„Matlab bevezető tehetetlenségi nyomaték méréssel” változatai közötti eltérés

A Fizipedia wikiből
 
(egy szerkesztő egy közbeeső változata nincs mutatva)
156. sor: 156. sor:
  
 
Ha az ismert $\theta_0$ tehetetlenségi nyomatékú tárcsát úgy helyezünk el torziós asztalon, hogy súlypontja az asztal forgástengelyétől ismert $r$ távolságra legyen, a rendszer tehetetlenségi nyomatéka a Steiner-tétel szerint
 
Ha az ismert $\theta_0$ tehetetlenségi nyomatékú tárcsát úgy helyezünk el torziós asztalon, hogy súlypontja az asztal forgástengelyétől ismert $r$ távolságra legyen, a rendszer tehetetlenségi nyomatéka a Steiner-tétel szerint
$$\theta'=\theta+mr^2.$$
+
{{eq|\theta'{{=}}\theta+mr^2,|eq:17|(17)}}
 
Csillapítatlan rezgéseket feltételezve [[#eq:3|(3)]] szerint a mozgás periódusidejének négyzete
 
Csillapítatlan rezgéseket feltételezve [[#eq:3|(3)]] szerint a mozgás periódusidejének négyzete
$$T^2=\frac{4\pi^2}{D^*}(\theta_0+\theta)+\frac{4\pi^2}{D^*}m\cdot r^2,$$
+
{{eq|T^2{{=}}\frac{4\pi^2}{D^*}(\theta_0+\theta)+\frac{4\pi^2}{D^*}m\cdot r^2,|eq:18|(18)}}
 
azaz a $T^2=f(r^2)$ függvény egyenest ad.
 
azaz a $T^2=f(r^2)$ függvény egyenest ad.
 
Ha mérjük a rendszer lengésidejét ($T$) a tárcsa súlypontjának az asztal forgástengelyétől való távolságának ($r$) függvényében, és ábrázoljuk a periódusidő négyzetét az $r^2$ függvényében, a mérési pontokra egyenes illeszthető.
 
Ha mérjük a rendszer lengésidejét ($T$) a tárcsa súlypontjának az asztal forgástengelyétől való távolságának ($r$) függvényében, és ábrázoljuk a periódusidő négyzetét az $r^2$ függvényében, a mérési pontokra egyenes illeszthető.
207. sor: 207. sor:
  
 
Az ismert tehetetlenségi nyomatékú kis korongot rögzítse a torziós asztal tengelyétől különböző távolságban lévő rögzítési pontokhoz, és mérje meg a rögzítési pontokhoz tartozó lengési időket! Mérési eredményei alapján ábrázolja a $T^2=f(r^2)$ függvényt! Mérési pontjaira illesszen egyenest! Az egyenes paramétereiből határozza meg a rendszer  $D^*$ direkciós nyomatékát és $\theta$ tehetetlenségi nyomatékát! Hasonlítsa össze eredményeit a korábban kapott értékekkel!
 
Az ismert tehetetlenségi nyomatékú kis korongot rögzítse a torziós asztal tengelyétől különböző távolságban lévő rögzítési pontokhoz, és mérje meg a rögzítési pontokhoz tartozó lengési időket! Mérési eredményei alapján ábrázolja a $T^2=f(r^2)$ függvényt! Mérési pontjaira illesszen egyenest! Az egyenes paramétereiből határozza meg a rendszer  $D^*$ direkciós nyomatékát és $\theta$ tehetetlenségi nyomatékát! Hasonlítsa össze eredményeit a korábban kapott értékekkel!
* ''Ne feledje, hogy az egyes rögzítési pontokhoz tartozó lengésidőket legalább 5-5-ször le kell mérni. Az adatokat rögzítse Matlabba, majd ábrázolja az átlagos lengési idő ($T$) - középponttól vett távolság ($r$) grafikont!
+
* ''Ne feledje, hogy az egyes rögzítési pontokhoz tartozó lengésidőket legalább 5-5-ször le kell mérni. Az adatokat rögzítse Matlabba, majd ábrázolja az átlagos lengési idő ($T$) - középponttól vett távolság ($r$) grafikont!''
* ''A $T-r$ grafikonra való illesztés
+
* ''Ha megnézzük a [[#eq:18|(18)]] képletet és vesszük a négyzetgyökét, látható hogy a $T-r$ grafikonra való illesztés nemlineáris görbeillesztést jelent. Ezért célszerű inkább a $T^2-r^2$ grafikont ábrázolni és erre egy egyenest illeszteni. Végezze el ezt az ábrázolást is és az egyenes illesztését!''
 
