|
|
(egy szerkesztő egy közbeeső változata nincs mutatva) |
1. sor: |
1. sor: |
− | __NOTOC__
| + | http://physics.bme.hu/BMETE15MF60_kov?language=en |
− | =Quantum Computing Architectures=
| + | |
− | ==Course Information, 2018==
| + | |
− | | + | |
− | *'''Lecturers:''' András Pályi, Péter Makk
| + | |
− | *'''Responsible lecturer:''' András Pályi
| + | |
− | *'''Language:''' English
| + | |
− | *'''Location:''' building H, room H601
| + | |
− | *'''Time:''' Wednesdays, 12:15-13:45
| + | |
− | *'''Schedule:''' first lecture: Sep 5; no lecture on Sep 12, Sep 26, Oct 10, and nov 14; last lecture: Dec 5.
| + | |
− | *'''Neptun Code:''' BMETE15MF60
| + | |
− | *'''Credits:''' 3
| + | |
− | *'''Exam:''' Short written test + oral exam. Dates: Dec 17, Jan 7, Jan 14, Jan 21. Exams start at 8:00am.
| + | |
− | | + | |
− | ==Slides==
| + | |
− | | + | |
− | Lecture 1: [[:File:Lecture01.pdf]]<br />
| + | |
− | Lecture 2: [[:File:Lecture02.pdf]]<br />
| + | |
− | Lecture 3: [[:File:Lecture03.pdf]]<br />
| + | |
− | Lecture 4: [[:File:Lecture04.pdf]]<br />
| + | |
− | Lecture 5: [[:File:Lecture05.pdf]]<br />
| + | |
− | Lecture 6: [[:File:Lecture6.pdf]]<br />
| + | |
− | Lecture 7: [[:File:Lecture07.pdf]]<br />
| + | |
− | Lecture 8: [[:File:Lecture08.pdf]]<br />
| + | |
− | Lecture 9: [[:File:Lecture09.pdf]]<br />
| + | |
− | Lecture 10: [[:File:Lecture10.pdf]]<br />
| + | |
− | | + | |
− | | + | |
− | Control questions, exercises (Oct 25, 2018): [[:File:ControlQuestionsExercises-v6.pdf]]
| + | |
− | | + | |
− | ==Syllabus== | + | |
− | | + | |
− | | + | |
− | *'''1. Quantum bits'''
| + | |
− | Qubits, dynamics, measurement, polarization vector, composite systems, logical gates, circuits, algorithms.
| + | |
− | | + | |
− | *'''2. Control of quantum systems.'''
| + | |
− | Hamiltonians, propagators, and quantum gates. Larmor precession, Rabi oscillations, dispersive resonator shift in the Jaynes-Cummings model, exchange interaction, virtual photon exchange.
| + | |
− | | + | |
− | *'''3. Qubits based on the electron spin. '''
| + | |
− | Quantum dots, energy scales. Interactions: Zeeman, spin-orbit, hyperfine, electron-phonon, electron-electron.
| + | |
− | | + | |
− | *'''4. Coherent control of electron spins. '''
| + | |
− | Single-qubit gates: magnetic resonance, electrically driven spin resonance. Two-qubit gates: sqrt-of-swap via exchange interaction, CPhase. Error mechanisms during qubit control.
| + | |
− | | + | |
− | *'''5. Information loss mechanisms for electron spins.'''
| + | |
− | Qubit relaxation due to spin-orbit interaction and phonons. Qubit dephasing due to nuclear spins. Decoherence due to charge noise. Hahn echo and Car-Purcell-Meibloom-Gill (CPMG) schemes for prolonging the decoherence time.
| + | |
− | | + | |
− | *'''6. Introduction to superconductivity. '''
| + | |
− | Basics of superconductivity. Josephson junctions. Current-phase and voltage-phase Josephson relations. Andreev reflection. Andreev Bound State picture of the current-phase Josephson relation.
| + | |
− | | + | |
− | *'''7. Josephson devices. '''
| + | |
− | Resistively and capacitively shunted junction (RCSJ) model, junction dynamics, switching voltages, macroscopic quantum tunnelling, Superconducting Quantum Interference Device (SQUID), Fraunhofer pattern, spatial distribution of the Josephson current, radiofrequency (RF) SQUID.
| + | |
− | | + | |
− | *'''8. Control and readout of single qubits.'''
| + | |
− | Quantization of RF circuits, phase and charge as conjugate variables. Different qubit architectures: flux, charge, phase. Single-qubit gates and readout.
| + | |
− | | + | |
− | *'''9. Information loss in superconducting qubits.'''
| + | |
− | Experiments on single qubits. Deceoherence in qubits, sweet spots. Transmon as a noise-resistant qubit architecture.
| + | |
− | | + | |
− | *'''10. Circuit quantum electrodynamics.'''
| + | |
− | Superconducting resonators and their interaction with a transmon qubit. Strong coupling in
| + | |
− | circuit quantum electrodynamics. Single-qubit gates and dispersive readout via the resonator.
| + | |
− | | + | |
− | *'''11. Entanglement in superconducting qubits. '''
| + | |
− | Two-qubit coupling mechanisms: capacitive, resonator-based. Two-qubit gates. State tomography, Bell inequalities.
| + | |
− | | + | |
− | *'''12. Multi-qubit devices.'''
| + | |
− | Realization of basic quantum algorithms. Error correction: repetition code, surface code.
| + | |
− | | + | |
− | *'''13. Overview of current research directions. '''
| + | |
− | Quantum simulation. Intermediate-scale quantum computers (Google, IBM, Intel, D-Wave).
| + | |
− | | + | |
− | ==Literature==
| + | |
− | *T. Ihn: Semiconducting nanosctructures, Oxford University Press, 2010.
| + | |
− | *Y.V. Nazarov, Y.M. Blanter: Quantum Transport: Introduction to Nanoscience, Cambridge University Press, 2009.
| + | |
− | *Zwanenburg et al., Rev. Mod. Phys. 85, 961 (2013)
| + | |
− | *[[Nanofizika tudásbázis]]
| + | |