„Mérések Michelson-interferométerrel” változatai közötti eltérés

A Fizipedia wikiből
82. sor: 82. sor:
 
$$|\pmb{k}| = k = \frac{2\pi}{\lambda},$$
 
$$|\pmb{k}| = k = \frac{2\pi}{\lambda},$$
  
$$\pmb{kx} = kx sin \Theta \approx kx\Theta \;  (\Theta\ll1), $$
+
$$\pmb{kx} = kx sin \theta \approx kx\theta \;  (\theta\ll1), $$
  
$$ f(x) = \begin{cases} \frac{1}{d} \; ha \; x \in \left[-\frac{d}{2};\frac{d}{2}\right]. \\ 0\; mashol \end{cases} $$
+
$$ f(x) = \begin{cases} \frac{1}{d} \; \mathsf{ha} \; x \in \left[-\frac{d}{2};\frac{d}{2}\right] \\ 0\; x \notin \left[-\frac{d}{2};\frac{d}{2}\right]. \end{cases} $$
  
 
Felhasználva, hogy
 
Felhasználva, hogy

A lap 2012. október 2., 23:28-kori változata


Szerkesztés alatt!

A mérés célja:

  • koherens optikai jelenségek tanulmányozása.

Ennek érdekében:

  • áttekintjük a diffrakció és az interferencia elméletét,
  • megmérjük a lézerfény koherenciahosszát,
  • méréseket végzünk interferométerrel,
  • diffrakciós méréseket végzünk.

Elméleti összefoglaló

Koherencia fogalma

A koherencia fogalmát a következő egyszerű képen keresztül definiálhatjuk. Tételezzük fel, hogy egy hullám egy \setbox0\hbox{$A$}% \message{//depth:\the\dp0//}% \box0% kiindulási pontból két úton keresztül juthat el a \setbox0\hbox{$B$}% \message{//depth:\the\dp0//}% \box0% pontba. Az 1. és 2. úton a \setbox0\hbox{$B$}% \message{//depth:\the\dp0//}% \box0% pontba érkező nyalábokat \setbox0\hbox{$A_1e^{i\phi_1}$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$A_2e^{i\phi_2}$}% \message{//depth:\the\dp0//}% \box0% komplex számokkal jellemezhetjük, ahol \setbox0\hbox{$A_1$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$A_2$}% \message{//depth:\the\dp0//}% \box0% a nyalábok amplitúdóit, \setbox0\hbox{$\phi_1$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\phi_2$}% \message{//depth:\the\dp0//}% \box0% pedig a fázisukat adják meg. B pontban a két nyaláb a szuperpozíció elve alapján összeadódik, így az eredő komplex amplitúdó \setbox0\hbox{$A_1e^{i\phi_1}+A_2e^{i\phi_2}$}% \message{//depth:\the\dp0//}% \box0% lesz. Detektoraink viszont nem a komplex amplitúdót, hanem annak az abszolút érték négyzetét, az intenzitást érzékelik, mely egyszerű számolás alapján:

\[ I_B = A_1^2 + A_2^2 + 2A_1A_2cos(\phi_1- \phi_2). \]

Látszik, hogy a két nyaláb intenzitásának összege mellett megjelenik az úgynevezett interferencia tag is: ha a két nyaláb azonos fázisban érkezik a \setbox0\hbox{$B$}% \message{//depth:\the\dp0//}% \box0% pontba, akkor erősítést, ha ellentétes fázisban érkeznek, akkor kioltást kapunk. Persze interferenciát csak akkor tapasztalunk, ha a két nyaláb fáziskülönbsége időben állandó, ekkor beszélünk koherens nyalábokról. Ellenkező esetben az interferenciatag időben kiátlagolódik, így nem látunk erősítéseket, ill. kioltásokat.

