„Félvezető termoelem és Peltier-elem vizsgálata (régi)” változatai közötti eltérés
54. sor: | 54. sor: | ||
| [[Fájl:termoelempeltier_1_abra.jpg|közép|600px|]] | | [[Fájl:termoelempeltier_1_abra.jpg|közép|600px|]] | ||
|- | |- | ||
− | | align="center"|1.ábra: Termoelem felépítése|} | + | | align="center"|1.ábra: Termoelem felépítése |
+ | |} | ||
A lap 2012. szeptember 1., 12:53-kori változata
A mérés célja:
- elmélyíteni a hallgatók termoelektromos effektusokkal kapcsolatos ismereteit,
- megismertetni a hallgatókat a félvezető termoelemmel és a Peltier-elemmel (termoelektromos hűtő elemmel).
Ennek érdekében:
- összefoglaljuk a félvezető termoelemmel és a Peltier-elemmel kapcsolatos elméleti tudnivalókat,
- mérések segítségével meghatározzuk a félvezető termoelem és a Peltier-elem fontosabb jellemzőit.
Tartalomjegyzék |
Elméleti összefoglaló
A Hőmérsékletérzékelők hitelesítése című mérés elméleti részében részletesebben foglalkoztunk a két vezetőből készült termoelemek működésével és alkalmazásával. Most az ott elmondottakra is támaszkodunk.
Termoelektromos jelenségek
A félvezető termoelem és a Peltier-elem működését termoelektromos és hőtani folyamatok határozzák meg. A termoelektromos jelenségek elektromos és hőtani folyamatok közötti kapcsolatokat adnak meg. Összefoglalónkat ezen effektusok (a Seebeck-, a Peltier-, a Thomson-effektus) és a Joule-hő ismertetésével kezdjük, majd a tisztán hőtani folyamatok leírásával folytatjuk, míg végül megvizsgáljuk ezek együttes hatását a termoelem és a Peltier-elem viselkedésére.
A termoelektromos jelenségek fémek esetében is fellépnek, de az effektusok sokkal erősebbek félvezetők alkalmazásakor: például egy félvezető termoelem hőfoktényezője egy nagyságrenddel nagyobb, mint egy fém termoelemé. Ezért a gyakorlatban használt Peltier-elemek (termoelektromos hűtőelemek) is félvezetőkből készülnek és a mérésen is ilyet használunk.
Egy n- és p-típusú félvezetőből kialakított termoelemet mutat az 1b. ábra. Ha az A és B pont hőmérsékleten van és C pont hőmérséklete , () az A és B pont között feszültséget mérhetünk. Ez a Seebeck-effektus. Az effektusra jellemző az anyagtól és hőmérséklettől függő állandót az egyenlettel definiáljuk.Ha a fenti összeállításon áram folyik, az áram irányától függően a C pontban hő szabadul fel, vagy hő nyelődik el. Ez a Peltier-effektus.
Az egységnyi idő alatt felszabaduló vagy elnyelt hőnek megfelelő hőteljesítmény () arányos az árammal: ahol a hő, a Peltier-együttható, az abszolút hőmérséklet, míg a Seebeck-együttható. Amikor áram folyik olyan homogén vezetőben, amelyben az áram irányába eső gradiens van, az áram és a hőmérséklet gradiens irányától, valamint a vezető anyagától függően hő szabadul fel, vagy nyelődik el. Ez a Thomson-effektus. Az időegység alatt a vezető egységnyi hosszúságú részében fejlődő Thomson-hő arányos az áramerősséggel és a hőmérséklet gradienssel: ahol a vezető anyagától és a hőmérséklettől függő előjeles mennyiség, a Thomson-állandó. A Thomson-hő pozitív előjelű – azaz hő szabadul fel – ha pozitív előjelű és az áram a magasabb hőmérsékletű hely felől az alacsonyabb hőmérsékletű hely felé folyik. Az árammal átjárt vezetőben hő szabadul fel: az úgynevezett Joule-hő. A Joule-törvény értelmében a teljesítmény, ha ellenállású vezetőn áram folyik: Az eszköz működésével kapcsolatos "tisztán" hőtani folyamatok közül egyedül az elem belsejében lejátszódó hővezetés hatását vesszük figyelembe. Ha a meleg oldal és a hideg oldal hőmérsékletű (), akkor a meleg oldalról a hideg oldal felé lejátszódó hővezetés teljesítménye: ahol a hővezető-képesség, az elem keresztmetszetének területe és a vastagság. A termoelemként és Peltier-elemként is használható eszköz vázlata a 1d. ábrán látható.1.ábra: Termoelem felépítése |
