„Sztatikus mágneses mező vizsgálata” változatai közötti eltérés
(4 szerkesztő 29 közbeeső változata nincs mutatva) | |||
17. sor: | 17. sor: | ||
<!--[[Kategória:Fizika laboratórium 4.]]--> | <!--[[Kategória:Fizika laboratórium 4.]]--> | ||
[[Kategória:Szerkesztő:Vankó]] | [[Kategória:Szerkesztő:Vankó]] | ||
− | |||
− | |||
''A mérés célja'' | ''A mérés célja'' | ||
26. sor: | 24. sor: | ||
''Ennek érdekében:'' | ''Ennek érdekében:'' | ||
− | * megismerkedünk a mágneses térerősség mérésére szolgáló magnetorezisztív szenzorral, és az Universal Lab Interface (ULI) adatgyűjtő rendszerrel | + | * megismerkedünk a mágneses térerősség mérésére szolgáló magnetorezisztív szenzorral, és az Universal Lab Interface (ULI) adatgyűjtő rendszerrel, |
+ | |||
+ | * feltérképezzük a mágneses térerősség komponenseinek helyfüggését a Helmholtz-tekercs körül. | ||
− | |||
__TOC__ | __TOC__ | ||
38. sor: | 37. sor: | ||
{{fig|Mag_kep_1.JPG|fig:1|1. ábra}} | {{fig|Mag_kep_1.JPG|fig:1|1. ábra}} | ||
− | Szemben a Naprendszerünk hasonló méretű bolygóinak többségével, a Föld erős mágneses térrel rendelkezik, amely a Föld belsejében található anyag/töltés áramlásokkal hozható kapcsolatba. A Föld mágneses tere fontos szerepet játszik a földfelszín nagyenergiás kozmikus részecskékkel szembeni védelmében ( | + | Szemben a Naprendszerünk hasonló méretű bolygóinak többségével, a Föld erős mágneses térrel rendelkezik, amely a Föld belsejében található anyag/töltés áramlásokkal hozható kapcsolatba. A Föld mágneses tere fontos szerepet játszik a földfelszín nagyenergiás kozmikus részecskékkel szembeni védelmében ([[#fig:1|1. ábra]]), és jelenléte alapvető lehetett a földi élet kialakulása szempontjából is. |
− | A földmágneses tér eloszlása a Föld felszínén első közelítésben olyan, mintha egy | + | A földmágneses tér eloszlása a Föld felszínén első közelítésben olyan, mintha egy ~10<sup>23</sup> Am<sup>2</sup> momentumú dipólus helyezkedne el a Föld közepe táján, melynek tengelye hozzávetőleg a 71°É, 96°NY ill. 73°D, 156°K pontoban metszi a felszínt. A súlypontjában felfüggesztett mágnestű (feltéve, hogy nincsenek a környezetében mágneses vagy mágnesezhető anyagok ill. áramjárta vezetők) a Föld $\mathbf{B_F}$ mágneses terének (mágneses indukciójának) irányába áll be. |
− | $\ | + | $\mathbf{B_F}$-et általában a mágneses elhajlás vagy deklináció szögével (térerősség vektoron átmenő függőleges ún. ''mágneses meridiánsík'' és az adott helyen átmenő ''földrajzi meridiánsík'' vagy hosszúsági kör által bezárt szög), ill. a lehajlás vagy inklináció szöge ($\mathbf{B_F}$-nek a vízszintessel bezárt szöge), valamint a horizontális intenzitás ($\mathbf{B_F}$ vízszintes vetülete) segítségével adják meg, melyekkel kifejezhető a teljes intenzitás (a vektor abszolút értéke) és a vertikális intenzitás (a függőleges komponens). |
− | {{fig|Mag_kep_2. | + | {{fig|Mag_kep_2.gif|fig:2|2. ábra}} |
− | A Föld mágneses tere időfüggő. Napi, havi és éves periódusú változások egyaránt megfigyelhetők. A mágneses sarkok lassan vándorolnak ( | + | A Föld mágneses tere időfüggő. Napi, havi és éves periódusú változások egyaránt megfigyelhetők. A mágneses sarkok lassan vándorolnak ([[#fig:2|2. ábra]]). |
− | A mozgó elektromos töltés (így az elektromos áram is) mágneses teret kelt. Az $I$ áram és $\ | + | A mozgó elektromos töltés (így az elektromos áram is) mágneses teret kelt. Az $I$ áram és $\mathbf{B}$ mágneses tere közötti kapcsolatot (a Biot-Savart törvény mellett) az Ampére-féle gerjesztési törvény írja le: |
− | $$ \mu_0 I = \oint \ | + | $$ \mu_0 I = \oint \mathbf{B}\mathrm{d}\mathbf{s},$$ |
− | ahol $d\ | + | ahol $\mathrm{d}\mathbf{s}$ az ívelem vektor. |
