„1. Mérés: Egyenáramú mérések, multiméter használata” változatai közötti eltérés

A Fizipedia wikiből
 
(egy szerkesztő egy közbeeső változata nincs mutatva)
8. sor: 8. sor:
  
 
__TOC__
 
__TOC__
 +
 +
<div style="color: red">
 +
Aki saját laptopot használna a gyakorlaton, az az óra előtt az NI myDAQ használatához szükséges [https://www.ni.com/en/support/downloads/drivers/download.ni-elvismx.html programcsomagot] telepítse fel.
 +
</div>
  
 
==Elméleti összefoglaló==
 
==Elméleti összefoglaló==

A lap jelenlegi, 2023. október 26., 14:34-kori változata


Tartalomjegyzék


Aki saját laptopot használna a gyakorlaton, az az óra előtt az NI myDAQ használatához szükséges programcsomagot telepítse fel.

Elméleti összefoglaló

Az egyenáramú körökkel kapcsolatos alapfogalmak és törvények rövid összefoglalása

Áram, feszültség és ellenállás

A töltéshordozók áramlásának intenzitását jellemző mennyiség az áramerősség

\[I=\frac{{\rm d}Q}{{\rm d}t}\]

ahol \setbox0\hbox{$Q$}% \message{//depth:\the\dp0//}% \box0% egy adott felületen átáramló töltést és \setbox0\hbox{$t$}% \message{//depth:\the\dp0//}% \box0% az időt jelenti. Az áramerősség egysége az amper (A). Az egyenáram irányát – megállapodás alapján – a pozitív töltéshordozók mozgásának iránya adja meg. Egyenáramról beszélünk, ha az áram erőssége időben állandó. Egy vezető két pontja között levő \setbox0\hbox{$U$}% \message{//depth:\the\dp0//}% \box0% potenciálkülönbség (feszültség) áram kialakulásához vezet. A vezetőre kapcsolt feszültség és a benne folyó áram között sok esetben (pl. fémes vezetőkben) az

\[U=RI\]

összefüggés – az Ohm törvény – áll fenn. Itt \setbox0\hbox{$R$}% \message{//depth:\the\dp0//}% \box0% a vezető ellenállása, amely a geometriai adatoktól (\setbox0\hbox{$l$}% \message{//depth:\the\dp0//}% \box0% hosszúság és \setbox0\hbox{$A$}% \message{//depth:\the\dp0//}% \box0% keresztmetszet) valamint a vezető anyagától (\setbox0\hbox{$\rho$}% \message{//depth:\the\dp0//}% \box0% fajlagos ellenállás ) az alábbi módon függ:

\[R=\rho\frac{l}{A}\]

Ideális feszültség- és áramgenerátor

Az ideális feszültséggenerátor egy olyan ideális feszültségforrás, amelynek kapcsain állandó feszültség mérhető függetlenül a terhelő áramkörben folyó áramtól. Ilyen eszköz a valóságban nem létezhet, hiszen az áramot minden határon túl növelve tetszőlegesen nagy teljesítményt adna. Azonban valós feszültségforrásokat lentebb tárgyalt esetben jól modellezi ez az idealizáció, ezért gyakran ezt az egyszerűbb képet használjuk.
Az ideális feszültséggenerátor rajzjelei
Az ideális feszültséggenerátor feszültség-áram görbéje


Az ideális áramgenerátor egy olyan ideális áramforrás, mely állandó áramot hajt át a terhelő körön függetlenül a kapcsain mérhető feszültségtől. Hasonlóan az ideális feszültséggenerátorhoz a valódi áramgenerátorok csak bizonyos tartományban közelíthetőek az idealizációjukkal.
Az ideális áramgenerátor rajzjelei
Az ideális áramgenerátor áram-feszültség görbéje

Valós telep

Egy valós telepet egy \setbox0\hbox{$U_0$}% \message{//depth:\the\dp0//}% \box0% feszültséget szolgáltató feszültséggenerátor és egy azzal sorosan kapcsolt \setbox0\hbox{$R_b$}% \message{//depth:\the\dp0//}% \box0% belső ellenállással modellezhetünk. Galván elemek esetén az elektródák illetve a közöttük lévő elektrolit véges ellenállása okozza a belső ellenállást. Ha a telep kapcsait \setbox0\hbox{$R$}% \message{//depth:\the\dp0//}% \box0% terhelő ellenálláson keresztül zárjuk, akkor a körben \setbox0\hbox{$I$}% \message{//depth:\the\dp0//}% \box0% áram indul el:
\[ U_0=U+IR_b \]

