„Folyadék szabad felszínének vizsgálata” változatai közötti eltérés

A Fizipedia wikiből
 
(3 szerkesztő 16 közbeeső változata nincs mutatva)
1. sor: 1. sor:
 
<wlatex>
 
<wlatex>
  
[[Kategória:Fizika BSC alapképzés]]
 
<!--[[Kategória:Fizika BSC alkalmazott fizika szakirány]]-->
 
<!--[[Kategória:Fizika BSC fizikus szakirány]]-->
 
<!--[[Kategória:Fizikus MSC alapképzés]]-->
 
<!--[[Kategória:Fizikus MSC alkalmazott fizika szakirány]]-->
 
<!--[[Kategória:Fizikus MSC kutatófizikus szakirány]]-->
 
<!--[[Kategória:Fizikus MSC nukleáris technika szakirány]]-->
 
<!--[[Kategória:Fizikus MSC orvosi fizika szakirány]]-->
 
 
[[Kategória:Mechanika]]  
 
[[Kategória:Mechanika]]  
 
<!--[[Kategória:Elektromosságtan]]-->
 
<!--[[Kategória:Elektromosságtan]]-->
21. sor: 13. sor:
 
[[Kategória:Laborgyakorlat]]
 
[[Kategória:Laborgyakorlat]]
 
<!--[[Kategória:Fizika laboratórium 1.]]-->
 
<!--[[Kategória:Fizika laboratórium 1.]]-->
[[Kategória:Fizika laboratórium 2.]]
+
<!--[[Kategória:Fizika laboratórium 2.]]-->
 
<!--[[Kategória:Fizika laboratórium 3.]]-->
 
<!--[[Kategória:Fizika laboratórium 3.]]-->
 
<!--[[Kategória:Fizika laboratórium 4.]]-->
 
<!--[[Kategória:Fizika laboratórium 4.]]-->
[[Kategória:Fizika Tanszék]]
 
<!--[[Kategória:Elméleti Fizika Tanszék]]-->
 
<!--[[Kategória:Atomfizika Tanszék]]-->
 
<!--[[Kategória:Nukleáris Technikai Intézet]]-->
 
<!--[[Kategória:Matematika Intézet]]-->   
 
 
[[Kategória:Szerkesztő:Vankó]]
 
[[Kategória:Szerkesztő:Vankó]]
  
 
A szabad folyadékfelszín viselkedését egyenletes körmozgás esetén vizsgáljuk. A problémát alkalmas koordináta rendszer választásával visszavezetjük a szabad, nyugvó folyadékfelszín viselkedésére.
 
A szabad folyadékfelszín viselkedését egyenletes körmozgás esetén vizsgáljuk. A problémát alkalmas koordináta rendszer választásával visszavezetjük a szabad, nyugvó folyadékfelszín viselkedésére.
 +
  
 
__TOC__
 
__TOC__
  
 
==Elméleti összefoglaló==
 
==Elméleti összefoglaló==
 
 
{{fig|Folyadék_szabad_felszínének_vizsgálata_1.png|fig:1|1. ábra}}
 
{{fig|Folyadék_szabad_felszínének_vizsgálata_1.png|fig:1|1. ábra}}
 
 
A nyugvó folyadék szabad (az edénnyel nem érintkező) felszíne mindenütt merőleges a külső erők eredőjére. Ha ugyanis a felszín valahol nem lenne merőleges az eredő erőre, akkor az utóbbi felszínnel párhuzamos összetevőjének hatására a felszín közelében áramlás jönne létre, vagyis a folyadékot nem tekinthetnénk nyugvónak.
 
A nyugvó folyadék szabad (az edénnyel nem érintkező) felszíne mindenütt merőleges a külső erők eredőjére. Ha ugyanis a felszín valahol nem lenne merőleges az eredő erőre, akkor az utóbbi felszínnel párhuzamos összetevőjének hatására a felszín közelében áramlás jönne létre, vagyis a folyadékot nem tekinthetnénk nyugvónak.
  