A két $R$ távolságban levő $R$ sugarú tekercsből álló ún. Helmholtz-tekercs viszonylag homogén mágneses teret hoz létre, melynek a tekercsek tengelyében középen vett erőssége: | A két $R$ távolságban levő $R$ sugarú tekercsből álló ún. Helmholtz-tekercs viszonylag homogén mágneses teret hoz létre, melynek a tekercsek tengelyében középen vett erőssége: | ||
58. sor: | 57. sor: | ||
$$ B = 8\mu_0 \frac{NI}{\sqrt{125}R} ,$$ | $$ B = 8\mu_0 \frac{NI}{\sqrt{125}R} ,$$ | ||
− | ahol $\mu_0 = 4\pi \times 10^7 Vs/Am$ a vákuum mágneses permeabilitása, $I$ a tekercsen átfolyó áram (A), $N$ pedig a tekercsek menetszáma. Ezt az elrendezést használjuk a későbbiekben a fajlagos elektrontöltés mérésénél is. | + | ahol $\mu_0 = 4\pi \times 10^{-7} \mathrm{Vs/Am}$ a vákuum mágneses permeabilitása, $I$ a tekercsen átfolyó áram (A), $N$ pedig a tekercsek menetszáma. Ezt az elrendezést használjuk a későbbiekben a fajlagos elektrontöltés mérésénél is. |
− | A mágneses teret sokféle módon lehet mérni. Egyik lehetőség a Hall-effektuson alapuló mérőeszköz: Ha egy félvezető kristályt, melyen áram folyik át, a $j$ sűrűségű áram irányára merőleges mágneses térbe helyezünk, akkor a $ | + | A mágneses teret sokféle módon lehet mérni. Egyik lehetőség a Hall-effektuson alapuló mérőeszköz: Ha egy félvezető kristályt, melyen áram folyik át, a $\mathbf{j}$ sűrűségű áram irányára merőleges mágneses térbe helyezünk, akkor a $\mathbf{j}\times\mathbf{B}$ nagyságú Lorentz-erő hatására a töltéshordozók kitérnek az áramsűrűségre és a mágneses térre merőleges irányba. Ezáltal a kristály oldalsó felületei annyira feltöltődnek, hogy a létrejövő ellenfeszültség a mágneses tér eltérítő hatását éppen kiegyenlíti. Ez a Hall-effektus. A fellépő keresztirányú Hall-feszültség $U_H = E_H b$ (ahol $b$ a kristály szélessége, $E_H$ pedig a felületi töltések által létrehozott elektromos tér) a töltéshordozók koncentrációjával hozható kapcsolatba: Stacionárius állapotban $E_H = vB = jB/qn$, ahol $q$ a töltéshordozó töltése, $n$ pedig a töltéshordozó koncentrációja. Az $R_H = E_H /jB = 1/qn$ mennyiséget Hall-együtthatónak nevezzük. Ez független a mozgékonyságtól, kizárólag a töltéskoncentráció határozza meg. Negatív Hall-együttható elektronvezetést, pozitív együttható pedig lyukvezetést jelent. |
A mérési gyakorlaton a mágneses tér mérését Philips KMZ10B típusú magnetorezisztív szenzor segítségével végezzük. | A mérési gyakorlaton a mágneses tér mérését Philips KMZ10B típusú magnetorezisztív szenzor segítségével végezzük. | ||
− | A magnetorezisztív szenzor mágneses vékonyrétegekből készül, melyben a mágneses momentumok zérus külső tér esetén a vékonyréteg geometriája által meghatározott preferált irányba állnak be. Külső mágneses tér hatására a momentumok elfordulnak a preferált irányhoz képest, aminek következtében megváltozik a vékonyréteg ellenállása. | + | A magnetorezisztív szenzor mágneses vékonyrétegekből készül, melyben a mágneses momentumok zérus külső tér esetén a vékonyréteg geometriája által meghatározott preferált irányba állnak be. Külső mágneses tér hatására a momentumok elfordulnak a preferált irányhoz képest, aminek következtében megváltozik a vékonyréteg ellenállása. Részletesebb leírást a magnetorezisztív szenzor működéséről a [[Gigantikus mágneses ellenállás vizsgálata|Gigantikus mágneses ellenállás vizsgálata]] című mérésleírásban olvashat. |
==A mérőberendezés és összeállítása== | ==A mérőberendezés és összeállítása== | ||
72. sor: | 71. sor: | ||
{{fig|Mag_kep_3.JPG|fig:3|3. ábra}} | {{fig|Mag_kep_3.JPG|fig:3|3. ábra}} | ||
