„Harmonikus rezgések vizsgálata” változatai közötti eltérés
137. sor: | 137. sor: | ||
Kondenzátor és tekercs soros kapcsolását (a veszteségeket soros ellenállással figyelembe véve) soros rezgőkörnek nevezik (1. ábra). Az alábbiakban láthatjuk, hogy ez az áramkör a korábban ismertetett kényszerrezgés elektromos megfelelője, amennyiben a tömegpont kitérését megfeleltetjük a kondenzátor töltésének, a rugóállandót a kondenzátor kapacitásának, a tömegpont tömegét a tekercs induktivitásának és a csillapítást az ellenállásnak. Ha az RLC körben a kondenzátort feltöltenénk, majd a bemenetet rövidre zárnánk, akkor egy csillapodó rezgést figyelhetnénk meg. A nagy frekvencia és a gyors csillapodás miatt azonban ezt nehezebb megfigyelni, mint egy kitérített, és magára hagyott mechanikai rezgő rendszert. Ha a bemenetre szinuszos gerjesztő feszültséget kapcsolunk, akkor viszont a kényszerrezgéssel teljesen analóg viselkedést figyelhetünk meg. | Kondenzátor és tekercs soros kapcsolását (a veszteségeket soros ellenállással figyelembe véve) soros rezgőkörnek nevezik (1. ábra). Az alábbiakban láthatjuk, hogy ez az áramkör a korábban ismertetett kényszerrezgés elektromos megfelelője, amennyiben a tömegpont kitérését megfeleltetjük a kondenzátor töltésének, a rugóállandót a kondenzátor kapacitásának, a tömegpont tömegét a tekercs induktivitásának és a csillapítást az ellenállásnak. Ha az RLC körben a kondenzátort feltöltenénk, majd a bemenetet rövidre zárnánk, akkor egy csillapodó rezgést figyelhetnénk meg. A nagy frekvencia és a gyors csillapodás miatt azonban ezt nehezebb megfigyelni, mint egy kitérített, és magára hagyott mechanikai rezgő rendszert. Ha a bemenetre szinuszos gerjesztő feszültséget kapcsolunk, akkor viszont a kényszerrezgéssel teljesen analóg viselkedést figyelhetünk meg. | ||
− | [[Fájl:Soros_RLC. | + | [[Fájl:Soros_RLC.png|bélyegkép|300px|1. ábra]] |
Viszgáljuk meg a rezgőkör differenciálegyenletét a kondenzátor időfüggő töltésére ($q(t)$) felírva, amikor a rezgőkörre $u_0(t)=U_0\sin\omega t$ feszültséget kapcsolunk: | Viszgáljuk meg a rezgőkör differenciálegyenletét a kondenzátor időfüggő töltésére ($q(t)$) felírva, amikor a rezgőkörre $u_0(t)=U_0\sin\omega t$ feszültséget kapcsolunk: | ||
219. sor: | 219. sor: | ||
'''Szűrő áramkörök''' | '''Szűrő áramkörök''' | ||
− | Szűrők segítségével egy különböző frekvenciájú rezgésekből álló elektromos jelből ki lehet szűrni bizonyos frekvenciatartományokat. A legegyszerűbb elsőrendű szűrők egy ellenállást és egy kondenzátort/tekercset tartalmaznak és a feszültségosztás elvén működnek, melyet a komplex jelölést felhasználva egyszerűen az egyenáramú áramkörökben jól ismert $U_1=UR_1/(R_1+R_2)$ feszültségosztó képlettel leírhatunk komplex ellenállások használatával. Ilyen szűrőkre láthatunk példát az | + | Szűrők segítségével egy különböző frekvenciájú rezgésekből álló elektromos jelből ki lehet szűrni bizonyos frekvenciatartományokat. A legegyszerűbb elsőrendű szűrők egy ellenállást és egy kondenzátort/tekercset tartalmaznak és a feszültségosztás elvén működnek, melyet a komplex jelölést felhasználva egyszerűen az egyenáramú áramkörökben jól ismert $U_1=UR_1/(R_1+R_2)$ feszültségosztó képlettel leírhatunk komplex ellenállások használatával. Ilyen szűrőkre láthatunk példát az 4/a és 4/b ábrákon. A kapcsolások feszültségviszonyai pedig az alábbi képletekkel írhatók le (A vastag betűs mennyiségek komplex változók, $j$ a képzetes egység. Ugyanakkor mérni csak valós mennyiségeket lehet, azaz a komplex mennyiségek abszolút értékét!): |