Ha egy folyadékot tartalmazó hengeres edényt függőleges tengelye körül $\omega$ szögsebességgel forgatunk, akkor a folyadék felszíne felülről nézve homorú forgásfelület lesz. A folyadék az azonos tengely körül $\omega$ szögsebességgel forgó koordinátarendszerben nyugalomban van. Ebben a rendszerben a felszínen lévő $m$ tömegű folyadékrészre kétféle erő hat: az $mg$ nagyságú, függőleges $(y)$ irányú nehézségi erő, valamint a forgó rendszerben fellépő tehetetlenségi erők. Esetünkben az utóbbiak közül csak az $m\omega^2x$ nagyságú, a forgástengelyre merőleges és attól sugárirányban elfelé mutató centrifugális erő játszik szerepet ($x$ a folyadékrésznek a forgástengelytől mért távolsága). A folyadékfelszín mindenhol a két erő eredőjére merőleges helyzetet vesz fel ([[fig:1|1. ábra]]). A kialakuló felület egy forgási paraboloid. A kísérletben ennek a forgási paraboloidnak egy, a forgástengelyen átmenő metszetét határozzuk meg.
+
Ha egy folyadékot tartalmazó hengeres edényt függőleges tengelye körül $\omega$ szögsebességgel forgatunk, akkor a folyadék felszíne felülről nézve homorú forgásfelület lesz. A folyadék az azonos tengely körül $\omega$ szögsebességgel forgó koordinátarendszerben nyugalomban van. Ebben a rendszerben a felszínen lévő $m$ tömegű folyadékrészre kétféle erő hat: az $mg$ nagyságú, függőleges $(y)$ irányú nehézségi erő, valamint a forgó rendszerben fellépő tehetetlenségi erők. Esetünkben az utóbbiak közül csak az $m\omega^2x$ nagyságú, a forgástengelyre merőleges, és attól sugárirányban elfelé mutató centrifugális erő játszik szerepet ($x$ a folyadékrésznek a forgástengelytől mért távolsága). A folyadékfelszín mindenhol a két erő eredőjére merőleges helyzetet vesz fel ([[#fig:1|1. ábra]]). A kialakuló felület egy forgási paraboloid. A kísérletben ennek a forgási paraboloidnak egy, a forgástengelyen átmenő metszetét határozzuk meg.
  
 
==Kísérleti berendezés==
 
==Kísérleti berendezés==
  
A folyadékot két egymáshoz közeli párhuzamos síklap által alkotott (téglatest alakú) edényben helyeztük el. (Továbbiakban a síklapokat egymáshoz végtelen közelinek tekintjük.) A forgástengely a téglatest egyik szimmetriatengelye. A forgó edényben kialakuló folyadékfelszín vizsgálatát egy olyan koordináta rendszerben végezzük, melynek $x$ tengelye az $\omega=0$ szögsebességhez tartozó (vízszintes) folyadékfelszínnel esik egybe, $y$ tengelye pedig a függőleges forgástengely.
+
{|  cellpadding="5" cellspacing="0" align="center"
 +
|-
 +
|{{fig2|Folyfelsz.png|fig:2|2. ábra}}
 +
|-
 +
|}
 +
 
 +
A folyadékot két egymáshoz közeli párhuzamos síklap által alkotott (téglatest alakú) edényben helyeztük el ([[#fig:2|2. ábra]]). (Továbbiakban a síklapokat egymáshoz végtelen közelinek tekintjük.) A forgástengely a téglatest egyik szimmetriatengelye. A forgó edényben kialakuló folyadékfelszín vizsgálatát egy olyan koordináta rendszerben végezzük, melynek $x$ tengelye az $\omega=0$ szögsebességhez tartozó (vízszintes) folyadékfelszínnel esik egybe, $y$ tengelye pedig a függőleges forgástengely.
  
 
Az [[#fig:1|1. ábráról]] leolvasható, hogy  
 
Az [[#fig:1|1. ábráról]] leolvasható, hogy  
$$\tan\alpha=\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{mx\omega^2}{mg}=\frac{\omega^2}{g}x,$$
+
$$\mathrm{tg}\alpha=\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{mx\omega^2}{mg}=\frac{\omega^2}{g}x,$$
 
azaz
 
azaz
 
$$\mathrm{d}y=\frac{\omega^2}{g}x\mathrm{d}x,$$
 
$$\mathrm{d}y=\frac{\omega^2}{g}x\mathrm{d}x,$$
56. sor: 48. sor:
 