− | A Philips KMZ10B típusú szenzor 4 darab, hídkapcsolásban elhelyezett magnetorezisztív vékonyrétegből áll ( | + | A Philips KMZ10B típusú szenzor 4 darab, hídkapcsolásban elhelyezett magnetorezisztív vékonyrétegből áll ([[#fig:3|3. ábra]]). A híd két szemközti csúcsára 5 V tápfeszültséget kötünk, és a másik két szemközti csúcs között mérjük a feszültséget. Zérus mágneses térben a híd kiegyenlített, így a kimeneten zérus feszültség látható. Véges mágneses térben ($B$ < 1 mT) a térrel arányos, tipikusan mV-os nagyságrendű jelet tapasztalunk. A szenzor a kivezetésekkel szemközti oldalon, a [[#fig:3|3. ábrán]] jelölt irányban méri a mágneses teret. A mérésnél 2 darab, egymásra merőlegesen elhelyezett szenzort használunk, így a Helmholtz-tekercs terének egyszerre mérhetjük az X és Y komponensét. |
===Adatgyűjtés=== | ===Adatgyűjtés=== | ||
78. sor: | 77. sor: | ||
{{fig|Mag_kep_4.JPG|fig:4|4. ábra}} | {{fig|Mag_kep_4.JPG|fig:4|4. ábra}} | ||
− | A Helmholtz-tekercs terének feltérképezéséhez egy pozícionáló asztal áll rendelkezésre ( | + | A Helmholtz-tekercs terének feltérképezéséhez egy pozícionáló asztal áll rendelkezésre ([[#fig:4|4. ábra]]), mely a tekercs vízszintes felezősíkjában való pozíciót két (X és Y irányú) ellenállás huzalon való feszültségosztással elektromos jellé alakítja. |
{{fig|Mag_kep_5.JPG|fig:5|5. ábra}} | {{fig|Mag_kep_5.JPG|fig:5|5. ábra}} | ||
− | A szenzorok jelének ill. az elmozdulás | + | A szenzorok jelének ill. az elmozdulás $x$ és $y$ koordinátáinak mérését egy 10-pólusú csatlakozó blokkon keresztül végezhetjük. Jelforrásként egy, az [[#fig:5|5. ábrán]] látható Hameg 8142 típusú tápegységet használunk, mely egy fix (5 V, max. 2 A) és két változtatható kimenettel rendelkezik (0-30 V, 0-1 A). |
− | Az egyik változtatható kimenetről kössön 5 V feszültséget a két pozícióérzékelésre használt ellenálláshuzal végei közé. A pozícióérzékelő csúszkák feszültségjelét kösse a csatlakozóblokk | + | Az egyik változtatható kimenetről kössön 5 V feszültséget a két pozícióérzékelésre használt ellenálláshuzal végei közé. A pozícióérzékelő csúszkák feszültségjelét kösse a csatlakozóblokk X és Y jelű csatlakozópárjaira (A föld-pontot kösse össze az ellenálláshuzalok negatív pontjaival). Az X és Y jelű csatlakozópárokra kötött jelet a megfelelő 5-pólusú DIN csatlakozókkal kösse az ULI interface DIN1 és DIN2 bemenetére. A mérés a számítógépen futó LoggerPro program segítségével történik. |
A tápegység másik változtatható kimenetét használja áramgenerátorként a Helmholtz-tekercs meghajtására. | A tápegység másik változtatható kimenetét használja áramgenerátorként a Helmholtz-tekercs meghajtására. | ||
− | A Hameg tápegység fix 5 V-os kimenetét használja a két mágneses tér szenzor tápfeszültségeként (csatlakozó blokk: „B sensor input”). A mágneses tér | + | A Hameg tápegység fix 5 V-os kimenetét használja a két mágneses tér szenzor tápfeszültségeként (csatlakozó blokk: „B sensor input”). A mágneses tér X és Y komponensével arányos feszültségjelet a csatlakozóblokk $B_x$ és $B_y$ jelzésű kimenetein mérheti. Mivel itt mV-os nagyságrendű feszültségek jelentkeznek, ezért a számítógépes regisztráláshoz először erősítésre van szükség. Ehhez használja a 2 darab Vernier differenciális erősítő modult ± 20 mV-os méréshatárban. Az erősítők jelét számítógéppel regisztrálja az ULI interface DIN3 és DIN4 bemenetein keresztül. Mivel az ULI interface csak pozitív feszültségeket tud regisztrálni, a differenciális erősítővel viszont bipoláris jelet akarunk mérni (± 20 mV), az erősítő a kierősített jelhez még hozzáad egy DC offsetet is. Így zérus mágneses térben kb. 1,7 V-os offset feszültséget mérünk, és az ettől vett pozitív és negatív irányú eltérés arányos a mágneses tér nagyságával. |