{| cellpadding="2" style="border: 0px solid darkgray;" align="center" | {| cellpadding="2" style="border: 0px solid darkgray;" align="center" | ||
|- border="0" | |- border="0" | ||
|- align="center" | |- align="center" | ||
− | | [[Fájl: | + | | [[Fájl:FilterRC.png|bélyegkép|300px|4/a ábra]] |
− | | [[Fájl: | + | | [[Fájl:FilterRL.png|bélyegkép|300px|4/b ábra]] |
|- align="center" | |- align="center" | ||
| <div class="texdisplay"><latex display >\[ \begin{array}{rcl} \mathbf{U}_{\rm ki} & = & \mathbf{U}_{\rm be} \frac{1/j\omega C}{R + 1/j\omega C} \\ \\ \frac{\mathbf{U}_{\rm ki}}{\mathbf{U}_{\rm be}} & = & \frac{1}{1 + j\omega RC} \\ \\ \frac{U_{\rm ki}}{U_{\rm be}} & = & \left|\frac{1}{1 + j\omega RC}\right|=\frac{1}{\sqrt{1+(\omega RC)^2}} \end{array} \]</latex></div> || <div class="texdisplay"><latex display >\[ \begin{array}{rcl} \mathbf{U}_{\rm ki} & = & \mathbf{U}_{\rm be} \frac{R}{R + j\omega L} \\ \\ \frac{\mathbf{U}_{\rm ki}}{\mathbf{U}_{\rm be}} & = & \frac{1}{1 + j\omega L/R} \\ \\ \frac{U_{\rm ki}}{U_{\rm be}} & = & \left|\frac{1}{1 + j\omega L/R}\right|=\frac{1}{\sqrt{1+(\omega L/R)^2}} \end{array} \]</latex></div> | | <div class="texdisplay"><latex display >\[ \begin{array}{rcl} \mathbf{U}_{\rm ki} & = & \mathbf{U}_{\rm be} \frac{1/j\omega C}{R + 1/j\omega C} \\ \\ \frac{\mathbf{U}_{\rm ki}}{\mathbf{U}_{\rm be}} & = & \frac{1}{1 + j\omega RC} \\ \\ \frac{U_{\rm ki}}{U_{\rm be}} & = & \left|\frac{1}{1 + j\omega RC}\right|=\frac{1}{\sqrt{1+(\omega RC)^2}} \end{array} \]</latex></div> || <div class="texdisplay"><latex display >\[ \begin{array}{rcl} \mathbf{U}_{\rm ki} & = & \mathbf{U}_{\rm be} \frac{R}{R + j\omega L} \\ \\ \frac{\mathbf{U}_{\rm ki}}{\mathbf{U}_{\rm be}} & = & \frac{1}{1 + j\omega L/R} \\ \\ \frac{U_{\rm ki}}{U_{\rm be}} & = & \left|\frac{1}{1 + j\omega L/R}\right|=\frac{1}{\sqrt{1+(\omega L/R)^2}} \end{array} \]</latex></div> | ||
232. sor: | 232. sor: | ||
A kimeneti és bemeneti feszültségek hányadosa, a hálózatra jellemző, frekvenciafüggő kifejezés, melyeket megvizsgálva látható, hogy formailag azonosak, tehát a két kapcsolás azonos jellegű viselkedést mutat. Ameddig $\omega RC \ll 1$ vagy $\omega L/R \ll 1$, a kifejezések értéke 1; ha $\omega RC \gg 1$ vagy $\omega L/R \gg 1$, a hányados értéke $1/\omega$ szerint csökken. Ez azt jelenti, hogy adott $R$, $C$ és $L$ esetén az alacsony frekvenciájú jelek csillapítás nélkül jelennek meg a kimeneten, míg magasabb frekvenciákon a kimenő feszültség egyre kisebb. Ezeket a kapcsolásokat ''aluláteresztő szűrők''nek nevezik. | A kimeneti és bemeneti feszültségek hányadosa, a hálózatra jellemző, frekvenciafüggő kifejezés, melyeket megvizsgálva látható, hogy formailag azonosak, tehát a két kapcsolás azonos jellegű viselkedést mutat. Ameddig $\omega RC \ll 1$ vagy $\omega L/R \ll 1$, a kifejezések értéke 1; ha $\omega RC \gg 1$ vagy $\omega L/R \gg 1$, a hányados értéke $1/\omega$ szerint csökken. Ez azt jelenti, hogy adott $R$, $C$ és $L$ esetén az alacsony frekvenciájú jelek csillapítás nélkül jelennek meg a kimeneten, míg magasabb frekvenciákon a kimenő feszültség egyre kisebb. Ezeket a kapcsolásokat ''aluláteresztő szűrők''nek nevezik. | ||