+
 
'''5.''' Határozza meg egy inhomogén tömegeloszlású lemezből készült minta tehetetlenségi nyomatékát a súlypontján átmenő és a lemez síkjára merőleges tengelyre vonatkozóan!
 
'''5.''' Határozza meg egy inhomogén tömegeloszlású lemezből készült minta tehetetlenségi nyomatékát a súlypontján átmenő és a lemez síkjára merőleges tengelyre vonatkozóan!
  

A lap jelenlegi, 2021. szeptember 17., 17:19-kori változata


A mérés célja megismertetni a hallgatókat:

  • a Matlab program mérési napló elkészítésére és a mért adatok kiértékelésére való használatával
  • egyszerű mérőeszközök (mérleg, stopper, tolómérő, mikrométer orsó) használatával és hibalehetőségeikkel
  • valamint egy a tehetetlenségi nyomaték mérésére alkalmas módszerrel

Ennek érdekében:

  • előadás formájában bemutatásra kerülnek a Matlab program Fizika Laboratórium tárgy során használandó funkciói, majd a mérés során alkalmazzuk a tanultakat
  • összefoglaljuk a tehetetlenségi nyomatékkal kapcsolatos ismereteket, majd megvizsgáljuk egy olyan rendszer viselkedését, amelynek segítségével tehetetlenségi nyomatékot tudunk mérni,
  • a mérések során meghatározzuk a méréséhez használandó rendszer paramétereit, majd a megismert rendszer segítségével tehetetlenségi nyomatékot mérünk


Tartalomjegyzék


Elméleti ismeretek

A tehetetlenségi nyomaték

A tömegpontokból álló rendszer z-tengelyre vonatkozó tehetetlenségi nyomatékát az alábbi kifejezés adja meg:

\[\theta=\sum_{i=1}^n m_i\cdot l_i^2=\sum_{i=1}^n m_i\cdot (x_i^2+y_i^2),\]

ahol \setbox0\hbox{$l_i$}% \message{//depth:\the\dp0//}% \box0% az \setbox0\hbox{$i$}% \message{//depth:\the\dp0//}% \box0% sorszámú, \setbox0\hbox{$m_i$}% \message{//depth:\the\dp0//}% \box0% tömegű pont \setbox0\hbox{$z$}% \message{//depth:\the\dp0//}% \box0%-tengelytől való távolsága, \setbox0\hbox{$x_i$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$y_i$}% \message{//depth:\the\dp0//}% \box0% ugyanennek a pontnak az \setbox0\hbox{$x$}% \message{//depth:\the\dp0//}% \box0%, illetve \setbox0\hbox{$y$}% \message{//depth:\the\dp0//}% \box0% koordinátája. Folytonos tömegeloszlású testek esetén a tehetetlenségi nyomaték:

 
\[\theta=\int_V \rho\cdot l^2 \,\mathrm{d}V=\int_V \rho\cdot (x^2+y^2)\,\mathrm{d}V,\]
(1)

ahol \setbox0\hbox{$\rho$}% \message{//depth:\the\dp0//}% \box0% a test sűrűsége. A tehetetlenségi nyomaték értéke egyszerűbb esetekben számítással határozható meg, egyébként mérésekkel állapítható meg. Ha ismerjük egy test tehetetlenségi nyomatékát a súlypontján átmenő tengelyre vonatkozóan (\setbox0\hbox{$\theta_\mathrm{s}$}% \message{//depth:\the\dp0//}% \box0%), akkor egy ezzel a tengellyel párhuzamos tengelyre vonatkozó tehetetlenségi nyomatéka (\setbox0\hbox{$\theta$}% \message{//depth:\the\dp0//}% \box0%) a Steiner-tétel segítségével adható meg:

\[\theta=\theta_\mathrm{s}+m\cdot r^2.\]

Itt \setbox0\hbox{$m$}% \message{//depth:\the\dp0//}% \box0% a test tömege, \setbox0\hbox{$r$}% \message{//depth:\the\dp0//}% \box0% a két tengely egymástól mért távolsága.