{{eq|0{{=}}\int_0^R \left(\frac{\omega^2}{2g}x^2+C\right)\,\mathrm{d}x{{=}}\frac{\omega^2}{6g}R^3+CR,|eq:1|(1)}}
 
{{eq|0{{=}}\int_0^R \left(\frac{\omega^2}{2g}x^2+C\right)\,\mathrm{d}x{{=}}\frac{\omega^2}{6g}R^3+CR,|eq:1|(1)}}
 
ahonnét
 
ahonnét
$$C=-\frac{\omega R}{6g}.$$
+
$$C=-\frac{\omega^2 R^2}{6g}.$$
 
Így a folyadékfelszín egyenlete:
 
Így a folyadékfelszín egyenlete:
 
$$y=\frac{\omega^2}{2g}\left(x^2-\frac{R^2}{3}\right).$$
 
$$y=\frac{\omega^2}{2g}\left(x^2-\frac{R^2}{3}\right).$$
 +
  
 
A [[#eq:1|(1)]] kifejezésből az alábbi következtetések vonhatók le:
 
A [[#eq:1|(1)]] kifejezésből az alábbi következtetések vonhatók le:
 
* A parabola csúcspontjának ordinátája $(C)$ arányos $\omega^2$-tel, ami alapján fordulatszámmérő készíthető.
 
* A parabola csúcspontjának ordinátája $(C)$ arányos $\omega^2$-tel, ami alapján fordulatszámmérő készíthető.
* A különböző szögsebességekhez tartozó parabolák átmennek a $\pm\left(\frac{1}{\sqrt{3}}R, 0\right)$ pontokon. [Az utóbbi állítás könnyen belátható, ha [[#eq:1|(1)]]-be $y=0$-t helyettesítünk és $\frac{\omega^2}{2g}$-vel egyszerűsítünk.]
+
* A különböző szögsebességekhez tartozó parabolák átmennek a $\pm\left(R/\sqrt{3}, 0\right)$ pontokon. [Az utóbbi állítás könnyen belátható, ha [[#eq:1|(1)]]-be $y=0$-t helyettesítünk és $\omega^2/(2g)$-vel egyszerűsítünk.]
  
 
==Mérési feladatok==
 
==Mérési feladatok==
 +
 +
[[A méréshez rendelkezésre álló eszközök: Folyadék szabad felszínének vizsgálata|A méréshez rendelkezésre álló eszközök]]
  
 
*''A mérés elvégzéséhez és a mérési napló elkészítéséhez a dőlt betűs részekben adunk segítséget.''
 
*''A mérés elvégzéséhez és a mérési napló elkészítéséhez a dőlt betűs részekben adunk segítséget.''
70. sor: 65. sor:
 
'''1.''' Igazolja kísérletileg, hogy a forgó folyadék felszíne által kialakított parabola csúcspontjának süllyedése a szögsebesség négyzetével arányos!
 
'''1.''' Igazolja kísérletileg, hogy a forgó folyadék felszíne által kialakított parabola csúcspontjának süllyedése a szögsebesség négyzetével arányos!
  
Vegye fel a $\log C-\log\omega$ függvényt és a grafikon segítségével állapítsa meg $\omega$ kitevőjét! (Használja a $\log\omega^n=n\log\omega$ összefüggést! A szögsebességet fordulatszámméréssel határozza meg!)
+
Vegye fel a $\log C-\log\omega$ függvényt és a grafikon segítségével állapítsa meg $\omega$ kitevőjét!
  
 
'''2.''' Határozza meg a nehézségi gyorsulás értékét!
 
'''2.''' Határozza meg a nehézségi gyorsulás értékét!
  