− | Könnyen belátható továbbá az is, hogy ugyanezeket az elrendezéseket használva ''felüláteresztő szűrő''ket is megvalósíthatunk, amennyiben a kondenzátoron ( | + | Könnyen belátható továbbá az is, hogy ugyanezeket az elrendezéseket használva ''felüláteresztő szűrő''ket is megvalósíthatunk, amennyiben a kondenzátoron (4/a) vagy ellenálláson (4/b) eső feszültség helyett a kapcsolás másik áramköri elemén (ellenállás/tekercs) eső feszültséget tekintjük kimeneti feszültségnek. |
'''Rezgőkörök''' | '''Rezgőkörök''' | ||
252. sor: | 252. sor: | ||
<!--A $Z(\omega)$ és $I(\omega)$ függvényeket ábrázolva a kapcsolás jellegzetes tulajdonságaira derül fény (4. ábra).--> | <!--A $Z(\omega)$ és $I(\omega)$ függvényeket ábrázolva a kapcsolás jellegzetes tulajdonságaira derül fény (4. ábra).--> | ||
+ | |||
+ | [[Fájl:Parhuzamos_RLC.png|bélyegkép|300px|5. ábra]] | ||
A komplex felírásmód alkalmazásával hasonlóan egyszerűen megkaphatjuk egy párhuzamos LC rezgőkör jellemzőit is, melyek az alábbiak: | A komplex felírásmód alkalmazásával hasonlóan egyszerűen megkaphatjuk egy párhuzamos LC rezgőkör jellemzőit is, melyek az alábbiak: |
A lap 2022. október 3., 21:58-kori változata
A mérés célja:
- elmélyíteni a hallgatók harmonikus rezgésekről szóló ismereteit,
- megtapasztalni a mechanikai és az elektromos rezgések közötti analógiát,
- megismerkedni a váltóáramú mérésekkel és a komplex jelöléssel,
- valamint egyszerű szűrőkapcsolások tulajdonságaival
Ennek érdekében:
- a mechanikai rezgések leírásán keresztül áttekintjük a harmonikus rezgések elméletét,
- megismerjük a különböző áramköri elemek váltóáramú viselkedését,
- áttekintjük a komlex jelölést
- megismerkedünk néhány egyszerű szűrőelrendezéssel,
- megvizsgáljuk a mechanikai rezgéseket,
- méréseket végzünk alul- és felüláteresztő szűrőkkel,
- megvizsgáljuk a feszültségviszonyokat soros RLC körökben,
- megfigyeljük az analógiát a soros RLC és a mechanikai rezgések között.
Tartalomjegyzék |
Elméleti összefoglaló
A harmonikus rezgés alapvető fizikai jelenség. Vibrációk, oszcillációk harmonikus rezgéssel modellezhetők, ha az amplitúdók elég kicsinyek. A harmonikus mozgás differenciálegyenlete nem csupán a klasszikus fizikában (mechanika, villamosságtan), de a kvantumfizikában, a szilárdtestfizikában és az optikában is gyakran előfordul. A harmonikus rezgés tulajdonságait a mechanikai rezgések példáján keresztül tárgyaljuk, majd megmutatjuk a soros RLC körökben megfigyelhető elektromos rezgések és a mechanikai rezgések közötti analógiát. Végül pedig bevezetjük a komplex jelölést és megvizsgálunk néhány egyszerű szűrőelrendezést.
Harmonikus mechanikai rezgések leírása
Csillapítatlan mechanikai rezgések
Ha egy tömegű anyagi pontra a kitéréssel arányos, rugalmas erő hat, akkor a mozgásegyenlet
alakú, ahol a rugóállandó, a tömegpont kitérése az egyensúlyi helyzetből, a tömeg, és a gyorsulás. A mozgásegyenlet megoldása
ahol a (kitérési) amplitúdó, a időpillanathoz tartozó fázis (mindkettőt a kezdeti feltételek határozzák meg),
a csillapítatlan rezgő rendszer körfrekvenciája. (, ahol a megfelelő frekvencia.)
A harmonikus rezgőmozgás sebessége
ahol a maximális sebesség, az ún. sebességamplitúdó.