Forgási rezgések

A tehetetlenségi nyomatékkal kapcsolatos vizsgálatainkat egy forgási rezgéseket végző torziós asztal (2. ábra) segítségével hajtjuk végre, ezért az alábbiakban egy ilyen rendszer viselkedését vizsgáljuk. A rendszer egyensúlyi helyzetét egyik végén a tengelyhez, a másik végén a kerethez rögzített spirálrugó biztosítja. A rendszer egyensúlyi helyzetéhez képest, a tengely körül \setbox0\hbox{$\varphi$}% \message{//depth:\the\dp0//}% \box0% (rad) szöggel való elforgatásához szükséges forgatónyomaték, nem nagy szögek esetén:

 
\[M=-D^*\cdot\varphi,\]
(2)

ahol \setbox0\hbox{$D^*$}% \message{//depth:\the\dp0//}% \box0% (Nm/rad) a rugó direkciós nyomatéka.

Csillapítatlan forgási rezgések

Ha a torziós asztal tárcsájának a tengelyre vonatkozó tehetetlenségi nyomatéka \setbox0\hbox{$\theta$}% \message{//depth:\the\dp0//}% \box0% és emellett a rendszer többi elemének tehetetlenségi nyomatéka, valamint a súrlódási veszteségek figyelmen kívül hagyhatók, akkor a rendszer mozgásegyenlete:

\[\theta\cdot\frac{\mathrm{d}^2\varphi}{\mathrm{d}t^2}=-D^*\cdot\varphi.\]

Ezen mozgásegyenlet megoldása a

\[\varphi=\phi\cdot\sin(\omega\cdot t+\alpha)\]

egyenlettel leírható harmonikus forgási rezgés, ahol \setbox0\hbox{$\phi$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\alpha$}% \message{//depth:\the\dp0//}% \box0% értékét a kezdeti feltételek határozzák meg és a megoldás során adódik, hogy a körfrekvencia:

\[\omega=\sqrt{\frac{D^*}{\theta} }\]

amiből a rezgés periódusideje:

 
\[T=2\pi\sqrt{\frac{\theta}{D^*} }.\]
(3)

Csillapodó forgási rezgések

1. ábra

A fentiekben szereplő csillapítatlan forgási rezgés \setbox0\hbox{$\phi$}% \message{//depth:\the\dp0//}% \box0% amplitúdója állandó. A gyakorlatban megvalósítható rezgéseknél a mindig jelen lévő súrlódás miatt az amplitúdó folyamatosan csökken. Az ilyen mozgásoknál a rugó által létrehozott nyomatékon kívül megjelenő súrlódási erő hatását a szögsebességgel arányosnak feltételezve, (az arányosságot a \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0% állandóval véve figyelembe) a rezgés mozgásegyenlete:

 
\[\theta\cdot\frac{\mathrm{d}^2\varphi}{\mathrm{d}t^2}=-D^*\cdot\varphi-k\cdot\frac{\mathrm{d}\varphi}{\mathrm{d}t}.\]
(4)

A (4) egyenlet megoldása az \setbox0\hbox{$\omega_0^2=\frac{D^*}{\theta}$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\beta=\frac{k}{2\theta}$}% \message{//depth:\the\dp0//}% \box0% jelölésekkel

 
\[\varphi=\phi_0\cdot e^{-\beta\cdot t}\cdot\sin(\omega\cdot t+\alpha),\]
(5)

ahol \setbox0\hbox{$\beta$}% \message{//depth:\the\dp0//}% \box0% a csillapítási tényező, \setbox0\hbox{$\phi_0$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\alpha$}% \message{//depth:\the\dp0//}% \box0% a kezdeti feltételektől függő állandók. A \setbox0\hbox{$\beta<\omega_0$}% \message{//depth:\the\dp0//}% \box0% esetben:

 
\[\omega^2=\omega_0^2-\beta^2.\]
(6)

A (5) egyenlettel leírt mozgás \setbox0\hbox{$\varphi=f(t)$}% \message{//depth:\the\dp0//}% \box0% függvénye a 1. ábrán látható. A rezgés amplitúdója exponenciálisan csökken: \setbox0\hbox{$\varphi=\varphi_0\cdot e^{-\beta\cdot t}$}% \message{//depth:\the\dp0//}% \box0%. A rendszer az egyensúlyi helyzeten a \setbox0\hbox{$t=0,\, T/2,\, T$}% \message{//depth:\the\dp0//}% \box0% időpontokban halad át, a szélső \setbox0\hbox{$\phi_0,\, \phi_2,\,\dots$}% \message{//depth:\the\dp0//}% \box0% helyzeteket azonban nem a \setbox0\hbox{$T/4,\, 3T/4,\,\dots$}% \message{//depth:\the\dp0//}% \box0% időpontokban éri el, de a szélső helyzetek között eltelt idő \setbox0\hbox{$T/2$}% \message{//depth:\the\dp0//}% \box0%.

