„Termoelektromos jelenségek” változatai közötti eltérés
1. sor: | 1. sor: | ||
<wlatex> | <wlatex> | ||
− | + | A [[Transzport nanovezetékekben: Landauer-formula, vezetőképesség-kvantálás|Landauer-formula]] tárgyalásakor láttuk, hogy egy elektródából egy egycsatornás nanovezetékbe folyó áram az elektróda Fermi-függvényének energia szerinti integrálja szerint származtatható: | |
+ | $$\frac{2}{L} \sum (-e) \cdot v_k \cdot f(\varepsilon_k) = -\frac{2}{h}\int e\cdot f(\varepsilon)\,\mathrm{d} \varepsilon \rightarrow I.$$ | ||
+ | Ha egy $\mathcal{T}$ transzmissziós valószínűségű szórócentrumot tartalmazó egycsatornás nanovezeték elektródái közé $V$ feszültséget kapcsolunk, a nanovezetékben | ||
+ | $$I=\frac{2 e}{h} \cdot \int \mathcal{T}\cdot [f_1(\varepsilon)-f_2(\varepsilon)]\mathrm{d}\varepsilon$$ áram folyik, mely alapján $G=(2e^2/h)\cdot\mathcal{T}$ vezetőképességet kapunk. A következőkben azt vizsgáljuk meg, hogy mi történik, ha elektródáknak nem csak a kémiai potenciálja tér el, hanem a hőmérsékletük is különböző lehet (1. ábra). | ||
{| cellpadding="5" cellspacing="0" align="center" | {| cellpadding="5" cellspacing="0" align="center" | ||
|- | |- | ||
7. sor: | 10. sor: | ||
| align="center"|1. ábra. ''Különböző kémiai potenciálú és hőmérsékletű elektródák közötti $\mathcal{T}$ átmeneti valószínűségű szórócentrummal rendelkező egycsatornás nanovezeték elektromos és hőtranszport tulajdonságaira vagyunk kíváncsiak'' | | align="center"|1. ábra. ''Különböző kémiai potenciálú és hőmérsékletű elektródák közötti $\mathcal{T}$ átmeneti valószínűségű szórócentrummal rendelkező egycsatornás nanovezeték elektromos és hőtranszport tulajdonságaira vagyunk kíváncsiak'' | ||
|} | |} | ||
− | + | Az elektromos áramot hasonlóan számíthatjuk az elektródák kémiai potenciál és hőmérsékletfüggő Fermi-függvényei segítségével: | |
$$I=\frac{2 e}{h} \cdot \int \mathcal{T(\varepsilon)}\cdot \left[f_1(\varepsilon,\mu_1,T_1)-f_2(\varepsilon,\mu_2,T_2)\right]\mathrm{d}\varepsilon$$ | $$I=\frac{2 e}{h} \cdot \int \mathcal{T(\varepsilon)}\cdot \left[f_1(\varepsilon,\mu_1,T_1)-f_2(\varepsilon,\mu_2,T_2)\right]\mathrm{d}\varepsilon$$ | ||
− | + | A termodinamikából ismert $dQ=dE-\mu dN$ összefüggés alapján hasonlóan származtatható az elektródából a nanovezetékbe folyó $I_Q$ hőáram is: | |
+ | $$\frac{2}{L} \sum (\varepsilon_k-\mu) \cdot v_k \cdot f(\varepsilon_k) = \frac{2}{h}\int (\varepsilon-\mu) \cdot f(\varepsilon)\,\mathrm{d} \varepsilon \rightarrow I_Q,$$ | ||
+ | illetve ennek megfelelően a két elektróda között folyó hőáram $\mathcal{T}$ transzmissziós valószínűség esetén: | ||
+ | $$I_Q=\frac{2}{h} \cdot \int \mathcal{T(\varepsilon)}\cdot (\varepsilon-\mu_1)\cdot \left[f_1(\varepsilon,\mu_1,T_1)-f_2(\varepsilon,\mu_2,T_2)\right]\mathrm{d}\varepsilon.$$ | ||
+ | Itt fontos megjegyezni, hogy ha az első elektródából/elektródába folyó hőáramot számítjuk, akkor a fenti integrálban $\varepsilon-\mu_1$. Ugyanígy számíthatnánk a 2. elektródából/elektródába folyó hőáramot, ekkor a fenti integrálban $\varepsilon-\mu_2$ szerepelne. Mivel ez a két számolás ugyan akkora hőáramot kell, hogy adjon, így a kétféle számolás szükségszerűen ugyan arra az eredményre vezet. | ||
+ | </wlatex> | ||
+ | ==Termofeszültség számolása (Seebeck-effektus)== | ||
+ | <wlatex> | ||
$$\int_{-\infty}^\infty H(\varepsilon)\cdot f(\varepsilon,\mu,T)\,\mathrm{d}\varepsilon = \int_{-\infty}^\mu H(\varepsilon)\,\mathrm{d}\varepsilon + \frac{\pi^2}{6}(kT)^2 H^\prime(\mu) + \mathrm{O} \left(\frac{kT}{\mu}\right)^4$$ | $$\int_{-\infty}^\infty H(\varepsilon)\cdot f(\varepsilon,\mu,T)\,\mathrm{d}\varepsilon = \int_{-\infty}^\mu H(\varepsilon)\,\mathrm{d}\varepsilon + \frac{\pi^2}{6}(kT)^2 H^\prime(\mu) + \mathrm{O} \left(\frac{kT}{\mu}\right)^4$$ | ||
A lap 2018. február 22., 21:33-kori változata
A Landauer-formula tárgyalásakor láttuk, hogy egy elektródából egy egycsatornás nanovezetékbe folyó áram az elektróda Fermi-függvényének energia szerinti integrálja szerint származtatható:
Ha egy transzmissziós valószínűségű szórócentrumot tartalmazó egycsatornás nanovezeték elektródái közé feszültséget kapcsolunk, a nanovezetékben
áram folyik, mely alapján vezetőképességet kapunk. A következőkben azt vizsgáljuk meg, hogy mi történik, ha elektródáknak nem csak a kémiai potenciálja tér el, hanem a hőmérsékletük is különböző lehet (1. ábra).1. ábra. Különböző kémiai potenciálú és hőmérsékletű elektródák közötti átmeneti valószínűségű szórócentrummal rendelkező egycsatornás nanovezeték elektromos és hőtranszport tulajdonságaira vagyunk kíváncsiak |
Az elektromos áramot hasonlóan számíthatjuk az elektródák kémiai potenciál és hőmérsékletfüggő Fermi-függvényei segítségével:
A termodinamikából ismert összefüggés alapján hasonlóan származtatható az elektródából a nanovezetékbe folyó hőáram is:
illetve ennek megfelelően a két elektróda között folyó hőáram transzmissziós valószínűség esetén:
Itt fontos megjegyezni, hogy ha az első elektródából/elektródába folyó hőáramot számítjuk, akkor a fenti integrálban . Ugyanígy számíthatnánk a 2. elektródából/elektródába folyó hőáramot, ekkor a fenti integrálban szerepelne. Mivel ez a két számolás ugyan akkora hőáramot kell, hogy adjon, így a kétféle számolás szükségszerűen ugyan arra az eredményre vezet.
Termofeszültség számolása (Seebeck-effektus)