Csillapodó rezgések
A csillapodást okozó erők gyakran (jó közelítéssel) a sebességgel arányosak: , ahol a csillapítás erősségére jellemző mennyiség. Ekkor a tömegpont mozgásegyenlete:
ami a csillapítási tényező bevezetésével és definíciójának felhasználásával az alábbi alakra hozható:
A differenciálegyenlet megoldása esetén időben csökkenő amplitúdójú lengéseket eredményez:
A rezgés körfrekvenciája
Az amplitúdóváltozás jellemzésére különböző mennyiségeket használnak. A csillapodási hányados két, azonos irányban egymás után következő amplitúdó hányadosa
ahol . Használatos még a K csillapodási hányados logaritmusa, az ún. logaritmikus dekrementum is:
Kényszerrezgések
Egy tömegre pl. motor és excenter segítségével időben periodikusan változó erőt alkalmazva egy átmeneti időszak után időben állandósult rezgés alakul ki, melynek frekvenciája megegyezik a kényszerítő erő frekvenciájával, míg amplitúdója függ az erőtől, a rugóállandótól, a tömegtől, a csillapítástól valamint a gerjesztő frekvenciától. Az anyagi pont mozgásegyenlete ekkor:
A korábban bevezetett jelöléseket alkalmazva másodrendű lineáris, inhomogén differenciálegyenletet kapunk:
ahol a kényszererő maximális értéke. Az egyenlet megoldása:
melynek második tagja írja le az állandósult állapotot. Az állandósult állapot amplitúdója:
melynek maximuma van az
körfrekvenciánál. A fázisállandó nem az időmérés kezdetétől függ, hanem a kényszerítő erő fázisától való eltérés, ennek tangense:
Az amplitúdóhoz hasonlóan megadhatjuk a sebességamplitúdó kifejezését is:
melynek maximuma – ellentétben a kitérési amplitúdó maximumával – éppen -nál van, ahol
A kényszerrezgés energiaviszonyainak jellemezésére az egy periódus alatt disszipált energia és a rendszerben tárolt átlagos energia hányadosával arányos jósági tényezőt használjuk
Váltakozó áramú kapcsolások
Áramköri elemek áram- és feszültségviszonyai
Ohmos ellenállás
Az ellenálláson eső feszültséget az
összefüggés írja le. Szinuszos gerjesztés [] esetén
azaz az ohmos ellenálláson a feszültség és az áram azonos fázisban van.
Tekercs
A tekercsben indukálódó feszültséget az
egyenlet írja le. Szinuszos gerjesztés [] esetén
tehát a tekercsben fellépő feszültség 90°-ot siet az átfolyó áramhoz képest.
Kondenzátor
A kondenzátoron átfolyó áram időfüggését az alábbi egyenlet írja le:
Szinuszos gerjesztés [] esetén:
azaz a kondenzátor feszültsége 90°-kal késik az áramhoz képest.
Soros rezgőkör - a mechanikai kényszerrezgés elektromos megfelelője
Kondenzátor és tekercs soros kapcsolását (a veszteségeket soros ellenállással figyelembe véve) soros rezgőkörnek nevezik (1. ábra). Az alábbiakban láthatjuk, hogy ez az áramkör a korábban ismertetett kényszerrezgés elektromos megfelelője, amennyiben a tömegpont kitérését megfeleltetjük a kondenzátor töltésének, a rugóállandót a kondenzátor kapacitásának, a tömegpont tömegét a tekercs induktivitásának és a csillapítást az ellenállásnak. Ha az RLC körben a kondenzátort feltöltenénk, majd a bemenetet rövidre zárnánk, akkor egy csillapodó rezgést figyelhetnénk meg. A nagy frekvencia és a gyors csillapodás miatt azonban ezt nehezebb megfigyelni, mint egy kitérített, és magára hagyott mechanikai rezgő rendszert. Ha a bemenetre szinuszos gerjesztő feszültséget kapcsolunk, akkor viszont a kényszerrezgéssel teljesen analóg viselkedést figyelhetünk meg.
Viszgáljuk meg a rezgőkör differenciálegyenletét a kondenzátor időfüggő töltésére () felírva, amikor a rezgőkörre feszültséget kapcsolunk:
Vegyük észre, hogy ez a differenciálegyenlet és jelöléssel a kényszerrezgést leíró differenciálegyenlettel teljesen analóg egyenletet eredményez. Ennek következtében az általános megoldás is teljesen analóg: traniens és állandósult tagokat tartalmaz.
Esetünkben a tranziens tag hamar elhal, és az állandósult tagot tanulmányozhatjuk. Az amplitúdó itt a kondenzátor töltése, de számunkra sokkal érdekesebb ennek deriváltja, a körben folyó áramerősség. Ez tehát az analógia alapján a mechanikai rezgés sebességrezonanciájával egyezik meg:
Ha behelyettesítjük és értékét, akkor
Látható, hogy a rezgőkörben folyó áramnak esetén az
körfrekvencián maximuma van. A jelenséget rezonanciának, -t rezonancia-körfrekvenciának hívják. Ezen a körfrekvencián áramrezonancia alakul ki.