A torziós asztal és jellemzőinek meghatározása

Ahhoz, hogy egy rezgőmozgást végző rendszert felhasználhassunk ismeretlen minta tehetetlenségi nyomatékának meghatározásához, vagy a Steiner-tétel igazolásához, ismernünk kell rendszerünket és annak fizikai jellemzőit. Az alábbiakban a további vizsgálatokhoz felhasználandó eszközt, a torziós asztalt mutatjuk be, és ismertetünk néhány módszert, amely alkalmas a rendszer jellemzőinek meghatározására.

A torziós asztal

A további vizsgálatokhoz használt eszköz, a forgási rezgéseket végző torziós asztal fényképe a 2. ábrán látható.

2. ábra: Mérési elrendezés

A torziós asztalban alkalmazott spirálrúgó direkciós nyomatékának (\setbox0\hbox{$D^*$}% \message{//depth:\the\dp0//}% \box0%) meghatározása

A direkciós nyomaték meghatározásánál a (2) egyenletből indulhatunk ki. Megmérve a rugóra ható nyomatékot és a nyomaték által létrehozott szögelfordulást, a direkciós nyomaték:

\[D^*=\frac{M}{\varphi}.\]

A mérés pontosságának növelése érdekében célszerű meghatározni a \setbox0\hbox{$\varphi=f(M)$}% \message{//depth:\the\dp0//}% \box0% függvényt. A mérési pontokra egyenest illesztve az meredekségéből megkapható a rugó jellemzője.

A csillapítási tényező (\setbox0\hbox{$\beta$}% \message{//depth:\the\dp0//}% \box0%) meghatározása

A csillapítási tényező meghatározása a (5) egyenlet felhasználásával lehetséges. A lengő torziós asztal kitérése egy tetszőleges \setbox0\hbox{$t_1$}% \message{//depth:\the\dp0//}% \box0% időpontban, illetve ez után \setbox0\hbox{$n$}% \message{//depth:\the\dp0//}% \box0% egészszámú periódusidővel később a \setbox0\hbox{$t_1+n\cdot T$}% \message{//depth:\the\dp0//}% \box0% időpontban:

\[\varphi_1=\phi_0\cdot e^{-\beta\cdot t_1}\cdot\sin(\omega\cdot t_1+\alpha),\]
\[\varphi_{n+1}=\phi_0\cdot e^{-\beta(t_1+n\cdot T)}\cdot\sin[\omega(t_1+n\cdot T)+\alpha].\]

Mivel a két kifejezésben a szinuszos tagok értéke megegyezik, a szögkitérések hányadosának természetes alapú logaritmusa:

\[\ln\frac{\varphi_1}{\varphi_{n+1}}=n\cdot T\cdot\beta,\]

ahonnan

 
\[\beta=\frac{1}{n\cdot T}\cdot\ln\frac{\varphi_1}{\varphi_{n+1} }.\]
(7)

A csillapítási tényező gyakorlati meghatározásánál célszerű a szélső helyzetek figyelembevétele, a 1. ábra jelöléseihez igazodva:

\[\frac{\varphi_1}{\varphi_{n+1} }{{=}}\frac{\phi_i}{\phi_{n+i} },\]

ahol \setbox0\hbox{$i$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$n$}% \message{//depth:\the\dp0//}% \box0% pozitív egész szám. A csillapítási tényező ismeretében dönthető el, hogy a rendszer csillapítatlan vagy csillapított mozgást végzőnek tekinthető-e. Ha \setbox0\hbox{$\frac{2\pi}{T}\gg \beta$}% \message{//depth:\the\dp0//}% \box0%, akkor a (6) összefüggés alapján a torziós asztal mozgása csillapítatlan mozgásnak tekinthető. (A \setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0% periódusidő mérhető.)

A torziós asztal tehetetlenségi nyomatékának meghatározása

Az asztal tehetetlenségi nyomatékának meghatározása tömegének és sugarának ismeretében

Az (1) egyenletből levezethetően \setbox0\hbox{$R$}% \message{//depth:\the\dp0//}% \box0% sugarú és \setbox0\hbox{$m$}% \message{//depth:\the\dp0//}% \box0% tömegű homogén korong tehetetlenségi nyomatéka forgástengelyére vonatkozóan:

\[\theta=\frac{1}{2}mR^2.\]

Így az asztal tömegének és sugarának megmérése után tehetetlenségi nyomatéka számolható.