− | Adatgyűjtésre az Universal Lab Interface (ULI) egység szolgál, ami egy 12 MHz-en működő SAB A-P, 8032 processzort tartalmaz 256 byte RAM-mal, négy 8-bites porttal és három 16-bites időzítővel. Az adatforgalmat kontrolláló rutinokat egy 16 kB-os EPROM tartalmazza. Az ULI-ban található 12-bites analóg-digitál konverter feszültség bemenete 0-5,12 V-os, konverziós idő $ | + | Adatgyűjtésre az Universal Lab Interface (ULI) egység szolgál, ami egy 12 MHz-en működő SAB A-P, 8032 processzort tartalmaz 256 byte RAM-mal, négy 8-bites porttal és három 16-bites időzítővel. Az adatforgalmat kontrolláló rutinokat egy 16 kB-os EPROM tartalmazza. Az ULI-ban található 12-bites analóg-digitál konverter feszültség bemenete 0-5,12 V-os, konverziós idő 21 $\mathrm{\mu}$s, maximális mintavételezési frekvencia 32 kHz. A számítógép felé soros (RS232) adatforgalmat biztosít (maximum baud rate: 38,4 k). Bemenetek: 2 darab moduláris telefon csatlakozó, 4 darab 5 tűs DIN csatlakozó, és 2 darab sztereo „jack” csatlakozó. |
+ | |||
+ | {{fig|Mag_kep_6.JPG|fig:6|6. ábra}} | ||
===Adatfeldolgozás és megjelenítés=== | ===Adatfeldolgozás és megjelenítés=== | ||
95. sor: | 96. sor: | ||
Az adatfeldolgozás és megjelenítés az Origin program segítségével történik. Itt csak a térerősség/vektor térképek elkészítését tárgyaljuk. | Az adatfeldolgozás és megjelenítés az Origin program segítségével történik. Itt csak a térerősség/vektor térképek elkészítését tárgyaljuk. | ||
− | Az | + | Az X irányú mágneses tér komponens ábrázolása (Origin 8 programban): Importálja be a mágneses teret tartalmazó fájlt egyszeres ASCII fájlként. Törölje az időt és az Y irányú mágneses teret (DIN4) tartalmazó oszlopokat. Definiálja X, Y és Z oszlopként a DIN1, DIN2 és DIN3 bemeneteken érkezett adatokat. Jelölje ki a Z oszlopot. Konvertálja az adatait mátrixszá (Worksheet/Convert to Matrix/XYZ Gridding. A kapott mátrixot megnyitva a Plot/3D Surface/ menüpontban többféle háromdimenziós ábrázolási módból választhat. A mért adatokat az alábbiak szerint ábrázolja: |
− | + | ||
− | + | ||
− | * 3D Color Map Surface (3D színes térkép felület, ld. | + | * 3D Color Map Surface (3D színes térkép felület, ld. [[#fig:6|6. ábra]]) |
{{fig|Mag_kep_7.JPG|fig:7|7. ábra}} | {{fig|Mag_kep_7.JPG|fig:7|7. ábra}} | ||
− | * Countour B/W Lines+Labels (szintvonalas ábra, a szintértékek megjelölésével, ld. | + | * Countour/B/W Lines + Labels (szintvonalas ábra, a szintértékek megjelölésével, ld. [[#fig:7|7. ábra]]). |
− | A fentieket végezze el az | + | A fentieket végezze el az Y irányú komponensre is. (Ekkor a DIN1, a DIN2 és a DIN4 bemenetek érkezett adatokat kell használni.) |
− | A vektor-diagram esetében az előbbiekben létrehozott mátrixokat alakítsa vissza adatlappá ( | + | A vektor-diagram esetében az előbbiekben létrehozott mátrixokat alakítsa vissza adatlappá (Matrix/Convert to Worksheet ablakban állítsa be a következőket: Method: XYZ Columns, Option: X Constant 1st). Hozzon létre olyan új adatlapot, melynél az A és B oszlopokban az X és Y koordináták (a vektorok kezdőpontjai) találhatók, míg a C és D oszlopokat (a vektorok végpontjai) úgy töltse fel, hogy az ábrázolt nyilak iránya és hossza a mágneses térerősség XY síkbeli irányát és nagyságát mutassa. |
{{fig|Mag_kep_8.JPG|fig:8|8. ábra}} | {{fig|Mag_kep_8.JPG|fig:8|8. ábra}} | ||
− | Definiálja ezután az | + | Definiálja ezután az A és C oszlopokat X oszlopként, a B és D oszlopokat pedig Y oszlopként. Jelölje ki az A, B, C és D oszlopokat. A Plot/Specialized/Vector XYXY utasítással ábrázolva vektordiagramot kap ([[#fig:8|8. ábra]]). |
+ | |||
+ | {| cellpadding="5" cellspacing="0" align="center" | ||
+ | |- | ||
+ | | {{figN|Magnesester.png|fig:10|10. ábra|600}} | ||
+ | |- | ||
+ | |} | ||
==Mérési feladatok== | ==Mérési feladatok== | ||
+ | |||
+ | [[A méréshez rendelkezésre álló eszközök: Sztatikus mágneses mező vizsgálata|A méréshez rendelkezésre álló eszközök]] | ||