Ez az áram – kis veszteségi ellenállást feltételezve – igen nagy feszültségeket hozhat létre a kondenzátoron és a tekercsen. Azonban ezek a feszültségek egymáshoz viszonyítva 180°-os fázisban vannak, abszolút értékük pedig megegyezik (hiszen azonos áram folyik át rajtuk), így egymást kiegyenlítik.
Megjegyzés: A kondenzátoron és a tekercsen eső feszültségnek nem pontosan az rezonanciafrekvencián van maximuma - hasonlóan a mechanikai kényszerrezgés amplitúdórezonanciájához.
Komplex jelölés
Szinuszos gerjesztés esetén, állandósult állapotban minden áram- és feszültségfüggvény azonos körfrekvenciával változik. Az egymáshoz képesti fáziskülönbségeket ilyenkor fazorábrával szemléltethetjük. Az 2. ábrán egy soros RLC-kör (részletesen lásd később) fazorábrája látható. Az áram - a soros kapcsolás miatt - mindhárom elemen ugyanakkora, a feszültségek pedig ehhez viszonyítva sietnek, fázisban vannak, illetve késnek.
Az áramkörre kapcsolt feszültség a három, sorbakapcsolt feszültséget jelölő fazor vektori eredője.
A fazorokat felfoghatjuk komlex számokként is. Így az egyes áram és feszültségjeleket egy-egy komplex szám jelöli. A fazorokhoz hasonlóan a komplex szám abszolút értéke a jel nagyságát (csúcsértékét), a komplex szám arkusza pedig a jel (a kiválasztott fázishelyzethez viszonyított) fázisát adja meg.
Figyelem! Mivel a villamos hálózatoknál az áram pillanatértékét jelöli, a komplex egység szokásos jelölése itt !
Az 2. ábrán látható fazorábrán szereplő jeleknek megfelelő komplex mennyiségek:
Ekkor az eredő (komplex) feszültséget nem csak megszerkeszthetjük, hanem egyszerű komplex algebrával ki is számolhatjuk:
Az eredő feszültség nagysága (csúcsértéke) a komplex érték abszolút értéke:
ahol az eredő ellenállás.
Az eredő feszültség fázisa a komplex feszültség arkusza:
A komplex áram és feszültség alapján azonban közvetlenül is fel tudjuk írni az áram és a feszültség időfüggvényét:
Ha az 2. ábrán látható fazorokat leíró komplex feszültségeket elosztjuk az áramerősség nagyságával, akkor ellenállás dimenziójú komplex mennyiségeket kapunk:
A komplex ellenállásokkal ugyanúgy számolhatunk egy váltóáramú körben, mint az ohmos ellenállásokkal egyenáramú hálózatok esetében.
A mi esetünkben a soros kapcsolás miatt az eredő (komplex) ellenállás az egyes (komplex) ellenállások összege:
A komplex jelölésmóddal bármely áramköri elem leírása olyan, mintha egy ohmos ellenállás lenne:
A komplex ellenállás abszolút értéke a skalár ellenállás értéket adja, míg arkusza azt mutatja meg, hogy az adott áramköri elem mennyivel tolja el a fázist.
Egyszerű áramkörök leírása komplex jelöléssel
A komplex leírásmód előnyének szemléltetése céljából az alábbiakban megvizsgálunk néhány negyszerű áramkört.
Szűrő áramkörök
Szűrők segítségével egy különböző frekvenciájú rezgésekből álló elektromos jelből ki lehet szűrni bizonyos frekvenciatartományokat. A legegyszerűbb elsőrendű szűrők egy ellenállást és egy kondenzátort/tekercset tartalmaznak és a feszültségosztás elvén működnek, melyet a komplex jelölést felhasználva egyszerűen az egyenáramú áramkörökben jól ismert feszültségosztó képlettel leírhatunk komplex ellenállások használatával. Ilyen szűrőkre láthatunk példát az 4/a és 4/b ábrákon. A kapcsolások feszültségviszonyai pedig az alábbi képletekkel írhatók le (A vastag betűs mennyiségek komplex változók, a képzetes egység. Ugyanakkor mérni csak valós mennyiségeket lehet, azaz a komplex mennyiségek abszolút értékét!):
A kimeneti és bemeneti feszültségek hányadosa, a hálózatra jellemző, frekvenciafüggő kifejezés, melyeket megvizsgálva látható, hogy formailag azonosak, tehát a két kapcsolás azonos jellegű viselkedést mutat. Ameddig vagy , a kifejezések értéke 1; ha vagy , a hányados értéke szerint csökken. Ez azt jelenti, hogy adott , és esetén az alacsony frekvenciájú jelek csillapítás nélkül jelennek meg a kimeneten, míg magasabb frekvenciákon a kimenő feszültség egyre kisebb. Ezeket a kapcsolásokat aluláteresztő szűrőknek nevezik.
