„Folyadék szabad felszínének vizsgálata” változatai közötti eltérés
27. sor: | 27. sor: | ||
A nyugvó folyadék szabad (az edénnyel nem érintkező) felszíne mindenütt merőleges a külső erők eredőjére. Ha ugyanis a felszín valahol nem lenne merőleges az eredő erőre, akkor az utóbbi felszínnel párhuzamos összetevőjének hatására a felszín közelében áramlás jönne létre, vagyis a folyadékot nem tekinthetnénk nyugvónak. | A nyugvó folyadék szabad (az edénnyel nem érintkező) felszíne mindenütt merőleges a külső erők eredőjére. Ha ugyanis a felszín valahol nem lenne merőleges az eredő erőre, akkor az utóbbi felszínnel párhuzamos összetevőjének hatására a felszín közelében áramlás jönne létre, vagyis a folyadékot nem tekinthetnénk nyugvónak. | ||
− | Ha egy folyadékot tartalmazó hengeres edényt függőleges tengelye körül $\omega$ szögsebességgel forgatunk, akkor a folyadék felszíne felülről nézve homorú forgásfelület lesz. A folyadék az azonos tengely körül $\omega$ szögsebességgel forgó koordinátarendszerben nyugalomban van. Ebben a rendszerben a felszínen lévő $m$ tömegű folyadékrészre kétféle erő hat: az $mg$ nagyságú, függőleges $(y)$ irányú nehézségi erő, valamint a forgó rendszerben fellépő tehetetlenségi erők. Esetünkben az utóbbiak közül csak az $m\omega^2x$ nagyságú, a forgástengelyre merőleges és attól sugárirányban elfelé mutató centrifugális erő játszik szerepet ($x$ a folyadékrésznek a forgástengelytől mért távolsága). A folyadékfelszín mindenhol a két erő eredőjére merőleges helyzetet vesz fel ([[#fig:1|1. ábra]]). A kialakuló felület egy forgási paraboloid. A kísérletben ennek a forgási paraboloidnak egy, a forgástengelyen átmenő metszetét határozzuk meg. | + | Ha egy folyadékot tartalmazó hengeres edényt függőleges tengelye körül $\omega$ szögsebességgel forgatunk, akkor a folyadék felszíne felülről nézve homorú forgásfelület lesz. A folyadék az azonos tengely körül $\omega$ szögsebességgel forgó koordinátarendszerben nyugalomban van. Ebben a rendszerben a felszínen lévő $m$ tömegű folyadékrészre kétféle erő hat: az $mg$ nagyságú, függőleges $(y)$ irányú nehézségi erő, valamint a forgó rendszerben fellépő tehetetlenségi erők. Esetünkben az utóbbiak közül csak az $m\omega^2x$ nagyságú, a forgástengelyre merőleges, és attól sugárirányban elfelé mutató centrifugális erő játszik szerepet ($x$ a folyadékrésznek a forgástengelytől mért távolsága). A folyadékfelszín mindenhol a két erő eredőjére merőleges helyzetet vesz fel ([[#fig:1|1. ábra]]). A kialakuló felület egy forgási paraboloid. A kísérletben ennek a forgási paraboloidnak egy, a forgástengelyen átmenő metszetét határozzuk meg. |
==Kísérleti berendezés== | ==Kísérleti berendezés== | ||
56. sor: | 56. sor: | ||
'''1.''' Igazolja kísérletileg, hogy a forgó folyadék felszíne által kialakított parabola csúcspontjának süllyedése a szögsebesség négyzetével arányos! | '''1.''' Igazolja kísérletileg, hogy a forgó folyadék felszíne által kialakított parabola csúcspontjának süllyedése a szögsebesség négyzetével arányos! | ||
− | Vegye fel a $\log C-\log\omega$ függvényt és a grafikon segítségével állapítsa meg $\omega$ kitevőjét! | + | Vegye fel a $\log C-\log\omega$ függvényt és a grafikon segítségével állapítsa meg $\omega$ kitevőjét! |
'''2.''' Határozza meg a nehézségi gyorsulás értékét! | '''2.''' Határozza meg a nehézségi gyorsulás értékét! | ||
Rajzolja fel a $C-\omega^2$ függvényt, majd határozza meg a mérési pontokon át fektetett egyenes meredekségét, ami $\frac{R^2}{6g}$ értékét adja meg. Ennek ismeretében számítsa ki a nehézségi gyorsulást! | Rajzolja fel a $C-\omega^2$ függvényt, majd határozza meg a mérési pontokon át fektetett egyenes meredekségét, ami $\frac{R^2}{6g}$ értékét adja meg. Ennek ismeretében számítsa ki a nehézségi gyorsulást! | ||
+ | * ''A folyadékedény forgási sebességét a tápegység segítségével lehet változtatni. Bekapcsolás: '''MAINS''' és '''DC ON''', forgási sebesség beállítása a durva és finom feszültségállító gombokkal. | ||
+ | * A mérésnél a folyadékfelszínt az edényen levő parabolára (parabolákra) igyekezzen illeszteni. A parabolák geometriai adatai vonalzóval utólag lemérhetők. | ||
+ | * A forgó rendszer frekvenciáját a beállított frekvenciamérővel lehet mérni. A műszer azonban a néhány Hz-es frekvenciákat nagy hibával méri, ezért a pontosabb mérés érdekében a mellékelt stopper segítségével mérje le több (10-20) fordulat idejét, és ebből határozza meg a frekvenciát! | ||
+ | * A mérést a pontosabb észlelés érdekében lesötétített térben végezze, ekkor a folyadékfelszín beállítást megkönnyíti a stroboszkóp alkalmazása.'' | ||
</wlatex> | </wlatex> |
A lap 2012. szeptember 4., 17:01-kori változata
A szabad folyadékfelszín viselkedését egyenletes körmozgás esetén vizsgáljuk. A problémát alkalmas koordináta rendszer választásával visszavezetjük a szabad, nyugvó folyadékfelszín viselkedésére.