*''A mérés elvégzéséhez és a mérési napló elkészítéséhez a dőlt betűs részekben adunk segítséget.'' | *''A mérés elvégzéséhez és a mérési napló elkészítéséhez a dőlt betűs részekben adunk segítséget.'' | ||
− | '''1.''' Állítsa össze a mérési elrendezést, és ellenőrizze, hogy a számítógép megfelelően regisztrálja a helykoordináta és a mágneses tér | + | '''1.''' Állítsa össze a mérési elrendezést, és ellenőrizze, hogy a számítógép megfelelően regisztrálja a helykoordináta és a mágneses tér X és Y komponenseit! Válassza meg a koordinátarendszer origóját és mérőszalag segítségével kalibrálja a helykoordináta X és Y komponenseit! |
{{fig|Mag_kep_9.JPG|fig:9|9. ábra}} | {{fig|Mag_kep_9.JPG|fig:9|9. ábra}} | ||
− | '''2.''' Kalibrálja a mágneses tér | + | '''2.''' Kalibrálja a mágneses tér X komponensét mérő szenzort! Ehhez helyezze a szenzortartó sínt a Helmholtz-tekercs tengelyére merőlegesen ([[#fig:9|9/a ábra]]), és állítsa a szenzorokat a Helmholtz-tekercs középpontjába. A tekercs áramának függvényében (-1 A – +1 A) mérje meg a szenzor jelét, az áramértékeket az elméleti formulák alapján váltsa át mágneses térré (a tekercs menetszáma mindkét oldalon $N$ = 130), és határozza meg a mágneses tér és a szenzor jele közti lineáris összefüggést. |
− | * ''Mivel kalibrálásnál a helykoordináták mérésére nincs szükség, a csatlakozóblokk | + | * ''Mivel kalibrálásnál a helykoordináták mérésére nincs szükség, a csatlakozóblokk X bemenetét használhatja a Helmholtz-tekercsen eső feszültség mérésére, melyből a tekercs ellenállásának függvényében visszaszámolhatja az áramot. Így mind a szenzor jelét, mind az áramerősséget számítógéppel tudja regisztrálni.'' |
− | '''3.''' Kalibrálja a mágneses tér | + | '''3.''' Kalibrálja a mágneses tér Y komponensét mérő szenzort! Ehhez helyezze a szenzortartó sínt a tekercs tengelyével párhuzamosan ([[#fig:9|9/b ábra]]), és állítsa a szenzorokat a tekercs középpontjába! |
'''4.''' Mérje ki a tekercs középvonala mentén a mágneses teret! Hasonlítsa össze eredményeit az elméleti formulával! | '''4.''' Mérje ki a tekercs középvonala mentén a mágneses teret! Hasonlítsa össze eredményeit az elméleti formulával! | ||
− | '''5.''' Helyezze vissza a szenzortartó sínt a tekercs tengelyére merőleges állásba ( | + | '''5.''' Helyezze vissza a szenzortartó sínt a tekercs tengelyére merőleges állásba ([[#fig:9|9/a ábra]]), és mérje ki a mágneses tér nagyságát az X és Y koordináta függvényében. |
− | + | ||
− | + | ||
− | * | + | * ''A Helmholtz-tekercset olyan árammal hajtsa meg, melynél az erősítők a tekercs közepén tapasztalható maximális mágneses térnél sem mennek telítésbe.'' |
− | + | * ''Rögzített X koordináták mellett lassan tolja a csúszkát Y irányban!'' | |
− | + | Az X koordinátákat kb. 1cm-es osztással vegye fel! Ábrázolja 3D felületként és szintvonalas ábraként az egyes komponensek térbeli változását az Origin program segítségével! Ábrázolja XYXY vektor-diagramként a mágneses térerősség helyfüggését! | |
+ | '''6.''' Igazolja az Ampére-féle gerjesztési törvényt üres hurokra és egy olyanra, amely körbeveszi a tekercs egy ágát (áram folyik át rajta). | ||
+ | * ''Érdemes téglalap alakú hurokkal dolgozni.'' | ||
+ | A téglalap X ill. Y irányú oldalainak mérésénél helyezze a szenzortartó sínt a tekercs tengelyével párhuzamosan ([[#fig:9|9/b ábra]]), ill. arra merőlegesen ([[#fig:|9/a ábra]]). | ||
− | + | * ''A szenzortartó sín átfordítása előtt a mellékelt rögzíthető mutatópálca segítségével jelölje be, hogy melyik pozícióból kell folytatni a mérést.'' | |
+ | * ''A téglalap egyes oldalai járulékainak összegzésénél ügyeljen a helyes előjelekre.'' | ||
</wlatex> | </wlatex> |
A lap jelenlegi, 2013. november 27., 15:36-kori változata
A mérés célja
- a Helmholtz-tekercs mágneses terének vizsgálata és az Ampére-féle gerjesztési törvény kísérleti igazolása.