Könnyen belátható továbbá az is, hogy ugyanezeket az elrendezéseket használva felüláteresztő szűrőket is megvalósíthatunk, amennyiben a kondenzátoron (4/a) vagy ellenálláson (4/b) eső feszültség helyett a kapcsolás másik áramköri elemén (ellenállás/tekercs) eső feszültséget tekintjük kimeneti feszültségnek.
Rezgőkörök
A Komplex jelölést bemutató fejezetben egy soros rezgőkör állandósult állapotát írtuk fel a komplex jelölés használatával (fontos megjegyezni, hogy a tranzienseket ebben a leírásban nem lehet vizsgálni), ahol a hálózat eredő impedanciájára:
az impedancia abszolút értékére és fázisszögére pedig:
összefüggéseket kaptuk.
Így a körben folyó áram (azaz az ellenálláson eső feszültség és az ellenállás hányadosa):
A komplex felírásmód alkalmazásával hasonlóan egyszerűen megkaphatjuk egy párhuzamos LC rezgőkör jellemzőit is, melyek az alábbiak:
A körben folyó áramot leíró képlet elemzéséből megállapítható, hogy a párhuzamos RLC kör esetén kis és nagy értékeknél kapunk maximális áramot és az áramnak mimimuma van függvényében az helyen.
Mérési feladatok
- A mérés elvégzéséhez és a mérési napló elkészítéséhez a dőlt betűs részekben adunk segítséget.
FELADATOK ELSŐ ALKALOMMAL
A méréshez rendelkezésre álló eszközök
1. A rugóállandó mérése
Állítsa be a zsinór hosszát úgy, hogy a mérőrúd 17 cm-es jele a rúdvezető alsó szélével egy vonalba essék! Erősítse az egyik 50 g-os rézsúlyt a mérőrúd és a csillapítórúd közé! Mérje le a rugó sztatikus megnyúlását! Ezután helyezze fel a második rézsúlyt is, és mérje meg az újabb megnyúlást! Számítsa ki a rugó rugóállandóját!
2. Csillapítatlan rendszer lengésideje
Szabályozza be a készüléket!
- Nagyon fontos, hogy a mérőrúd ne érjen a rúdvezető egyik falához se (lásd az előző pontban)!
Ehhez a méréshez szerelje le a csillapító mágnespofákat! A funkciókapcsolót állítsa periódusidőmérésre (PERIOD). Húzza a mérőrudat kb. 5 cm-rel az egyensúlyi helyzete alá, és engedje el! A digitális kijelző ekkor a rezgés periódusidejét (s) mutatja. A mérést üres mérőrúddal, majd 50 és 100 g-os terhelésekkel is végezze el!
- Az eredményeket foglalja táblázatba és vesse össze az elmélet alapján kiszámolt értékekkel!
3. Kényszerrezgés amplitúdójának és sebességamplitúdójának vizsgálata a kényszerítő frekvencia függvényében
A méréseket két különböző csillapítás esetén, mérőrúd + 50 g tömeggel végezze el! Szerelje vissza a csillapító mágnespofákat! A kis csillapításhoz a csillapító mágnespofákat egymástól a lehető legtávolabb állítsa be! A nagy csillapításhoz tekerje a mágnespofákat a lehető legközelebb, de csak annyira, hogy ne érjenek hozzá a csillapítórúdhoz! Ekkor mérje meg és jegyezze fel a mágnespofák távolságát!
Gondosan állítsa be a mérőrúd helyzetét úgy, hogy már egészen kis kitéréseknél villogjon a digitális kijelző (beállítás)! A funkciókapcsolót állítsa frekvenciamérésre (FREQ.) és a DRIVE kapcsolóval indítsa el a kényszerrezgést! A frekvenciaszabályozó gombbal lassan (fokozatosan) növelje a frekvenciát, és időről-időre váltson át az amplitúdómérésre (AMPL.)!
- Itt a kijelző mm-ben megadja a csúcstól-csúcsig amplitúdót – ez az amplitúdó kétszerese.
- Figyelje eközben a fázisállandót jelző LED értékét is! Amikor a kényszerítő frekvencia megegyezik az sajátfrekvenciával, a fázisszög 90°.
