„Lock-in programozás, kvarcszenzor vizsgálata” változatai közötti eltérés

A Fizipedia wikiből
(Mérési feladatok)
(Mérési feladatok)
94. sor: 94. sor:
 
|}
 
|}
 
</wlatex>
 
</wlatex>
 +
 +
'''3.''' Az elektromos és mechanikai paraméterek ($R$,$L$, $C$, $C_0$, $k$, $m$) ismeretében, a fent ismertetett egyszerű modell alapján számoljuk ki, hogy 1V egyenfeszültség hatására mekkora az oszcillátor $z$ elmozdulása? Ezen eredményalapján adjunk becslést arra, hogy egy kvarc hangvillából készített atomerő mikroszkóp szenzort a rezonanciafrekvencián milyen amplitudójú a.c. feszültséggel kell gerjeszteni ahhoz, hogy a rezgési amplitudó két szomszédos atom tipikus távolságánál kisebb legyen!
  
 
==Függelék: a méréshez használt eszközök==
 
==Függelék: a méréshez használt eszközök==

A lap 2013. szeptember 29., 07:05-kori változata

Tartalomjegyzék

A mérés célja


A mérés célja a Stanford Research Systems SR830 típusú digitális lock-in erősítő használatának és programozásának megismerése, tesztmérés elvégzése egy párhuzamos LC körön, illetve egy atomerő-mikroszkópokban is használt kvarcszenzor vizsgálata.

Órákban használt kvarcoszcillátor nanofizikai alkalmazása


A hangvilla alakú kvarcoszcillátort (1. ábra, bal oldal) kvarcórákban, elektronikai áramkörökben használják órajel előállítására, olcsón beszerezhető - körülbelül 20 Ft/db. Az oszcillátor egy hangvilla alakú kvarc (Tuning Fork vagy röviden TF-nek is szokták nevezni), a legfontosabb jellemzője a rezonancia-frekvenciájának az értéke, névlegesen 32,768kHz (=215 Hz). A kvarc piezoelektromos viselkedésének köszönhetően a hangvilla rezgése elektromos feszültség segítségével gerjeszthető. Az oszcillátor természetesen több rezgési módussal is rendelkezik, azonban az elektródák úgy vannak kialakítva, hogy alapvetően azt a módust gerjesztik, melyben az ágak a hangvilla síkjában, tükörszimmetrikusan rezegnek. Ezen módus sem erővel sem forgatónyomatékkal nem hat a rögzítési pontra, így gyengén csatolódik a külvilághoz. Ennek köszönhetően a hangvilla óriási jósági tényezővel rendelkezik. A kontaktusokra váltakozó feszültséget kapcsolva, a kristály periodikusan deformálódik, rezgésbe jön. Amikor a rákapcsolt váltakozó feszültség frekvenciája megegyezik a kvarckristály anyaga és méretei által meghatározott rezonancia-frekvenciával, a rezgési amplitúdó sokszorosára nő. A rezgés detektálásához a kvarcoszcillátoron folyó áramot mérjük, ami a hangvilla ágainak sebességével arányos, a rezonancia-frekvenciánál maximuma van (1. ábra, jobb oldal). Ez az egyszerű kvarcszenzor atomerő mikroszkóp érzékelőjeként is kiválóan használható.

TF photo.jpg
TF res.png
1. ábra. Kvarcórákban használt hangvilla alakú kvarcoszcillátor (bal oldal) és annak rezonancia-görbéje (jobb oldal), forrás: Magyarkuti András diplomamunka, BME Fizika Tanszék, 2013.

Egy hagyományos atomerő mikroszkópban (atomic force microscope, AFM) egy laprugó végére helyeznek el egy hegyes tűt, amit közel visznek a felülethez. A laprugó mozgását egy lézer segítségével detektálják. Dinamikus üzemmódban a laprugót rezonancia-frekvenciájához közel rezgetik. A tű és a minta közötti erőhatás miatt elhangolódik a rezonancia-frekvencia. Mérés közben a tűvel x-y irányban (a minta síkjával párhuzamosan) pásztáznak, miközben z irányban úgy mozgatják a tűt, hogy a szabad rezgéshez képest mindig ugyanannyival legyen elhangolódva a rezonancia-frekvenciája, azaz pásztázás közben folyamatosan ugyanakkora erő hasson a tű és a minta között (2. ábra). Így a tűvel nagyjából konstans, nanométeres nagyságrendű távolságban pásztáznak a minta fölött, és a z irányú mozgatás x-y függéséből leolvasható a minta topográfiája akár atomi felbontással.