Az asztal tehetetlenségi nyomatékának meghatározása a rugó direkciós nyomatékának, a lengésidőnek és a csillapítási tényezőnek az ismeretében

A (6) egyenletből kiindulva felírható, hogy:

\[\omega^2=\left(\frac{2\pi}{T} \right )^2=\frac{D^*}{\theta}-\beta^2,\]

ahonnan

 
\[\theta=\frac{D^*}{\left(\frac{2\pi}{T} \right )^2+\beta^2}.\]
(8)

Ha a mozgás csillapítatlannak tekinthető

 
\[\theta=\left(\frac{T}{2\pi} \right )^2\cdot D^*.\]
(9)
Az asztal tehetetlenségi nyomatékának meghatározása ismert tehetetlenségi nyomatékú tárcsa felhasználásával

Ha a torziós asztal önmagában végez lengéseket (6) alapján

 
\[\omega^2=\left(\frac{2\pi}{T} \right )^2=\frac{D^*}{\theta}-\beta^2.\]
(10)

Ha a torziós asztal közepére ismert (\setbox0\hbox{$\theta_0$}% \message{//depth:\the\dp0//}% \box0%) tehetetlenségi nyomatékú korongot szerelünk (a korong tengelye egybeesik az asztal tengelyével) a rendszer tehetetlenségi nyomatéka: \setbox0\hbox{$\theta'=\theta+\theta_0$}% \message{//depth:\the\dp0//}% \box0%-ra módosul és a lengés körfrekvenciája:

 
\[\omega'^2=\left(\frac{2\pi}{T'} \right )^2=\frac{D^*}{\theta+\theta_0}-\beta^2.\]
(11)

Feltételeztük, hogy a csillapítás nem változott. (10) és (11) hányadosából az asztal tehetetlenségi nyomatéka kiszámítható:

\[\left(\frac{4\pi^2}{T^2}+\beta^2\right )\left/\left(\frac{4\pi^2}{T'^2}+\beta^2\right )\right.=\frac{\theta+\theta_0}{\theta},\]

ahonnan

 
\[\theta=\theta_0\frac{T^2\cdot T'^2}{T'^2-T^2}\cdot\left(\frac{1}{T'^2}+\frac{\beta^2}{4\pi^2}\right).\]
(12)

Ha a zárójelben lévő kifejezés második tagja nem éri el az első tag 0,01-ad részét, úgy az elhanyagolható és a lengés csillapítatlannak tekinthető. A \setbox0\hbox{$\theta$}% \message{//depth:\the\dp0//}% \box0% értéke csillapítatlan lengés esetén

 
\[\theta=\theta_0\frac{T^2}{T'^2-T^2}.\]
(13)

Mintadarab súlypontján átmenő tengelyre vonatkozó tehetetlenségi nyomatékának meghatározása

3. ábra

Ha a torziós asztal mozgása csillapítatlan rezgésnek tekinthető, a mozgás periódusidejét a (3) összefüggés adja meg. Helyezzünk a torziós asztalra a 3. ábra szerint egy mintát, mely az asztal egy pontja körül (P) körbe forgatható. Az ábrán látható jelölésekkel a Steiner-tétel és a koszinusz tétel alkalmazásával a minta tehetetlenségi nyomatéka az O ponton átmenő tengelyre vonatkozóan.

\[\theta_x+mr^2=\theta_x+m(r_0^2+r_1^2+2r_0r_1\cos\gamma),\]

ahol \setbox0\hbox{$\theta_x$}% \message{//depth:\the\dp0//}% \box0% a minta súlypontján (S) átmenő, a rendszer forgástengelyével párhuzamos tengelyre vonatkozó tehetetlenségi nyomatéka, \setbox0\hbox{$m$}% \message{//depth:\the\dp0//}% \box0% a tömege és \setbox0\hbox{$r_1$}% \message{//depth:\the\dp0//}% \box0% a minta súlypontjának távolsága a P ponttól. Ha a torziós asztal tehetetlenségi nyomatéka \setbox0\hbox{$\theta$}% \message{//depth:\the\dp0//}% \box0%, a rendszer periódusideje (8)-ból:

 
\[T'^2=\frac{4\pi^2}{D^*}\left[\theta+\theta_x+m(r_0^2+r_1^2)\right]+\frac{4\pi^2}{D^*}2mr_0r_1\cos\gamma,\]
(14)