Ennek érdekében:
- megismerkedünk a mágneses térerősség mérésére szolgáló magnetorezisztív szenzorral, és az Universal Lab Interface (ULI) adatgyűjtő rendszerrel,
- feltérképezzük a mágneses térerősség komponenseinek helyfüggését a Helmholtz-tekercs körül.
Tartalomjegyzék |
Elméleti összefoglaló
Egyes sztatikus mágnességgel kapcsolatos jelenségek (pl. az, hogy bizonyos vasércek a kisméretű vasdarabokat magukhoz vonzzák) már az ókorban ismertek voltak. A Föld mágneses terét évezredek óta használjuk tájékozódásra. Ezen mérés keretében állandó mágneses terek vizsgálatával foglalkozunk.
Szemben a Naprendszerünk hasonló méretű bolygóinak többségével, a Föld erős mágneses térrel rendelkezik, amely a Föld belsejében található anyag/töltés áramlásokkal hozható kapcsolatba. A Föld mágneses tere fontos szerepet játszik a földfelszín nagyenergiás kozmikus részecskékkel szembeni védelmében (1. ábra), és jelenléte alapvető lehetett a földi élet kialakulása szempontjából is.
A földmágneses tér eloszlása a Föld felszínén első közelítésben olyan, mintha egy ~1023 Am2 momentumú dipólus helyezkedne el a Föld közepe táján, melynek tengelye hozzávetőleg a 71°É, 96°NY ill. 73°D, 156°K pontoban metszi a felszínt. A súlypontjában felfüggesztett mágnestű (feltéve, hogy nincsenek a környezetében mágneses vagy mágnesezhető anyagok ill. áramjárta vezetők) a Föld mágneses terének (mágneses indukciójának) irányába áll be.
-et általában a mágneses elhajlás vagy deklináció szögével (térerősség vektoron átmenő függőleges ún. mágneses meridiánsík és az adott helyen átmenő földrajzi meridiánsík vagy hosszúsági kör által bezárt szög), ill. a lehajlás vagy inklináció szöge (-nek a vízszintessel bezárt szöge), valamint a horizontális intenzitás ( vízszintes vetülete) segítségével adják meg, melyekkel kifejezhető a teljes intenzitás (a vektor abszolút értéke) és a vertikális intenzitás (a függőleges komponens).
A Föld mágneses tere időfüggő. Napi, havi és éves periódusú változások egyaránt megfigyelhetők. A mágneses sarkok lassan vándorolnak (2. ábra).
A mozgó elektromos töltés (így az elektromos áram is) mágneses teret kelt. Az áram és mágneses tere közötti kapcsolatot (a Biot-Savart törvény mellett) az Ampére-féle gerjesztési törvény írja le:
ahol az ívelem vektor.
A két távolságban levő sugarú tekercsből álló ún. Helmholtz-tekercs viszonylag homogén mágneses teret hoz létre, melynek a tekercsek tengelyében középen vett erőssége:
ahol a vákuum mágneses permeabilitása, a tekercsen átfolyó áram (A), pedig a tekercsek menetszáma. Ezt az elrendezést használjuk a későbbiekben a fajlagos elektrontöltés mérésénél is.
A mágneses teret sokféle módon lehet mérni. Egyik lehetőség a Hall-effektuson alapuló mérőeszköz: Ha egy félvezető kristályt, melyen áram folyik át, a sűrűségű áram irányára merőleges mágneses térbe helyezünk, akkor a nagyságú Lorentz-erő hatására a töltéshordozók kitérnek az áramsűrűségre és a mágneses térre merőleges irányba. Ezáltal a kristály oldalsó felületei annyira feltöltődnek, hogy a létrejövő ellenfeszültség a mágneses tér eltérítő hatását éppen kiegyenlíti. Ez a Hall-effektus. A fellépő keresztirányú Hall-feszültség (ahol a kristály szélessége, pedig a felületi töltések által létrehozott elektromos tér) a töltéshordozók koncentrációjával hozható kapcsolatba: Stacionárius állapotban , ahol a töltéshordozó töltése, pedig a töltéshordozó koncentrációja. Az mennyiséget Hall-együtthatónak nevezzük. Ez független a mozgékonyságtól, kizárólag a töltéskoncentráció határozza meg. Negatív Hall-együttható elektronvezetést, pozitív együttható pedig lyukvezetést jelent.
A mérési gyakorlaton a mágneses tér mérését Philips KMZ10B típusú magnetorezisztív szenzor segítségével végezzük.
A magnetorezisztív szenzor mágneses vékonyrétegekből készül, melyben a mágneses momentumok zérus külső tér esetén a vékonyréteg geometriája által meghatározott preferált irányba állnak be. Külső mágneses tér hatására a momentumok elfordulnak a preferált irányhoz képest, aminek következtében megváltozik a vékonyréteg ellenállása. Részletesebb leírást a magnetorezisztív szenzor működéséről a Gigantikus mágneses ellenállás vizsgálata című mérésleírásban olvashat.