AFM dyn.ogv
2. ábra. Atomerő mikroszkóp működése nem kontakt, dinamikus üzemmódban, forrás: Magyarkuti András diploma előadás, BME Fizika Tanszék, 2013.

Alacsonyhőmérsékleti AFM méréseknél a laprugó mozgásának optikai detektálása nagyon nehéz, így célszerűbb olyan szenzort alkalmazni, melynek mozgása csupán elektromosan detektálható. Erre kiválóan alkalmas az órákban használt kvarcoszcillátor: a hangvilla egyik ágára ragasztott tű hat kölcsön a felülettel, és az óriási jósági tényező miatt egészen kicsi erőhatás is jelentős rezonancia-frekvencia változáshoz vezet, így a tű és minta közötti erőhatás viszonylag könnyen detektálható.

A 3. ábrán látható egy elektronsugaras litográfiával készült majd arannyal bevont felületű nanoszerkezeten történő mérés alagútmikroszkóp üzemmódban - az alagútáramra szabályozva, majd ezt követően ugyanazon a helyen atomerő mikroszkóp üzemmódban - a kvarcoszcillátor frekvencia-eltolódására, azaz a minta és a tű között fellépő erőre szabályozva. Mindkét esetben pár száz nm széles, párhuzamos csíkok láthatóak.


STM stripes.png
png
3. ábra. Elektronsugaras litográfiával készült nanoszerkezeten történő mérés STM majd AFM üzemmódban, forrás: Magyarkuti András diplomamunka, BME Fizika Tanszék, 2013.

Pásztázó szondás mikroszkópokról részletesebb információ a nanofizika tudásbázis Nanoszerkezetek előállítási és vizsgálati technikái fejezetében található.

A kvarcoszcillátor leírása egy egyszerű modellel


A kvarcoszcillátor mozgását írjuk le az elképzelhető legegyszerűbb modellel, melyben egy \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0% effektív rugóállandójú rugóra akasztott \setbox0\hbox{$m$}% \message{//depth:\the\dp0//}% \box0% effektív tömegű test mozog egy dimenzióban, z irányban. Természetesen a kvarc piezoelektromos tulajdonságait is figyelembe kell venni, amit a

\[ \left(\begin{matrix}  z \\ Q \end{matrix}\right) = \left(\begin{matrix} k^{-1} & s \\ s & C \end{matrix}\right)\cdot \left(\begin{matrix}  F \\ U \end{matrix}\right)\]

mátrix-egyenlettel tehetünk meg, ahol \setbox0\hbox{$z$}% \message{//depth:\the\dp0//}% \box0% az elmozdulás, \setbox0\hbox{$Q$}% \message{//depth:\the\dp0//}% \box0% az elektródákon megjelenő töltés, \setbox0\hbox{$F$}% \message{//depth:\the\dp0//}% \box0% a kifejtett erő, \setbox0\hbox{$U$}% \message{//depth:\the\dp0//}% \box0% az elektródák közötti feszültség, \setbox0\hbox{$s$}% \message{//depth:\the\dp0//}% \box0% az elmozdulás egységnyi feszültség hatására terhelés nélkül (\setbox0\hbox{$F=0$}% \message{//depth:\the\dp0//}% \box0%), \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0% a rugóállandó zérus feszültségnél, \setbox0\hbox{$C$}% \message{//depth:\the\dp0//}% \box0% pedig a kapacitás (egységnyi feszültségre eső töltésfelhalmozódás) \setbox0\hbox{$F=0$}% \message{//depth:\the\dp0//}% \box0% mellett. Energiamegmaradási megfontolásból a fenti mátrix determinánsa \setbox0\hbox{$0$}% \message{//depth:\the\dp0//}% \box0%, azaz \setbox0\hbox{$s^2=C/k$}% \message{//depth:\the\dp0//}% \box0%. Ez alapján általánosan elmondható, hogy:

\[Q=\alpha \cdot z,\]

ahol \setbox0\hbox{$\alpha=ks=c/s$}% \message{//depth:\the\dp0//}% \box0%.

Dinamikus működés leírásához a tehetetlenséget és a súrlódásból, közegellenállásból származó, sebességgel arányos csillapítást is figyelembe kell venni, így az oszcillátor elmozdulására a

\[m\ddot{z}=-kz-\gamma\dot{z}+sU\]

differenciál-egyenlet írható fel, ahol \setbox0\hbox{$\gamma$}% \message{//depth:\the\dp0//}% \box0% a csillapítási tényező.

