka energiafüggésének meghatározása A mintatartó magassági pozíciója: mm Izotóp tm (s) A (Bq) Dátum Gamma energia (keV) k _számított _illesztett 1. 133Ba 81.0 2. 57Co 122.1 3. 133Ba 276.4 4. 133Ba 356.0 5. 137Cs 661.7 6. 60Co 1173.2 7. 60Co 1332.5 Az illesztetett hatásfok paraméterek értékei a b c d Ábrázolja a számított hatásfok értékeit (_számított) az energia függvényében log-log formában! A mért hatásfokadatokra a (13) szerinti polinom függvényt célszer_ illeszteni, ahol az E energiánál a fenti táblázat szerint számított hatásfok értéke. lna b ln E c(ln E)2 d(ln E)3 (13) Az illesztésb_l határozza meg az a,b,c,d, paramétereket. A hatásfokok ismeretében számítsa ki a detektált izotópok aktivitását! Határozza meg a detektor hatásfokfüggvényét az adott távolságra vonatkozó pontforrás geometriára. 4. Pontszer_ radioaktív forrás aktivitásának meghatározása Határozza meg egy, a gyakorlatvezet_ által megadott forrás aktivitását. Az aktivitás számítása a (8) összefüggésb_l származtatott (14) formula alapján történik, ahol N a nettó csúcsterület [imp], tm a minta mérési id_tartama, k az adott gamma-vonal gyakorisága. Gamma-spektrometria HPGe detektorral

NAA 1.JPG