Rajzolja fel a $C-\omega^2$ függvényt, majd határozza meg a mérési pontokon át fektetett egyenes meredekségét, ami $\frac{R^2}{6g}$ értékét adja meg. Ennek ismeretében számítsa ki a nehézségi gyorsulást!
+
Rajzolja fel a $C-\omega^2$ függvényt, majd határozza meg a mérési pontokon át fektetett egyenes meredekségét, ami $R^2/(6g)$ értékét adja meg. Ennek ismeretében számítsa ki a nehézségi gyorsulást!
 +
* ''A folyadékedény forgási sebességét a tápegység segítségével lehet változtatni. Bekapcsolás:'' '''MAINS''' ''és'' '''DC ON''' '', forgási sebesség beállítása a durva és finom feszültségállító gombokkal.
 +
* A mérésnél a folyadékfelszínt az edényen levő parabolára (parabolákra) igyekezzen illeszteni. A parabolák geometriai adatai vonalzóval utólag lemérhetők.
 +
* A forgó rendszer frekvenciáját a beállított frekvenciamérővel lehet mérni. A műszer azonban a néhány Hz-es frekvenciákat nagy hibával méri, ezért a pontosabb mérés érdekében a mellékelt stopper segítségével mérje le több (10-20) fordulat idejét, és ebből határozza meg a frekvenciát!
 +
* A mérést a pontosabb észlelés érdekében lesötétített térben végezze, ekkor a folyadékfelszín beállítást megkönnyíti a stroboszkóp alkalmazása.''
  
 
</wlatex>
 
</wlatex>

A lap jelenlegi, 2014. november 27., 15:54-kori változata


A szabad folyadékfelszín viselkedését egyenletes körmozgás esetén vizsgáljuk. A problémát alkalmas koordináta rendszer választásával visszavezetjük a szabad, nyugvó folyadékfelszín viselkedésére.


Tartalomjegyzék


Elméleti összefoglaló

1. ábra

A nyugvó folyadék szabad (az edénnyel nem érintkező) felszíne mindenütt merőleges a külső erők eredőjére. Ha ugyanis a felszín valahol nem lenne merőleges az eredő erőre, akkor az utóbbi felszínnel párhuzamos összetevőjének hatására a felszín közelében áramlás jönne létre, vagyis a folyadékot nem tekinthetnénk nyugvónak.

Ha egy folyadékot tartalmazó hengeres edényt függőleges tengelye körül \setbox0\hbox{$\omega$}% \message{//depth:\the\dp0//}% \box0% szögsebességgel forgatunk, akkor a folyadék felszíne felülről nézve homorú forgásfelület lesz. A folyadék az azonos tengely körül \setbox0\hbox{$\omega$}% \message{//depth:\the\dp0//}% \box0% szögsebességgel forgó koordinátarendszerben nyugalomban van. Ebben a rendszerben a felszínen lévő \setbox0\hbox{$m$}% \message{//depth:\the\dp0//}% \box0% tömegű folyadékrészre kétféle erő hat: az \setbox0\hbox{$mg$}% \message{//depth:\the\dp0//}% \box0% nagyságú, függőleges \setbox0\hbox{$(y)$}% \message{//depth:\the\dp0//}% \box0% irányú nehézségi erő, valamint a forgó rendszerben fellépő tehetetlenségi erők. Esetünkben az utóbbiak közül csak az \setbox0\hbox{$m\omega^2x$}% \message{//depth:\the\dp0//}% \box0% nagyságú, a forgástengelyre merőleges, és attól sugárirányban elfelé mutató centrifugális erő játszik szerepet (\setbox0\hbox{$x$}% \message{//depth:\the\dp0//}% \box0% a folyadékrésznek a forgástengelytől mért távolsága). A folyadékfelszín mindenhol a két erő eredőjére merőleges helyzetet vesz fel (1. ábra). A kialakuló felület egy forgási paraboloid. A kísérletben ennek a forgási paraboloidnak egy, a forgástengelyen átmenő metszetét határozzuk meg.

Kísérleti berendezés

2. ábra

A folyadékot két egymáshoz közeli párhuzamos síklap által alkotott (téglatest alakú) edényben helyeztük el (2. ábra). (Továbbiakban a síklapokat egymáshoz végtelen közelinek tekintjük.) A forgástengely a téglatest egyik szimmetriatengelye. A forgó edényben kialakuló folyadékfelszín vizsgálatát egy olyan koordináta rendszerben végezzük, melynek \setbox0\hbox{$x$}% \message{//depth:\the\dp0//}% \box0% tengelye az \setbox0\hbox{$\omega=0$}% \message{//depth:\the\dp0//}% \box0% szögsebességhez tartozó (vízszintes) folyadékfelszínnel esik egybe, \setbox0\hbox{$y$}% \message{//depth:\the\dp0//}% \box0% tengelye pedig a függőleges forgástengely.