A \setbox0\hbox{$Q=\alpha \cdot z$}% \message{//depth:\the\dp0//}% \box0% összefüggés alapján a szenzor árama az oszcillátor sebességével arányos:

\[I=\alpha \cdot \dot{z}.\]

Ezt a fenti differenciálegyenletbe hellyettesítve egy feszültséggel gerjesztett soros elektromos rezgőkör (RLC kör) differenciálegyenletét kapjuk, ahol az \setbox0\hbox{$L$}% \message{//depth:\the\dp0//}% \box0%, \setbox0\hbox{$R$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$C$}% \message{//depth:\the\dp0//}% \box0% elektromos paraméterek a piezoelektromos együtthatón keresztül megfeleltethetőek a \setbox0\hbox{$m$}% \message{//depth:\the\dp0//}% \box0%, \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$g$}% \message{//depth:\the\dp0//}% \box0% mechanikai paramétereknek.

Fontos azonban megjegyezni, hogy a kvarcosszcillátor elektródái között akkor is tapasztalnánk kapacitást, ha a kvarc nem lenne piezoelektromos, így az oszcillátor elektromos viselkedésének leírásához az RLC körrel párhuzamos \setbox0\hbox{$C_0$}% \message{//depth:\the\dp0//}% \box0% kapacitást is figyelembe kell venni. Ezzel a kiegészítéssel, azaz a 4. ábrán látható helyettesítő képpel egészen pontosan leírható a kvarc-oszcillátor elektromos viselkedése.

RLC C0.jpg
4. ábra. A kvarcoszcillátor elektromos viselkedése egy soros RLC körrel, illetve egy azzal párhuzamosan kötött \setbox0\hbox{$C_0$}% \message{//depth:\the\dp0//}% \box0% kapacitással modellezhető.

Mérési feladatok


1. Áramgenerátoros meghajtással vegyük fel a mellékelt párhuzamos LC kör impedanciáját a frekvencia függvényében, határozzuk meg a rezonancia-frekvenciát, a kapacitás az induktivitás ill. az induktivitás soros ellenállásának az értékét. A mért görbét hasonlítsuk össze az elméleti várakozásokkal. A méréshez írjunk számítógépes programot, mely GPIB porton kommunikál a műszerrel. A program adott számú lépésben logaritmikus skálán változtassa a frekvenciát egy megadott kezdő és végfrekvencia között, és vegye fel a bemeneten mért jel \setbox0\hbox{$X$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$Y$}% \message{//depth:\the\dp0//}% \box0% es/vagy \setbox0\hbox{$R$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\Theta$}% \message{//depth:\the\dp0//}% \box0% komponensét a frekvencia függvényében. Figyeljünk az időállandó helyes beállítására!

  • A lock-in erősítő kimenete feszültséggenerátorként viselkedik, azaz ha a kimenetre \setbox0\hbox{$50\Omega$}% \message{//depth:\the\dp0//}% \box0%-nál lényegesen nagyobb impedanciájú terhelést teszünk, akkor a kimenet az impedanciától függetlenül konstans a.c. feszültséget ad ki. Hogyan készíthetünk áramgenerátoros meghajtást megvalósító áramkört? Úgy állítsuk be a paramétereket, hogy miközben az RC-kör impedanciája változik a frekvencia függvényében, a meghajtó áram kevesebb mint 1%-ot változzon!

2. Az 1. feladatban készült mérőprogramból kiindulva vegyük fel a mellékelt tokozott kvarcoszcillátor rezonanciagörbéjét feszültséggenerátoros meghajtást használva. Az áram méréséhez ne a lock-in áramerősítő bemenetét, hanem egy soros ellenállást használjunk. Ennél a mérésnél a pontosabb frekvenciabeállítás érdekében jelforrásként egy Agilent függvénygenerátort használjunk. A lock-in generátorát az Agilent függvénygenerátorhoz szinkronizáljuk, a kvarcoszcillátorra a lock-in kimenetéről adjuk ki a jelet. Az oszcillátor meghajtásához 1:100 osztót használjunk a Lock-In 5V-os kimeneti jelszintje mellett. A mérési eredmények illesztéséből határozzuk meg az oszcillátor elektromos paramétereit, azaz \setbox0\hbox{$R$}% \message{//depth:\the\dp0//}% \box0%, \setbox0\hbox{$L$}% \message{//depth:\the\dp0//}% \box0%, \setbox0\hbox{$C$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$C_0$}% \message{//depth:\the\dp0//}% \box0% értékét!