Keresse meg az rezonanciafrekvenciát, ahol az amplitúdó maximális!
- A rezonanciafrekvencia – különösen nagy csillapítás esetében – eltér a sajátfrekvenciától.
- Amennyiben a rezgések amplitúdója túl nagy vagy túl kicsi lenne, úgy kapcsolja ki a készüléket és csökkentse, illetve növelje a kényszererő amplitúdóját, majd ellenőrizze a kitérést a rezonanciafrekvenciánál!
Amennyiben mindent rendben talál, vegye fel táblázatosan a rezonanciafrekvenciánál 1 Hz-cel kisebb és 1 Hz-cel nagyobb frekvenciák közötti intervallumban 0,1 Hz-enként (és a rezonancia frekvencia közelében ennél sűrűbben is) a kitérési amplitúdókat! Ábrázolja a különböző csillapítással felvett görbéket közös diagrammon! Adja meg minden esetben értékét!
A korábban megmért görbék valamennyi pontjánál (a kitérési amplitúdó és frekvencia ismeretében) számítsa ki a sebeségamplitúdó értékeket! Foglalja táblázatba és ábrázolja diagrammon a sebességamplitúdó – körfrekvencia görbéket!
- A különböző csillapítással felvett görbéket most is közös diagrammon ábrázolja!
4. Csillapítási tényező és jósági tényező meghatározása
A csillapítási tényező kísérleti meghatározásának egyik lehetséges módszere a csillapodási hányados mérésén alapul. Ekkor egymás utáni lengések amplitúdócsökkenéseit mérjük. Ennek észlelése akkor pontos, ha a lengő rendszer periódusideje eléggé nagy (kb. 3-10 s). Az alkalmazott rugónál a lengésidő rövidebb, emiatt egy másik módszer alkalmazása előnyösebb: a csillapítási- és jósági tényezők a sebességamplitúdó frekvenciafüggéséből meghatározhatók.
Illesszen a 3. pontban mért sebességamplitúdó adatokra a sebességamplitúdó – körfrekvencia függvénynek megfelelő görbét! Az illesztett görbe illesztési paraméterei között szerepel a csillapítási tényező és az saját körfrekvencia (valamint az hányados). Az illesztés alapján határozza meg ezeket a paramétereket és hibájukat. Ezek alapján már meghatározható a jósági tényező is.
5. Lebegés vizsgálata
Két, kis mértékben különböző frekvenciájú, szinuszhullám szuperpozíciójakor „lebegés” alakul ki (12. ábra). Ha időpontban a rezgések éppen fázisban vannak, akkor a hullámok összeadódnak és az eredő rezgés maximális amplitúdójú lesz. Egy későbbi időpontban azonban a frekvencia különbség miatt a rezgések ellentétes fázisba kerülnek, és egymás hatását csökkentve minimális amplitúdót eredményeznek. Az amplitúdó változások burkológörbéje szintén szinuszos. A burkológörbe frekvenciája , ahol és a két összetevő rezgés frekvenciája.
A kényszerrezgés bekapcsolásakor az állandósult tag mellett egy darabig megfigyelhető a csillapított rendszer idővel elhaló saját rezgése is. A differenciálegyenlet megoldása tartalmazza a bekapcsolás után kialakuló mindkét frekvenciát. A tranziens rezgés körfrekvenciája , az állandósulté pedig . Lebegés akkor figyelhető meg, ha a kényszererő körfrekvenciája közelében van, és a csillapítás elég kicsi. Amint a tranziens elhal, a lebegés is megszűnik.
Szerelje le újra a csillapító mágnespofákat és állítsa be pontosan a mérőrúd helyzetét. Határozza meg a rendszer sajátfrekvenciáját! (A 2. méréshez hasonlóan használja a készülék kijelzőjén a PERIOD állást! ) Állítsa a kényszerkeréken az amplitúdót 2 mm-re! Kapcsolja be a kényszermozgást és szabályozza annak frekvenciáját úgy, hogy 0,1 Hz-cel legyen alacsonyabb, mint ! Jegyezze fel mindét frekvencia értékét és kapcsolja ki a kényszert! Várjon, amíg a mérőrúd megáll! Állítsa a funkciókapcsolót AMPL. állásba.
Helyezze a mérőrúd alá az ultrahangos érzékelőt! Indítsa el a számítógépen a Logger Lite programot. A program felismeri a rákapcsolt szenzort. Végezze el a következő beállításokat: Experiment Data Collection Length: 120 s; Options Graph Options Axes Options Scaling: Autoscale (mindkét tengelyen).