vagyis a periódusidő négyzete \setbox0\hbox{$T^2=A+B\cos\gamma$}% \message{//depth:\the\dp0//}% \box0% függvény szerint változik. Ha a mintát körbeforgatva mérjük a rezgésidőket (14) alakú függvényt kapunk. A mérési pontokra görbét illesztve \setbox0\hbox{$A$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$B$}% \message{//depth:\the\dp0//}% \box0% értéke meghatározható, melyek ismeretében a (14)-ben szereplő két ismeretlen (\setbox0\hbox{$\theta_x$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$r_1$}% \message{//depth:\the\dp0//}% \box0%) is kiértékelhető. Belátható, hogy a minta forgatása közben a legnagyobb lengésidőt akkor kapjuk, amikor a súlypont a legmesszebb van az O forgástengelytől és a lengésidő akkor a legkisebb mikor a minta súlypontja a legközelebb van O-hoz. Ebben a két esetben a lengésidőket a

 
\[{T'}^2_\mathrm{max}=\frac{4\pi^2}{D^*}\left[\theta+\theta_x+m(r_0+r_1)^2) \right ],\]
(15)

illetve

 
\[{T'}^2_\mathrm{min}=\frac{4\pi^2}{D^*}\left[\theta+\theta_x+m(r_0-r_1)^2) \right ],\]
(16)

összefüggések adják meg, melyekből \setbox0\hbox{$\theta_x$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$r_1$}% \message{//depth:\the\dp0//}% \box0% szintén meghatározhatóak. (A \setbox0\hbox{$T'^2_\mathrm{max}-T'^2_\mathrm{min}=\frac{4\pi^2}{D^*}\cdot4mr_0r_1$}% \message{//depth:\the\dp0//}% \box0% egyenletből megkaphatjuk \setbox0\hbox{$r_1$}% \message{//depth:\the\dp0//}% \box0%-et, majd ezen eredmény felhasználásával (15)-ből vagy (16)-ból számítható \setbox0\hbox{$\theta_x$}% \message{//depth:\the\dp0//}% \box0%). A fenti eljárást a minta egy másik pontja körüli forgatásra megismételve, meghatározható a súlypont távolsága ettől a ponttól is. A súlypont két ismert ponttól való távolsága egyértelműen megadja a súlypont helyét.

A Steiner-tétel igazolása

Ha az ismert \setbox0\hbox{$\theta_0$}% \message{//depth:\the\dp0//}% \box0% tehetetlenségi nyomatékú tárcsát úgy helyezünk el torziós asztalon, hogy súlypontja az asztal forgástengelyétől ismert \setbox0\hbox{$r$}% \message{//depth:\the\dp0//}% \box0% távolságra legyen, a rendszer tehetetlenségi nyomatéka a Steiner-tétel szerint

 
\[\theta'=\theta+mr^2,\]
(17)

Csillapítatlan rezgéseket feltételezve (3) szerint a mozgás periódusidejének négyzete

 
\[T^2=\frac{4\pi^2}{D^*}(\theta_0+\theta)+\frac{4\pi^2}{D^*}m\cdot r^2,\]
(18)

azaz a \setbox0\hbox{$T^2=f(r^2)$}% \message{//depth:\the\dp0//}% \box0% függvény egyenest ad. Ha mérjük a rendszer lengésidejét (\setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0%) a tárcsa súlypontjának az asztal forgástengelyétől való távolságának (\setbox0\hbox{$r$}% \message{//depth:\the\dp0//}% \box0%) függvényében, és ábrázoljuk a periódusidő négyzetét az \setbox0\hbox{$r^2$}% \message{//depth:\the\dp0//}% \box0% függvényében, a mérési pontokra egyenes illeszthető. Megjegyezzük, hogy a most kapott egyenes meredekségének és tengelymetszetének meghatározása az adott tehetetlenségi nyomatékú tárcsa tömegének ismeretében újabb lehetőséget ad a rendszer \setbox0\hbox{$D^*$}% \message{//depth:\the\dp0//}% \box0% direkciós nyomatékának és \setbox0\hbox{$\theta$}% \message{//depth:\the\dp0//}% \box0% tehetetlenségi nyomatékának meghatározására.

Mérési feladatok

A méréshez rendelkezésre álló eszközök

  • A mérés elvégzéséhez és a mérési napló elkészítéséhez a dőlt betűs részekben adunk segítséget.
  • A mérési eredményeket, tapasztalatokat és minden mérés szempontjából fontos információt rögzítsen a digitális mérési naplóba (Matlab)
  • A mérések megkezdése előtt a torziós asztal talpán található csavarok és a mérőhelyen található libella segítségével az asztal síkját állítsa vízszintesre!