Tartalomjegyzék |
Elméleti összefoglaló
A nyugvó folyadék szabad (az edénnyel nem érintkező) felszíne mindenütt merőleges a külső erők eredőjére. Ha ugyanis a felszín valahol nem lenne merőleges az eredő erőre, akkor az utóbbi felszínnel párhuzamos összetevőjének hatására a felszín közelében áramlás jönne létre, vagyis a folyadékot nem tekinthetnénk nyugvónak.
Ha egy folyadékot tartalmazó hengeres edényt függőleges tengelye körül szögsebességgel forgatunk, akkor a folyadék felszíne felülről nézve homorú forgásfelület lesz. A folyadék az azonos tengely körül szögsebességgel forgó koordinátarendszerben nyugalomban van. Ebben a rendszerben a felszínen lévő tömegű folyadékrészre kétféle erő hat: az nagyságú, függőleges irányú nehézségi erő, valamint a forgó rendszerben fellépő tehetetlenségi erők. Esetünkben az utóbbiak közül csak az nagyságú, a forgástengelyre merőleges, és attól sugárirányban elfelé mutató centrifugális erő játszik szerepet ( a folyadékrésznek a forgástengelytől mért távolsága). A folyadékfelszín mindenhol a két erő eredőjére merőleges helyzetet vesz fel (1. ábra). A kialakuló felület egy forgási paraboloid. A kísérletben ennek a forgási paraboloidnak egy, a forgástengelyen átmenő metszetét határozzuk meg.
Kísérleti berendezés
A folyadékot két egymáshoz közeli párhuzamos síklap által alkotott (téglatest alakú) edényben helyeztük el. (Továbbiakban a síklapokat egymáshoz végtelen közelinek tekintjük.) A forgástengely a téglatest egyik szimmetriatengelye. A forgó edényben kialakuló folyadékfelszín vizsgálatát egy olyan koordináta rendszerben végezzük, melynek tengelye az szögsebességhez tartozó (vízszintes) folyadékfelszínnel esik egybe, tengelye pedig a függőleges forgástengely.
Az 1. ábráról leolvasható, hogy
azaz
ahonnan integrálással az
összefüggés adódik. A kifejezés egy parabola egyenlete, ahol a integrálási állandó értéke a parabola csúcspontjának ordinátája. -t abból a feltételből kaphatjuk meg, hogy az állandó folyadéktérfogat miatt a határozott integrálnak nullát kell adnia, azaz
ahonnét
Így a folyadékfelszín egyenlete:
A (1) kifejezésből az alábbi következtetések vonhatók le:
- A parabola csúcspontjának ordinátája arányos -tel, ami alapján fordulatszámmérő készíthető.
- A különböző szögsebességekhez tartozó parabolák átmennek a pontokon. [Az utóbbi állítás könnyen belátható, ha (1)-be -t helyettesítünk és -vel egyszerűsítünk.]
Mérési feladatok
- A mérés elvégzéséhez és a mérési napló elkészítéséhez a dőlt betűs részekben adunk segítséget.
1. Igazolja kísérletileg, hogy a forgó folyadék felszíne által kialakított parabola csúcspontjának süllyedése a szögsebesség négyzetével arányos!
Vegye fel a függvényt és a grafikon segítségével állapítsa meg kitevőjét!
2. Határozza meg a nehézségi gyorsulás értékét!
Rajzolja fel a függvényt, majd határozza meg a mérési pontokon át fektetett egyenes meredekségét, ami értékét adja meg. Ennek ismeretében számítsa ki a nehézségi gyorsulást!
- A folyadékedény forgási sebességét a tápegység segítségével lehet változtatni. Bekapcsolás: MAINS és DC ON, forgási sebesség beállítása a durva és finom feszültségállító gombokkal.
- A mérésnél a folyadékfelszínt az edényen levő parabolára (parabolákra) igyekezzen illeszteni. A parabolák geometriai adatai vonalzóval utólag lemérhetők.
- A forgó rendszer frekvenciáját a beállított frekvenciamérővel lehet mérni. A műszer azonban a néhány Hz-es frekvenciákat nagy hibával méri, ezért a pontosabb mérés érdekében a mellékelt stopper segítségével mérje le több (10-20) fordulat idejét, és ebből határozza meg a frekvenciát!
- A mérést a pontosabb észlelés érdekében lesötétített térben végezze, ekkor a folyadékfelszín beállítást megkönnyíti a stroboszkóp alkalmazása.