Az 1. ábráról leolvasható, hogy

\[\mathrm{tg}\alpha=\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{mx\omega^2}{mg}=\frac{\omega^2}{g}x,\]

azaz

\[\mathrm{d}y=\frac{\omega^2}{g}x\mathrm{d}x,\]

ahonnan integrálással az

\[y=\frac{\omega^2}{2g}x^2+C\]

összefüggés adódik. A kifejezés egy parabola egyenlete, ahol a \setbox0\hbox{$C$}% \message{//depth:\the\dp0//}% \box0% integrálási állandó értéke a parabola csúcspontjának ordinátája. \setbox0\hbox{$C$}% \message{//depth:\the\dp0//}% \box0%-t abból a feltételből kaphatjuk meg, hogy az állandó folyadéktérfogat miatt a \setbox0\hbox{$\int_0^R y(x)\,\mathrm{d}x$}% \message{//depth:\the\dp0//}% \box0% határozott integrálnak nullát kell adnia, azaz

 
\[0=\int_0^R \left(\frac{\omega^2}{2g}x^2+C\right)\,\mathrm{d}x=\frac{\omega^2}{6g}R^3+CR,\]
(1)

ahonnét

\[C=-\frac{\omega^2 R^2}{6g}.\]

Így a folyadékfelszín egyenlete:

\[y=\frac{\omega^2}{2g}\left(x^2-\frac{R^2}{3}\right).\]


A (1) kifejezésből az alábbi következtetések vonhatók le:

  • A parabola csúcspontjának ordinátája \setbox0\hbox{$(C)$}% \message{//depth:\the\dp0//}% \box0% arányos \setbox0\hbox{$\omega^2$}% \message{//depth:\the\dp0//}% \box0%-tel, ami alapján fordulatszámmérő készíthető.
  • A különböző szögsebességekhez tartozó parabolák átmennek a \setbox0\hbox{$\pm\left(R/\sqrt{3}, 0\right)$}% \message{//depth:\the\dp0//}% \box0% pontokon. [Az utóbbi állítás könnyen belátható, ha (1)-be \setbox0\hbox{$y=0$}% \message{//depth:\the\dp0//}% \box0%-t helyettesítünk és \setbox0\hbox{$\omega^2/(2g)$}% \message{//depth:\the\dp0//}% \box0%-vel egyszerűsítünk.]

Mérési feladatok

A méréshez rendelkezésre álló eszközök

  • A mérés elvégzéséhez és a mérési napló elkészítéséhez a dőlt betűs részekben adunk segítséget.

1. Igazolja kísérletileg, hogy a forgó folyadék felszíne által kialakított parabola csúcspontjának süllyedése a szögsebesség négyzetével arányos!

Vegye fel a \setbox0\hbox{$\log C-\log\omega$}% \message{//depth:\the\dp0//}% \box0% függvényt és a grafikon segítségével állapítsa meg \setbox0\hbox{$\omega$}% \message{//depth:\the\dp0//}% \box0% kitevőjét!

2. Határozza meg a nehézségi gyorsulás értékét!

Rajzolja fel a \setbox0\hbox{$C-\omega^2$}% \message{//depth:\the\dp0//}% \box0% függvényt, majd határozza meg a mérési pontokon át fektetett egyenes meredekségét, ami \setbox0\hbox{$R^2/(6g)$}% \message{//depth:\the\dp0//}% \box0% értékét adja meg. Ennek ismeretében számítsa ki a nehézségi gyorsulást!

  • A folyadékedény forgási sebességét a tápegység segítségével lehet változtatni. Bekapcsolás: MAINS és DC ON , forgási sebesség beállítása a durva és finom feszültségállító gombokkal.
  • A mérésnél a folyadékfelszínt az edényen levő parabolára (parabolákra) igyekezzen illeszteni. A parabolák geometriai adatai vonalzóval utólag lemérhetők.
  • A forgó rendszer frekvenciáját a beállított frekvenciamérővel lehet mérni. A műszer azonban a néhány Hz-es frekvenciákat nagy hibával méri, ezért a pontosabb mérés érdekében a mellékelt stopper segítségével mérje le több (10-20) fordulat idejét, és ebből határozza meg a frekvenciát!
  • A mérést a pontosabb észlelés érdekében lesötétített térben végezze, ekkor a folyadékfelszín beállítást megkönnyíti a stroboszkóp alkalmazása.