Félvezető termoelem
Ha két fémből (1 és 2) termoelemet hozunk létre (1a ábra), az A és B pontok között mérhető feszültség a C pont T hő-mérséklete és az A és B pont közös To hőmérsékletének különbségétől (T - To), valamint a két fém anyagi minőségétől függ. A kapott feszültség nem függ a két fém C pontban történ összeforrasztására használt harmadik fém anyagi minőségé-től. A fém termoelemhez hasonlóan, két különböző módon szennyezett félvezetőből is létrehozhatunk termoelemet. Ezek érzékenysége kb. egy nagyságrenddel nagyobb, mint a fémből készült termoelemeké. A félvezető termoelem vázlata az 1b ábrán, perspektivikus rajza pedig az 1c ábrán látható. A termoelem egyik jellemzője az 1.1 részben bevezetett Seebeck-együttható (1), ami az l oC hőmérséklet-különbség ha-tására kialakuló termofeszültséget adja meg. Az első közelítésben a termoelem üresjárási feszültségének hőmérsékletfüggése az
(6)
összefüggéssel adható meg. A vizsgálat tárgyát képező félvezető termoelem k darab p-n átmenetet tartalmaz, amelyek elektromosan sorba kapcso-lódnak (1d ábra), így feszültségük összeadódik:
. (7)
Az átmenetek két alumínium lemezhez csatlakoznak, jó hővezető, de elektromosan szigetelő réteggel (1d ábra). Az alumínium lemezek közül az egyik (a meleg oldal) T1 hőmérsékleten; míg a másik (a hideg oldal) T0 hőmérsékleten van. Ilyen módon az elemek hőtani szempontból párhuzamosan kapcsolódnak. Vizsgálatainkhoz a termoelemet két hőcserélő közé helyezzük (3a ábra). A hideg oldalhoz csatlakozó hőcserélőn (alu-mínium tömb) csapvizet vezetünk keresztül és ennek az oldalnak a hőmérsékletét állandó (T0) értéken tartjuk. A meleg ol-dalhoz csatlakozó alumínium tömbben ellenállás fűtőtest van, amit alacsony feszültségű külső áramforrás segítségével mű-ködtetünk. Így a meleg oldal hőmérsékletét változtatni tudjuk. Ha különböző T1 hőmérsékletek mellett megmérjük a termoelem U0 üresjárási feszültségét, az U0 (T1 - To) összefüg-gést ábrázolva egyenest kapunk. Az egyenes meredeksége a Seebeck-együttható. A termoelem fontos jellemzője a belső ellenállása. A belső ellenállást a Hőmérsékletérzékelők hitelesítése című jegy-zetben leírtak (6. feladat) szerint mérhető.
Termoelemünk termikus energia hatására termel villamos energiát. Mekkora hatásfokkal teszi ezt? Erre a kérdésre a következő módon kaphatunk feleletet: A termoelemet belső ellenállásával azonos nagyságú ellenállással terheljük. Ekkor tudjuk kivenni a maximális elektro-mos teljesítményt. Ehhez a melegoldali alumínium tömböt kb. 20 W villamos teljesítménnyel felfűtjük, majd a fűtést ki-kapcsolva mérjük az időben csökkenő hőmérsékletet és a terhelő ellenálláson jelentkező villamos teljesítményt. Ha feltéte-lezzük, hogy rendszerünk a környezettől jól szigetelt, akkor azt mondhatjuk, hogy a fűtött alumínium tömb által leadott hő hatására nyerünk elektromos teljesítményt. A leadott hőteljesítmény:
, (8)
ahol c és m az alumínium fajhője ill. a tömb tömege. A fentiek alapján termoelem hatásfoka úgy állapítható meg, hogy a T(t) hűlési görbe vizsgált pontján meghatározzuk dT/dt értékét és (8) alapján számítjuk a hőteljesít-ményt Ph-t, miközben mérjük az ugyanezen időponthoz tartozó villamos teljesítményt:
. (9)
Az átalakítás hatásfoka ezek után:
. (10)
A fentiekből a hatásfok hőmérséklet-különbség függése [az (T) kapcsolat] is meghatározható.