Indítsa el az adatgyűjtést, majd kapcsolja be a kényszerrezgést! A lebegés megszűntéig mérjen! Utána a mérési adatok a File Export as paranccsal menthetők.
Ábrázolja az amplitúdót az idő függvényében! Határozza meg a burkoló szinuszgörbe periódusidejét és frekvenciáját!
- Vesse össze az elmélet alapján várható értékekkel!
- Akkor kap szép lebegést, ha kicsi a csillapítás (leszedett mágnespofák, jól beállított mérőrúd (nem súrlódik).
FIGYELEM! A második alkalomra az eddigi feladatok előzetes kiértékelését el kell végezni és meg kell mutatni a mérésvezetőnek.
FELADATOK MÁSODIK ALKALOMMAL
A méréshez rendelkezésre álló eszközök
- Általános megjegyzések:
- A méréshez szükséges alkatrészek egy átlátszó plexidobozban találhatók, banánhüvelyes kivezetésekkel. Az alkatrészek körülbelüli értékei a dobozról leolvashatók, illetve a mellékelt lapon is megtalálhatók.
- Az egyes mérési feladatok elvégzésekor azokban a frekvenciatartományokban, ahol jelentős a kimenő jel változása, sűrűbben vegyen fel mérési pontokat!
- Az oszcilloszkópot csak esetleges ellenőrzésre használja, a frekvenciákat és a feszültségeket a digitális műszerekkel kell mérni.
1. Mérje meg a dobozban (13. és 14. ábra) található ellenállások értékét valamint a tekercsek és ohmos ellenállását multiméterrel!
- Az ellenállásmérést csak hálózatba be nem kötött elemeken szabad végezni!
A kondenzátorok és tekercsek körülbelüli kapacitása és induktivitása (az áramkörök tervezéséhez): , , , .
2. Állítson össze aluláteresztő szűrőt kondenzátor felhasználásával! Mérje meg a kimenő feszültséget függvényében! Ábrázolja a – függvényt! Illesszen a mért adatokra az elméletnek megfelelő görbét! Az illesztésből határozza meg a szűrőre jellemző körfrekvenciát, majd ebből az ellenállás ismeretében a kondenzátor (mért) kapacitását! ( legyen!)
- A multiméterekkel mérhető frekvenciatartomány: 5 Hz – 100 kHz. Az és (névleges) értékeket úgy kell kiválasztani a panelen lévők közül, hogy lehetőleg ennek a tartománynak a közepe táján (0,5-1 kHz körül) legyen. Figyelem! A képletekből -t számolunk, de a műszerek -et mérnek!
- A mérési naplóban írja le, hogy milyen elemeket használt fel a kapcsolás összeállításához! Válaszát számítással indokolja.
- Mivel az eredményeket logaritmikus skálán fogja ábrázolni, érdemes nagyjából logaritmikusan egyenletes sűrűséggel felvenni az adatokat. Pl.: 5 Hz, 10 Hz, 20 Hz, 50 Hz, 100 Hz, ...
3. Állítson össze felüláteresztő szűrőt kondenzátor felhasználásával! A feladatokat az 2. pont szerint végezze el!
- Vegye észre, hogy az alul- és felüláteresztő szűrő ugyanaz a kapcsolás, csak az egyiknél az ellenálláson, a másiknál a kondenzátoron mérjük a kimenő feszültséget. Mivel három műszer van, az egyikkel a bemenő feszültséget ellenőrizze, a másik kettővel pedig egyszerre lehet mérni az ellenálláson és kondenzátoron eső feszültséget, így a két karakterisztika egyszerre felvehető.
4. Állítson össze soros rezgőkört! külön elemként legyen bekötve, mert a kör áramát az ellenálláson eső feszültségből fogja meghatározni! A frekvencia függvényében mérje meg , , és értékeit! Számítsa ki és ábrázolja a körben folyó áramot és a eredő impedanciát függvényében. A mért adatokra illesszen megfelelő függvényeket, és az illesztésből határozza meg -t. Az eredmény (és a korábban megmért , és értékek) alapján határozza meg a tekercs induktivitását!
- Melyik ellenállást célszerű választani az RLC-kör összeállításához, ha azt szeretné, hogy a rezonanciagörbe minél élesebb legyen? Válaszát indokolja!
- Az illesztésnél vegye figyelembe a tekercs (korábban megmért) ohmos ellenállását is!
5. Végezze el az előző mérést egy nagyobb sorba kötött ellenállással is! Végezze el most is az illesztést! Ábrázolja a két mérésnél kapott rezonanciagörbéket közös grafikonban!
Vissza a Fizika laboratórium 1. tárgyoldalára.