Ha az \setbox0\hbox{$R$}% \message{//depth:\the\dp0//}% \box0% terhelő ellenállás jóval nagyobb, mint az \setbox0\hbox{$R_b$}% \message{//depth:\the\dp0//}% \box0% belső ellenállás, akkor a telep kapcsain közelítőleg az \setbox0\hbox{$U_0$}% \message{//depth:\the\dp0//}% \box0% feszültség mérhető. Az ideális feszültséggenerátor működését úgy tudja egy valós telep minél jobban megközelíteni, ha a belső ellenállás nullához közelít: \setbox0\hbox{$R_b\rightarrow0$}% \message{//depth:\the\dp0//}% \box0%. Ezzel szemben ha kis ellenállással terheljük a telepet, "rövidre zárjuk", akkor a kapocsfeszültség leesik.

Valós telep helyettesítőképe
A telep feszültség-áram görbéje

Áramgenerátoros meghajtás

Gyakori feladat, hogy forrásunk feszültséggenerátoként működik, de áramgenerátorra lenne szükségünk. Ezt egy a feszültséggenerátorral sorba kapcsolt \setbox0\hbox{$R_S$}% \message{//depth:\the\dp0//}% \box0% söntellenállással érhető el. Ekkor a körben folyó áramot az alábbi összefüggés adja \setbox0\hbox{$R$}% \message{//depth:\the\dp0//}% \box0% terhelő ellenállás esetén:
\[ I=\frac{U_0}{R_S+R} \]

Az áram maximális értéke limitált \setbox0\hbox{$U_0/R_S$}% \message{//depth:\the\dp0//}% \box0% értéken, melyet kis terhelő ellenállás esetén közelít meg a körben folyó áram.

Áramgenerátoros meghajtás
A körben folyó áram terhelő ellenállás függése

Volt- és árammérő

A feszültségmérő műszer (voltmérő) két bemeneti pontját mindig ahhoz a két ponthoz kell kötnünk, amelyek közötti feszültséget akarjuk megmérni. (Ha ez egy áramköri elem két végpontja, akkor ez azt jelenti, hogy a feszültségmérőt az áramköri elemmel párhuzamosan kell kapcsolni.) Egy ideális voltmérő \setbox0\hbox{$R$}% \message{//depth:\the\dp0//}% \box0% ellenállással párhuzamosan kapcsolva megméri az ellenálláson áthaladó \setbox0\hbox{$I$}% \message{//depth:\the\dp0//}% \box0% áram hatására eső \setbox0\hbox{$U=IR$}% \message{//depth:\the\dp0//}% \box0% feszültséget. Egy valós műszeren az áram egy kis része átfolyik, melyet egy nagy, de véges \setbox0\hbox{$R_b$}% \message{//depth:\the\dp0//}% \box0% belsőellenállással modellezhetünk. Látható, hogy az eszköz által mért \setbox0\hbox{$U_m$}% \message{//depth:\the\dp0//}% \box0% feszültség értéke:
\[ U_{m}=\frac{RR_b}{R_b+R}I=\frac{RI}{1+R/R_b}, \]

tehát az eszköz által mért feszültség akkor közelíti meg az ideális \setbox0\hbox{$U=IR$}% \message{//depth:\the\dp0//}% \box0% értéket, ha \setbox0\hbox{$R_b \gg R$}% \message{//depth:\the\dp0//}% \box0%. A belső ellenállás értéke egyszerű kéziműszereknél kb. 10 \setbox0\hbox{$M\Omega$}% \message{//depth:\the\dp0//}% \box0%, drágább eszközökben több nagyságrenddel nagyobb is lehet. Mivel a voltmérő belső ellenállása a mérési gyakorlaton vizsgált ellenállásoknál 3-4 nagyságrenddel nagyobb, méréseink során a voltmérő ideálisnak tekinthető.

Valós voltmérő modellje


Az árammérőt (ampermérőt) mindig sorosan kell bekötni az áramkörbe, azaz úgy, hogy a mérni kívánt áram átmenjen a műszeren. Ebből következik, hogy ideális esetben az árammérő ellenállásának zérusnak kellene lennie. Ha a műszer \setbox0\hbox{$R_b$}% \message{//depth:\the\dp0//}% \box0% belső ellenállása nem nulla, akkor az áramkör ellenállását és ezen keresztül az áram értékét is megváltoztatja, és így mérési hibát okoz. A digitális ampermérő belső ellenállása méréshatár függő, érzékeny állásban akár 1 k\setbox0\hbox{$\Omega$}% \message{//depth:\the\dp0//}% \box0% is lehet, ami összemérhető a vizsgált ellenállások nagyságával. Így az árammérő nem tekinthető ideálisnak.
Árammérő modellje


Ellenállásmérés

Az ellenállásmérő az Ohm-törvény alapján méri az ellenállás értékét: a műszer meghatározott nagyságú (kis) áramot bocsát át az ellenálláson, és méri az ellenálláson eső feszültséget. A műszer kijelzőjén közvetlenül az ellenállás értéke olvasható le.