Peltier-elem
Az 1.1 részben áttekintett effektusok eredményeként röviden összefoglalva a vizsgált Peltier-elem belsejében a követ-kező folyamatok játszódnak le: 1. Az áram irányától függően a Peltier-effektus miatt az egyik oldalon az átmenetnél hő nyelődik el (hideg oldal, T0 hőmérsékleten), másik oldalon hő szabadul fel (meleg oldal, T1 hőmérsékleten). 2. A Thomson-effektus következtében a félvezető elemek anyagától függően az elem belsejében hő szabadul fel vagy nyelődik el. 3. A Joule-hő következtében az elem belsejében hő fejlődik. Ezt egyszerűség kedvéért úgy tekintjük, hogy egyenlő arányban jut a két felületre. 4. A hővezetés eredménye egy a meleg oldalról a hideg oldal felé történő hőáramlás: Az elmondottak alapján a Peltier-elem hideg oldalán a hűtőteljesítmény:
. (11)
A meleg oldal fűtő teljesítménye:
. (12)
Az elektromos teljesítmény:
. (13)
A Peltier-elem energetikai folyamatait a 2. ábra szemlélteti. A hőerőgépek és a hűtőgépek működése az ideális Carnot-körfolyamat segítségével közelíthető. Hőerőgépként a Carnot-gép W munkát végez, miközben a rendszer a magasabb T1 hőmérsékletű hőtartály¬ból Q1 hőmennyiséget vesz fel, míg a kisebb T0 hőmérsékletű hőtartálynak Q0 hőt ad le. Az így nyert munka . A gép hatásfoka illetve maximális hatásfoka pedig rendre ill. . (Így működik a termoelem.) Hűtőgépként (hőszivattyúként) a Peltier-elem fordított Carnot-gépnek tekinthető. Külső W munka befektetése árán a hidegebb T0 oldalról Q0 hőt von ki, míg a melegebb oldalon hőt ad le. A folyamat teljesítménytényezője ill. . Vegyük észre, hogy is lehet. A hatásfok ill. teljesítményté-nyező a megfelelő teljesítmények segítségével is kifejezhető.
A Peltier-elem vizsgálatához használt eszköz a félvezető elemből és a két oldalára szerelt fémtömbökből áll (3b ábra). Az egyik tömb vízzel hűthető (így T0 hőmérséklete közel állandó), míg a másik oldal hőszigetelt és fűthető. Ennek megfe-lelően, a változó hőmérsékletű oldal hőháztartását az alábbi egyenlet írja le:
(14)
ahol c és m a tömb tömege ill. fajhője, Ph a hőszivattyúként működtetett Peltier-elem által kivont hőteljesítmény, Pf a fűtő-teljesítmény, míg a harmadik tag a Peltier-elemen keresztül hővezetéssel átjutó ismeretlen hőteljesítmény. Termikus egyen-súlyban a baloldal 0, vagyis a jobboldali tagok kiejtik egymást. Legyen kezdetben . Ha a Peltier-elemet a fűtés bekapcsolása nélkül elektromos teljesítmény befek-tetése mellett működtetjük, T olyan értékre áll be, melynél . Pp növelésével Ph, és ezzel a hőmérséklet-különbség is nő. Mivel azonban is-meretlen, a teljesítménytényező így nem határozható meg. Az teljesítménytényező meghatározásához állandó teljesítménnyel működtetjük a Peltier-elemet, miközben változó Pf fűtőteljesítmény mellett vizsgáljuk a kialakuló egyensúlyi hőmérséklet-különbségeket. Alkalmasan választott fűtő-teljesítmény esetén a két oldal közti hőmérséklet-különbség eltűnik. Ekkor a fűtőteljesítmény éppen megegye-zik a Peltier-elem által a vízhűtött oldalra átszivattyúzott Ph hőteljesítménnyel ( ), vagyis a teljesítménytényező a összefüggés alapján számítható.
Akkor amikor a hőmérséklet-különbség eltűnik, meghatározható a Peltier-elem belső ellenállása és a Peltier-együttható értéke is.
estében nem keletkezik termofeszültség, így a Peltier-elem belső ellenállása az (15)
képlettel meghatározható.
estében nincsen hővezetés (és Thomson-hő) se, így a Peltier-együttható a (2) képlet alapján könnyen kifejezhe-tő: . (16)
(A Peltier-elemnek a fűtőellenállás által leadott teljesítményt és a Peltier-elemre kapcsolt, Joule-hőként felszabadu-ló elektromos teljesítmény felét kell átszivattyúznia.)
Mérési elrendezés
A termoelem és a Peltier-elem vizsgálatához – kicsit különböző elrendezésben – ugyanazt az eszközt használjuk (3a és 3b ábra). A mérőeszköz két 50 g-os alumínium tömbből ill. közöttük elhelyezkedő 98 db sorba kötött p-n átmenetből áll. Az eszköznek a külső környezettel történő hőcseréjét többrétegű szigetelés akadályozza. Az egyik tömb hőmérsékletét víz-hűtés rögzíti, míg a másik oldal egy tápegységgel (max. 25 V, 5 A) fűthető. A fűtőteljesítményt áram- és feszültségmérés alapján, az alumínium tömbök hőmérsékletét a Pt-hőmérők ellenállásából a
(17)
összefüggés alapján számítjuk. A termoelem kimenetén mérhető a termofeszültség és a terhelő áram (3a. ábra). A Peltier-elem működtetéséhez egy másik tápegységet (max. 40 V, 10 A) használunk (3b ábra). A Peltier-teljesítményt áram- és feszültségmérés alapján számítjuk.