A mérőberendezés és összeállítása
Magnetorezisztív szenzor
A Philips KMZ10B típusú szenzor 4 darab, hídkapcsolásban elhelyezett magnetorezisztív vékonyrétegből áll (3. ábra). A híd két szemközti csúcsára 5 V tápfeszültséget kötünk, és a másik két szemközti csúcs között mérjük a feszültséget. Zérus mágneses térben a híd kiegyenlített, így a kimeneten zérus feszültség látható. Véges mágneses térben ( < 1 mT) a térrel arányos, tipikusan mV-os nagyságrendű jelet tapasztalunk. A szenzor a kivezetésekkel szemközti oldalon, a 3. ábrán jelölt irányban méri a mágneses teret. A mérésnél 2 darab, egymásra merőlegesen elhelyezett szenzort használunk, így a Helmholtz-tekercs terének egyszerre mérhetjük az X és Y komponensét.
Adatgyűjtés
A Helmholtz-tekercs terének feltérképezéséhez egy pozícionáló asztal áll rendelkezésre (4. ábra), mely a tekercs vízszintes felezősíkjában való pozíciót két (X és Y irányú) ellenállás huzalon való feszültségosztással elektromos jellé alakítja.
A szenzorok jelének ill. az elmozdulás és koordinátáinak mérését egy 10-pólusú csatlakozó blokkon keresztül végezhetjük. Jelforrásként egy, az 5. ábrán látható Hameg 8142 típusú tápegységet használunk, mely egy fix (5 V, max. 2 A) és két változtatható kimenettel rendelkezik (0-30 V, 0-1 A).
Az egyik változtatható kimenetről kössön 5 V feszültséget a két pozícióérzékelésre használt ellenálláshuzal végei közé. A pozícióérzékelő csúszkák feszültségjelét kösse a csatlakozóblokk X és Y jelű csatlakozópárjaira (A föld-pontot kösse össze az ellenálláshuzalok negatív pontjaival). Az X és Y jelű csatlakozópárokra kötött jelet a megfelelő 5-pólusú DIN csatlakozókkal kösse az ULI interface DIN1 és DIN2 bemenetére. A mérés a számítógépen futó LoggerPro program segítségével történik.
A tápegység másik változtatható kimenetét használja áramgenerátorként a Helmholtz-tekercs meghajtására. A Hameg tápegység fix 5 V-os kimenetét használja a két mágneses tér szenzor tápfeszültségeként (csatlakozó blokk: „B sensor input”). A mágneses tér X és Y komponensével arányos feszültségjelet a csatlakozóblokk és jelzésű kimenetein mérheti. Mivel itt mV-os nagyságrendű feszültségek jelentkeznek, ezért a számítógépes regisztráláshoz először erősítésre van szükség. Ehhez használja a 2 darab Vernier differenciális erősítő modult ± 20 mV-os méréshatárban. Az erősítők jelét számítógéppel regisztrálja az ULI interface DIN3 és DIN4 bemenetein keresztül. Mivel az ULI interface csak pozitív feszültségeket tud regisztrálni, a differenciális erősítővel viszont bipoláris jelet akarunk mérni (± 20 mV), az erősítő a kierősített jelhez még hozzáad egy DC offsetet is. Így zérus mágneses térben kb. 1,7 V-os offset feszültséget mérünk, és az ettől vett pozitív és negatív irányú eltérés arányos a mágneses tér nagyságával.
Adatgyűjtésre az Universal Lab Interface (ULI) egység szolgál, ami egy 12 MHz-en működő SAB A-P, 8032 processzort tartalmaz 256 byte RAM-mal, négy 8-bites porttal és három 16-bites időzítővel. Az adatforgalmat kontrolláló rutinokat egy 16 kB-os EPROM tartalmazza. Az ULI-ban található 12-bites analóg-digitál konverter feszültség bemenete 0-5,12 V-os, konverziós idő 21 s, maximális mintavételezési frekvencia 32 kHz. A számítógép felé soros (RS232) adatforgalmat biztosít (maximum baud rate: 38,4 k). Bemenetek: 2 darab moduláris telefon csatlakozó, 4 darab 5 tűs DIN csatlakozó, és 2 darab sztereo „jack” csatlakozó.
Adatfeldolgozás és megjelenítés
Az adatfeldolgozás és megjelenítés az Origin program segítségével történik. Itt csak a térerősség/vektor térképek elkészítését tárgyaljuk.