1. Határozza meg a spirálrugó D* direkciós nyomatékát!

A feladatot a (2) összefüggés felhasználásával oldja meg! Az elfordulást létrehozó forgatónyomatékot csigán átvetett fonál végén lévő edénykébe helyezett csapágygolyók segítségével hozza létre!

  • A fonal befűzéséhez használjon tűbefűzőt!
  • Adatok:
    • golyók tömege: 4,07 g
    • mérlegedény tömege: 4,6 g
    • A tárcsa sugarát mérje meg tolómérővel!

A szögelfordulás az asztalon található fokbeosztás segítségével határozható meg. A mérés közben fellépő súrlódás hatásának csökkentése érdekében minden egyes nyomaték alkalmazásánál mérje meg a nyomatékhoz tartozó maximális és minimális szögkitérés értékét és a kettő számtani közepét vegye figyelembe.

  • A minimális és maximális szögkitérést a tárcsa kocogtatásával keresheti meg. Becsülje meg a szögkitérés meghatározásának hibáját a tapasztalatai alapján!

10-12 mérési pontot vegyen fel, melyeket közvetlenül kézzel rögzítsen a Matlab programban egy kétoszlopos mátrixba. Ezután ábrázolja a \setbox0\hbox{$\varphi=f(M)$}% \message{//depth:\the\dp0//}% \box0% függvényt (hibasávokkal) és a mérési pontjaira illesszen egyenest, majd a kapott egyenes meredekségéből határozza meg a direkciós nyomatékot!

  • Formázza meg a grafikont a Matlabbal az órán bemutatottak alapján! Próbáljon ki több vonalvastagságot és stílust, betűméretet és egyéb beállításokat!

2. Határozza meg a rendszer csillapítási tényezőjét!

Határozza meg a csillapítási tényező értékét a (7) összefüggés segítségével! A lengésidőt – itt, és a továbbiakban is – legalább 5-5 lengés idejét mérve maximum 180°-os amplitúdóval indulva legalább ötször mérje meg! Az így kapott lengésidők átlagát használja a továbbiakban! A lengési amplitúdó csökkenésének vizsgálatánál 90°-os kitérésből induljon és 20 lengés után mérje meg a lecsökkent amplitúdót! A kapott eredmények ismeretében hasonlítsa össze a körfrekvencia és a csillapítási állandó értékét!

  • A lengésidőket, a kiindulási és a lecsökkent amplitúdót rögzítse a Matlabba és számolja ki az átlagos értékeket, valamint a szórást!
  • Ábrázolja táblázatban az mért és a számolt eredményeket
  • Csillapítatlan rezgésnek tekintheti-e a torziós asztal mozgását?

3. Határozza meg a torziós asztal tehetetlenségi nyomatékát!

a) A \setbox0\hbox{$\theta=\frac{1}{2}mR^2$}% \message{//depth:\the\dp0//}% \box0% összefüggés alapján. Számítsa ki a tárcsa tehetetlenségi nyomatékát! A tárcsa anyaga alumínium (\setbox0\hbox{$\rho$}% \message{//depth:\the\dp0//}% \box0% = 2700 kgm−3). Méreteit méréssel határozza meg!

  • A tárcsa vastagságának megméréséhez használjon mikrométer orsót, az átmérő méréséshez pedig tolómérőt! Becsülje meg az egyes mérések hibáját!

b) A rúgó direkciós nyomatékának, a rendszer lengésidejének és csillapítási tényezőjének ismeretében. A korábbi mérési eredményei felhasználásával a (8) vagy (9) összefüggés alapján számítsa ki a torziós asztal tehetetlenségi nyomatékát!

  • Végezzen gyors számítást, és ellenőrizze, hogy a két módszerrel kiszámított eredmények nagyságrendileg egyeznek-e!

c) Ismert tehetetlenségi nyomatékú minta felhasználásával. Az ismert tehetetlenségi nyomatékú minta egy középen kis furattal ellátott korong. A korong tömege ismert (rá van írva), sugarát mérje meg és számítsa ki \setbox0\hbox{$\theta_0$}% \message{//depth:\the\dp0//}% \box0% tehetetlenségi nyomatékát! Az ismert tehetetlenségi nyomatékú mintát a közepén lévő furat és egy csavar segítségével rögzítse az asztal közepére! A torziós asztal lengésidejét és csillapítási tényezőjét korábbról ismeri. Most mérje meg a megnövelt tehetetlenségi nyomatékú rendszer lengésidejét (\setbox0\hbox{$T'$}% \message{//depth:\the\dp0//}% \box0%) és a (12) vagy (13) összefüggés alkalmazásával határozza meg a torziós asztal tehetetlenségi nyomatékát!