Mérési feladatok
- A mérés elvégzéséhez és a mérési napló elkészítéséhez a dőlt betűs részekben adunk segítséget.
1. Határozza meg a félvezető termoelem elektromotoros erejét és belső ellenállását a hőmérséklet függvényében! Ábrázolja az elektro-motoros erő – hőmérséklet-különbség összefüggést és határozza meg a Seebeck-állandót. A fűtőellenállásra kezdetben kb. 2 V, majd egyre nagyobb (max. 20 V) feszültséget kapcsolva folyamatosan fűtse a meleg oldalt, és néhány percenként olvassa le a hőmérséklet (ellenállás), üresjárati feszültség és terhelő áram értékeket. Az ellenállás alapján számított hőmérséklet:
2. Határozza meg a termoelem hatásfokát a hőmérséklet függvényében! Az első feladat utolsó fűtőteljesítményének beállított értékén folytassa a fűtést a véghőmérséklet eléréséig. Ekkor a termoelem kive-zetésére először ne kapcsoljon semmit, kapcsolja ki a fűtőtest tápegységét, és egyidejűleg indítsa meg a stoppert! A meleg oldal alu-mínium tömbje a tökéletlen hőszigeteés miatt hűlni fog. 50 °C és 40 °C között Δt = 30 s időközönként olvassa le az alumínium tömb hőmérsékletét, illetve a termoelem feszültségét! A Δt időtartamok félidejénél a hőteljesítmény:
.
Ezután kapcsolja be a fűtőtest ellenállását és folytassa a fűtést addig, amíg újra eléri a véghőmérsékletet. Ekkor kapcsoljon a termo-elemre egy, a belső ellenállással egyező értékre beállított ellenállásdekádot! Kapcsolja ki a fűtőtest tápegységét, és egyidejűleg indít-sa meg a stoppert! 50 °C és 40 °C között Δt = 30 s időközönként olvassa le az alumínium tömb hőmérsékletét, illetve a termoelem feszültségét! A Δt időtartamok félidejénél a villamos teljesítmény:
,
a hőteljesítmény:
,
a hatásfok pedig:
,
ahol az UA , UB feszültségek, és a TA , TB a hőmérsékletek a Δt = 30 s időintervallum elején ill. végén felvett értékeket jelölik, R a terhelő ellenállás, c = 900 J/kgK, m = 5•10-2 kg az alumínium fajhője ill. a tömb tömege.
3. Mérje meg 5 W Peltier-teljesítmény esetén (a fűtőtest kiiktatásával) a kialakuló hőmérséklet-különbséget! Mérje a hőmérsékletet 10 percig és a függelékben megadott összefüggések illesztésével határozza meg a kialakuló max. (állandósult) hőmérséklet-különbséget!
4. Mérje rögzített Peltier-teljesítmény és különböző fűtőteljesítmények mellett a kialakuló hőmérséklet-különbségeket és ábrázolja eze-ket! Peltier-teljesítmény 5 W, fűtőteljesítmények: 3-11 W között 3-4 értéken mérve. A Peltier-elemet működtető tápegységet áramgene-rátoros üzemmódban használja, és minden esetben írja fel az áram és feszültségértékeket is! Mérje a hőmérsékletet esetenként 10 percig és a függelékben megadott összefüggések illesztésével határozza meg a fenti teljesítmé-nyeknél kialakuló max. hőmérséklet-különb¬ségeket!
5. Az állandósult hőmérséklet-különbség fűtőteljesítmény kapcsolat alapján számítsa ki a Peltier-elem teljesítmény-tényezőjét!
6. Határozza meg a Peltier-elem belső ellenállását!
7. Határozza meg a Peltier-együtthatót! A Seebeck-együttható és a Peltier-együttható ismeretében számítsa ki a T0 abszolút hőmérsék-letet!
Függelék A termikus egyensúly beállása viszonylag hosszú időt igényel. Ezért a véghőmérséklet meghatározásánál kihasználjuk, hogy a fűthető oldal hőmérsékletének (T) időbeli változása jó közelítéssel exponenciális jellegű:
,
ahol a hőmérséklet kezdeti értéke, míg a hőmérséklet-változás karakterisztikus ideje.