Az X irányú mágneses tér komponens ábrázolása (Origin 8 programban): Importálja be a mágneses teret tartalmazó fájlt egyszeres ASCII fájlként. Törölje az időt és az Y irányú mágneses teret (DIN4) tartalmazó oszlopokat. Definiálja X, Y és Z oszlopként a DIN1, DIN2 és DIN3 bemeneteken érkezett adatokat. Jelölje ki a Z oszlopot. Konvertálja az adatait mátrixszá (Worksheet/Convert to Matrix/XYZ Gridding. A kapott mátrixot megnyitva a Plot/3D Surface/ menüpontban többféle háromdimenziós ábrázolási módból választhat. A mért adatokat az alábbiak szerint ábrázolja:
- 3D Color Map Surface (3D színes térkép felület, ld. 6. ábra)
- Countour/B/W Lines + Labels (szintvonalas ábra, a szintértékek megjelölésével, ld. 7. ábra).
A fentieket végezze el az Y irányú komponensre is. (Ekkor a DIN1, a DIN2 és a DIN4 bemenetek érkezett adatokat kell használni.)
A vektor-diagram esetében az előbbiekben létrehozott mátrixokat alakítsa vissza adatlappá (Matrix/Convert to Worksheet ablakban állítsa be a következőket: Method: XYZ Columns, Option: X Constant 1st). Hozzon létre olyan új adatlapot, melynél az A és B oszlopokban az X és Y koordináták (a vektorok kezdőpontjai) találhatók, míg a C és D oszlopokat (a vektorok végpontjai) úgy töltse fel, hogy az ábrázolt nyilak iránya és hossza a mágneses térerősség XY síkbeli irányát és nagyságát mutassa.
Definiálja ezután az A és C oszlopokat X oszlopként, a B és D oszlopokat pedig Y oszlopként. Jelölje ki az A, B, C és D oszlopokat. A Plot/Specialized/Vector XYXY utasítással ábrázolva vektordiagramot kap (8. ábra).
Mérési feladatok
A méréshez rendelkezésre álló eszközök
- A mérés elvégzéséhez és a mérési napló elkészítéséhez a dőlt betűs részekben adunk segítséget.
1. Állítsa össze a mérési elrendezést, és ellenőrizze, hogy a számítógép megfelelően regisztrálja a helykoordináta és a mágneses tér X és Y komponenseit! Válassza meg a koordinátarendszer origóját és mérőszalag segítségével kalibrálja a helykoordináta X és Y komponenseit!
2. Kalibrálja a mágneses tér X komponensét mérő szenzort! Ehhez helyezze a szenzortartó sínt a Helmholtz-tekercs tengelyére merőlegesen (9/a ábra), és állítsa a szenzorokat a Helmholtz-tekercs középpontjába. A tekercs áramának függvényében (-1 A – +1 A) mérje meg a szenzor jelét, az áramértékeket az elméleti formulák alapján váltsa át mágneses térré (a tekercs menetszáma mindkét oldalon = 130), és határozza meg a mágneses tér és a szenzor jele közti lineáris összefüggést.
- Mivel kalibrálásnál a helykoordináták mérésére nincs szükség, a csatlakozóblokk X bemenetét használhatja a Helmholtz-tekercsen eső feszültség mérésére, melyből a tekercs ellenállásának függvényében visszaszámolhatja az áramot. Így mind a szenzor jelét, mind az áramerősséget számítógéppel tudja regisztrálni.
3. Kalibrálja a mágneses tér Y komponensét mérő szenzort! Ehhez helyezze a szenzortartó sínt a tekercs tengelyével párhuzamosan (9/b ábra), és állítsa a szenzorokat a tekercs középpontjába!
4. Mérje ki a tekercs középvonala mentén a mágneses teret! Hasonlítsa össze eredményeit az elméleti formulával!
5. Helyezze vissza a szenzortartó sínt a tekercs tengelyére merőleges állásba (9/a ábra), és mérje ki a mágneses tér nagyságát az X és Y koordináta függvényében.
- A Helmholtz-tekercset olyan árammal hajtsa meg, melynél az erősítők a tekercs közepén tapasztalható maximális mágneses térnél sem mennek telítésbe.
- Rögzített X koordináták mellett lassan tolja a csúszkát Y irányban!
Az X koordinátákat kb. 1cm-es osztással vegye fel! Ábrázolja 3D felületként és szintvonalas ábraként az egyes komponensek térbeli változását az Origin program segítségével! Ábrázolja XYXY vektor-diagramként a mágneses térerősség helyfüggését!
6. Igazolja az Ampére-féle gerjesztési törvényt üres hurokra és egy olyanra, amely körbeveszi a tekercs egy ágát (áram folyik át rajta).
- Érdemes téglalap alakú hurokkal dolgozni.
A téglalap X ill. Y irányú oldalainak mérésénél helyezze a szenzortartó sínt a tekercs tengelyével párhuzamosan (9/b ábra), ill. arra merőlegesen (9/a ábra).
- A szenzortartó sín átfordítása előtt a mellékelt rögzíthető mutatópálca segítségével jelölje be, hogy melyik pozícióból kell folytatni a mérést.
- A téglalap egyes oldalai járulékainak összegzésénél ügyeljen a helyes előjelekre.