  • A számítás során két egymáshoz közeli mennyiséget fog egymásból kivonni, ami nagyon megnöveli a hibát. Ezért mérje a periódusidőt minél gondosabban és pontosabban!

4. Igazolja a Steiner-tételt!

Az ismert tehetetlenségi nyomatékú kis korongot rögzítse a torziós asztal tengelyétől különböző távolságban lévő rögzítési pontokhoz, és mérje meg a rögzítési pontokhoz tartozó lengési időket! Mérési eredményei alapján ábrázolja a \setbox0\hbox{$T^2=f(r^2)$}% \message{//depth:\the\dp0//}% \box0% függvényt! Mérési pontjaira illesszen egyenest! Az egyenes paramétereiből határozza meg a rendszer \setbox0\hbox{$D^*$}% \message{//depth:\the\dp0//}% \box0% direkciós nyomatékát és \setbox0\hbox{$\theta$}% \message{//depth:\the\dp0//}% \box0% tehetetlenségi nyomatékát! Hasonlítsa össze eredményeit a korábban kapott értékekkel!

  • Ne feledje, hogy az egyes rögzítési pontokhoz tartozó lengésidőket legalább 5-5-ször le kell mérni. Az adatokat rögzítse Matlabba, majd ábrázolja az átlagos lengési idő (\setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0%) - középponttól vett távolság (\setbox0\hbox{$r$}% \message{//depth:\the\dp0//}% \box0%) grafikont!
  • Ha megnézzük a (18) képletet és vesszük a négyzetgyökét, látható hogy a \setbox0\hbox{$T-r$}% \message{//depth:\the\dp0//}% \box0% grafikonra való illesztés nemlineáris görbeillesztést jelent. Ezért célszerű inkább a \setbox0\hbox{$T^2-r^2$}% \message{//depth:\the\dp0//}% \box0% grafikont ábrázolni és erre egy egyenest illeszteni. Végezze el ezt az ábrázolást is és az egyenes illesztését!

5. Határozza meg egy inhomogén tömegeloszlású lemezből készült minta tehetetlenségi nyomatékát a súlypontján átmenő és a lemez síkjára merőleges tengelyre vonatkozóan!

Fakultatív feladat! Ennek a feladatnak a megoldása nem kötelező, csak akkor foglalkozunk vele, ha marad elég idő rá.

A mérőhelyen található mintát - amelynek tömegét ismeri (rá van írva) - rögzítse a torziós asztalra a mintán található furat és egy csavar segítségével! Az asztalon található rögzítési pontok közül ismeretei alapján válassza ki az optimálisnak tűnő rögzítési pontot!

  • Melyik rögzítési pontot választja? Indokolja választását!

Mérje meg a rendszer lengésidejét a mintának a rögzítési pont körüli elforgatása és 30°-onkénti rögzítése mellett. (Ilyen módon 12 különböző lengésidőt mérhet. Minden lehetséges rögzítési pont körül 30°-os szögbeosztás található.) Ábrázolja a mért lengési idők négyzetét az elforgatási szög függvényében! Illesszen a mért adatokra megfelelő függvényt, és az illesztett függvény adataiból határozza meg \setbox0\hbox{$T'_\mathrm{max}$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$T'_\mathrm{min}$}% \message{//depth:\the\dp0//}% \box0% vagy \setbox0\hbox{$A$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$B$}% \message{//depth:\the\dp0//}% \box0% értékét, majd határozza meg a minta \setbox0\hbox{$\theta_x$}% \message{//depth:\the\dp0//}% \box0% tehetetlenségi nyomatékát és a minta súlypontjának \setbox0\hbox{$r_1$}% \message{//depth:\the\dp0//}% \box0% távolságát a mintán található furattól! (\setbox0\hbox{$D^*$}% \message{//depth:\the\dp0//}% \box0%-ot, \setbox0\hbox{$\theta$}% \message{//depth:\the\dp0//}% \box0%-t és \setbox0\hbox{$m$}% \message{//depth:\the\dp0//}% \box0%-et ismeri.)

Ismételje meg a feladat első részét a mintán található másik furat felhasználásával! Ennek a mérésnek az elvégzése után megadhatja a súlypont helyét a mintán található furatoktól mérhető távolsága segítségével. Rajzolja le a mintát, jelölje be a furatokat és a tömegközéppont helyét!

  • Adatok:
    • Sárgaréz csap tömege: 2,2 g
    • Piros fejű csap tömege: 2,08 g