„Kvantuminformatika” változatai közötti eltérés

A Fizipedia wikiből
(Quantum Information Processing)
(Details)
10. sor: 10. sor:
 
==Details==
 
==Details==
  
* One goal is to provide an introduction to basic concepts of quantum information theory. Another goal is to provide hands-on experience in programming an actual quantum computer. That is, the basic concepts, gadgets, algorithms, etc., should be implemented and run by the students themselves during the course and as homework. We will use the quantum computers of the IBM Quantum Experience project, which are available via the cloud for anyone.
+
* One goal is to provide an introduction to basic concepts of quantum information theory and computing. Another goal is to provide hands-on experience in programming an actual quantum computer. That is, the basic concepts, gadgets, algorithms, etc., should be implemented and run by the students themselves during the course and as homework. We will use the quantum computers of the IBM Quantum Experience project, which are available via the cloud for anyone.
 
* Lectures will combine conventional, frontal presentation, and programming exercises. Therefore, the location is a computer lab. Of course, students are welcome to use there own laptop computers.
 
* Lectures will combine conventional, frontal presentation, and programming exercises. Therefore, the location is a computer lab. Of course, students are welcome to use there own laptop computers.
 
* The main resource used for the course is the online documentations of (1) the quantum computers available through the IBM Quantum Experience project [https://quantumexperience.ng.bluemix.net/qx/experience], and (2) the Qiskit quantum computing framework [https://qiskit.org/].
 
* The main resource used for the course is the online documentations of (1) the quantum computers available through the IBM Quantum Experience project [https://quantumexperience.ng.bluemix.net/qx/experience], and (2) the Qiskit quantum computing framework [https://qiskit.org/].

A lap 2019. január 4., 10:24-kori változata

Tartalomjegyzék

Quantum Information Processing

Course Information, 2019 Spring

  • Lecturers: András Pályi, Zoltán Zimborás
  • Responsible lecturer: András Pályi
  • Language: English
  • Location: F3212
  • Time: Wednesdays, 12:15-13:45

Details

  • One goal is to provide an introduction to basic concepts of quantum information theory and computing. Another goal is to provide hands-on experience in programming an actual quantum computer. That is, the basic concepts, gadgets, algorithms, etc., should be implemented and run by the students themselves during the course and as homework. We will use the quantum computers of the IBM Quantum Experience project, which are available via the cloud for anyone.
  • Lectures will combine conventional, frontal presentation, and programming exercises. Therefore, the location is a computer lab. Of course, students are welcome to use there own laptop computers.
  • The main resource used for the course is the online documentations of (1) the quantum computers available through the IBM Quantum Experience project [1], and (2) the Qiskit quantum computing framework [2].

List of topics

  • Python basics required to use Qiskit. (Lecture 1)
  • Quantum algorithms: Deutsch, Grover, Shor (Lectures 2-4)
  • Quantum simulation. (Lecture 5)
  • Density matrix. State tomography. Process Tomography. Relaxation. Dephasing. Decoherence. (Lectures 6-8).
  • Classical, hybrid, and quantum error correction using the repetition code. (Lectures 9-10)
  • Bell inequalities. Quantum teleportation. (Lecture 11)