  • Figyelem! A kvarcoszcillátor tönkremehet, ha a rezonanciafrekvencián túl nagy feszültséggel gerjesztjük. Ne felejtsük el az 1:100-as feszültségosztó alkalmazását!
  • Ügyeljünk arra, hogy a rezonancia környékén gerjesztett oszcillátor rezgése nagyon lassan cseng le, így a frekvencia változtatásakor sokat kell várni arra, hogy az új frekvenciához tartozó állandósult állapot kialakuljon! A mért jósági tényező alapján becsüljük meg, hogy menni idő alatt cseng le a rezonáns rezgés! Kisérletileg hogyan ellenőrizhetjük a legegyszerűbben, hogy elég lassan mérünk-e, azaz hogy minden mérési pontnál csak az adott frekvencián rezeg az oszcillátor, és a korábbi gerjesztés már lecsengett?
  • A rezonancia környékén érdemes nagy frekvenciafelbontással, lineáris lépésközzel felvenni az impedancia frekvenciafüggését. Figyelem, a \setbox0\hbox{$C_0$}% \message{//depth:\the\dp0//}% \box0% párhuzamos kapacitás miatt nem egy egyszerű rezonanciagörbét látunk, hanem egy adott frekvencián antirezonancia is jelentkezik, ahol az oszcillátor árama minimális, ne feledkezzünk meg ennek a kiméréséről sem!
  • A frekvenicafüggő impedanciát érdemes széles tartományban, logaritmikus skálán is felvenni. Melyik paramétert állapíthatjuk meg ebből a mérésből?

3. Egy fogó segítségével ropogtassuk meg az oszcillátor tokozásának nyakát, és távolítsuk el a tokot. Mérjük meg a kibontott oszcillátor rezonanciagörbéjét! Digitális mikroszkóp alatt kenjük be az egyik ág végét vákuumzsírral, majd helyezzünk fel az oszcillátor végére rövid rézdrót-darabokat (lásd 5. ábra). Mérjük ki, hogy a felhelyezett tömeg függvényében hogyan változik meg az oszcillátor rezonanciafrekvenciája. Az eredmények alapján határozzuk meg az oszcillátor \setbox0\hbox{$m$}% \message{//depth:\the\dp0//}% \box0% effektív tömegét, és \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0% effektív rugóállandóját!

TF calib.jpg
5. ábra

3. Az elektromos és mechanikai paraméterek ($R$,$L$, $C$, $C_0$, $k$, $m$) ismeretében, a fent ismertetett egyszerű modell alapján számoljuk ki, hogy 1V egyenfeszültség hatására mekkora az oszcillátor $z$ elmozdulása? Ezen eredményalapján adjunk becslést arra, hogy egy kvarc hangvillából készített atomerő mikroszkóp szenzort a rezonanciafrekvencián milyen amplitudójú a.c. feszültséggel kell gerjeszteni ahhoz, hogy a rezgési amplitudó két szomszédos atom tipikus távolságánál kisebb legyen!

Függelék: a méréshez használt eszközök


  • SR830 Lock-In + használati utasítás + tápkábel
  • Agilent 33220A függvénygenerátor + használati utasítás (elektronikusan) + tápkábel
  • GPIB kártya USB csatlakozóval + 1 GPIB kábel
  • LC kör fém dobozban
  • Kvarc oszcillátor fém dobozban
  • Fém doboz ellenállások befogásához termikus zaj méréséhez + \setbox0\hbox{$0\Omega $}% \message{//depth:\the\dp0//}% \box0%, \setbox0\hbox{$3.3k\Omega $}% \message{//depth:\the\dp0//}% \box0%, \setbox0\hbox{$6.7k\Omega $}% \message{//depth:\the\dp0//}% \box0%, \setbox0\hbox{$10k\Omega $}% \message{//depth:\the\dp0//}% \box0%-os ellenállások
  • Ellenállásdekád
  • \setbox0\hbox{$0\Omega$}% \message{//depth:\the\dp0//}% \box0%-os lezáró
  • Kézi multiméter
  • Csavarhúzó
  • 6db. közepes BNC-BNC kábel
  • BNC T-elosztó
  • Forrasztó páka