FONTOS, hogy ellenállásmérővel csak áramkörbe be nem kötött (passzív) eszköz ellenállása mérhető. Ha a mérendő ellenállás egy áramkör része, akkor hibás lesz a mérési eredmény (hiszen az ellenálláson nem csak az ellenállásmérő által kibocsátott áram folyik), és ezen kívül a műszer is tönkremehet. Emiatt: TILOS az ellenállásmérőt feszültség alatt lévő áramkörre kapcsolni!

Mérésben használt műszerek

MAS-830 3.5 digites kézi multiméter

DC feszültség
Méréshatár Felbontás Pontosság
200 mV 100 \setbox0\hbox{$\mu$}% \message{//depth:\the\dp0//}% \box0%V ±0.5% of rdg ± 2 digits
2 V 1 mV ±0.5% of rdg ± 2 digits
20 V 10 mV ±0.5% of rdg ± 2 digits
200 V 100 mV ±0.5% of rdg ± 2 digits
600 V 1 V ±0.8% of rdg ± 2 digits
DC áram
Méréshatár Felbontás Pontosság
200 \setbox0\hbox{$\mu$}% \message{//depth:\the\dp0//}% \box0%A 0,1 \setbox0\hbox{$\mu$}% \message{//depth:\the\dp0//}% \box0%A ±1% of rdg ± 2 digits
2 mA 1 \setbox0\hbox{$\mu$}% \message{//depth:\the\dp0//}% \box0%A ±1% of rdg ± 2 digits
20 mA 10 \setbox0\hbox{$\mu$}% \message{//depth:\the\dp0//}% \box0%A ±1% of rdg ± 2 digits
200 mA 100 \setbox0\hbox{$\mu$}% \message{//depth:\the\dp0//}% \box0%A ±1.5% of rdg ± 2 digits
10 A 10 mA ±3% of rdg ± 2 digits

National Instruments myDAQ digitalizálókártya

Mérési feladatok

1. Feladat Kézi multiméter segítségével mérjük meg 10 db névlegesen 4,7 \setbox0\hbox{$\Omega$}% \message{//depth:\the\dp0//}% \box0%-os ellenállás értékét (vastag, zöld ellenállások 4R7, 5% felirattal). Jegyezzük fel a használt mérőműszer beállításait, felbontását, soroljuk fel a lehetséges hibaforrásokat, és becsüljük meg az okozott hiba nagyságát. A mért ellenállás értékeket táblázatban foglaljuk össze. Végezetül adjuk meg az átlagos ellenállást és a mért értékek szórását. Írásban értékeljük a tapasztaltakat!

2. Feladat A 4,7 \setbox0\hbox{$\Omega$}% \message{//depth:\the\dp0//}% \box0%-os ellenállásokat mérjük meg négypont módszerrel is. A mérésekhez használjuk a myDAQ 5 V-os kimenetét, az áramot mérjük a kézi multiméterrel, az ellenálláson eső feszültséget pedig a myDAQ multiméterével. Használjunk áramgenerátoros meghajtást (R\setbox0\hbox{$_S$}% \message{//depth:\the\dp0//}% \box0% >= 100 \setbox0\hbox{$\Omega$}% \message{//depth:\the\dp0//}% \box0%)! Próbáljuk ki az ábrákon bemutatott mindkét kapcsolást, értelmezzük a megfigyelt különbséget!

A műszerek beállításait, a hibaforrásokat, és a sönt ellenállás értékét jegyezzük fel. A mért ellenállás értéket adjuk meg táblázatban, számoljuk ki az átlagukat és a szórásukat. Tapasztalunk-e bármilyen eltérést az előző feladathoz képest. Mi lehet az oka?

4pontkapcsolas1.png
4pontkapcsolas2.png


3. Feladat Az előző feladatban leírt 4-pontos mérést ismételjük meg az ismeretlen fémszálon, majd számítsuk ki annak fajlagos ellenállását. Ehhez mérőszalaggal illetve tolómérővel mérjük meg a fémszál hosszát illetve keresztmetszetének átmérőjét. Elemezzük a különböző hibákat, azok terjedését. A mért fajlagos ellenállás hogyan viszonyul ismert vezetőanyagok, pl. réz, arany, fajlagos ellenállásához? Mi lehet a vezeték anyaga és vajon mire használható ez a drót?