Fény esetében az interferencia tag eltűnésének a leggyakoribb oka, hogy maga az \setbox0\hbox{$A$}% \message{//depth:\the\dp0//}% \box0% pontban elhelyezett fényforrás sem koherens. Ha az 1. és 2. nyaláb által megtett optikai úthossz különbözik, akkor a \setbox0\hbox{$B$}% \message{//depth:\the\dp0//}% \box0% pontban találkozó nyalábok különböző időpontban indultak el az \setbox0\hbox{$A$}% \message{//depth:\the\dp0//}% \box0% pontból. Koherencia időnek hívjuk azt a maximális \setbox0\hbox{$\tau_c$}% \message{//depth:\the\dp0//}% \box0% időkülönbséget, melyre a fényforrásból a \setbox0\hbox{$T_0$}% \message{//depth:\the\dp0//}% \box0% ill. \setbox0\hbox{$T_0+\tau_c$}% \message{//depth:\the\dp0//}% \box0% időpontban kibocsátott fotonok fázisai között korreláció tapasztalható. Ha az 1. és 2. nyaláb optikai úthosszainak különbsége nagyobb a fény által \setbox0\hbox{$\tau_c$}% \message{//depth:\the\dp0//}% \box0% idő alatt megtett útnál, \setbox0\hbox{$|l_1-l_2|>l_c=c\tau_c$}% \message{//depth:\the\dp0//}% \box0%, akkor az interferencia tag eltűnik. Az ennek megfelelő \setbox0\hbox{$l_c$}% \message{//depth:\the\dp0//}% \box0% úthosszat koherenciahossznak nevezzük.

Az első koherens optikai kísérletet Thomas Young végezte úgy, hogy keskeny fénynyalábot irányított két szorosan egymás mellett elrendezett résre. A résekkel szemben elhelyezett ernyőn a réseken keresztül ráeső fényből szabályos, sötét és világos sávokból álló interferenciakép jött létre. Young kísérlete fontos bizonyítéka volt a fény hullámtermészetének. 1881-ben, 78 évvel Young után, A. A. Michelson hasonló elven működő interferométert épített. Michelson kísérletében a fényhullámot egy félig áteresztő tükör segítségével választotta két részre, melyek különböző utak megtétele után (lásd később) egy detektáló ernyőn újra találkozva alkotnak interferenciaképet. Michelson eredetileg az éternek, az elektromágneses sugárzások – így a fénynek is – terjedését biztosító feltételezett közegnek a kimutatására szerkesztette meg interferométerét. Részben az ő erőfeszítéseinek is köszönhetően az éter feltételezését ma nem tekintjük életképes hipotézisnek. Ezen túlmenően azonban a Michelson-féle interferométer széleskörűen elterjedt a fény hullámhosszának mérésére illetve ismert hullámhosszúságú fényforrás alkalmazásával rendkívül kis távolságok mérésére és optikai közegek vizsgálatára.

A fenti kísérletek elvégzése hagyományos fényforrásokkal rendkívül nehéz feladat a rövid koherenciaidő, illetve a különböző frekvenciájú fénykomponensek keveredése miatt. A lézerek feltalálása óta lényegesen könnyebb interferencia-jelenségeket vizsgálni, egy vékony résen történő diffrakciót akár otthon is kipróbálhatjuk egy mutatólézer segítségével.

A lézer működési elvénél fogva egy nagy koherencia-hosszal rendelkező, jól meghatározott irányban terjedő monokromatikus fénynyalábot biztosít. A lézerben egy aktív közeg jól meghatározott frekvenciájú fotonokat emittál, melyek egy rezonátorban „oda-vissza pattognak”. A stimulált emisszió jelenségének köszönhetően az emittált fotonok a rezonátorban már jelenlévő fotonokkal azonos állapotúak lesznek, azaz a már jelenlévő fotonokkal azonos fázisú és terjedési irányú fotonok emittálódnak. A rezonátor egyik oldalán a fény egy részét kicsatolva egy irányított, koherens nyalábot kapunk. A mérésen is használt He-Ne lézerben a fényemissziót a gázkeverék bizonyos atomi átmenetei biztosítják, míg a rezonátort két szembeállított tükör alkotja, melyek egyike a fény kb. 1 %-át kiengedi. Mivel a rezonátor szélessége 10-20 cm is lehet, illetve a fotonok a kilépés előtt sokszor körbejárják a rezonátort, így a He-Ne lézer koherenciahossza az 1 métert is meghaladhatja.

A napjainkban tömegesen alkalmazott félvezető lézerekben a fény elektronok és lyukak rekombinációjának köszönhetően emittálódik. A rezonátort maga a félvezető nanoszerkezet biztosítja, így lényegesen kisebb koherenciahosszat várunk.

Michelson-féle interferométer felépítése

Az 1. ábrán a Michelson-féle interferométer vázlata látható. A lézer sugárnyalábja sugárosztóra esik, amely a beeső fény 50 %-át visszaveri, és másik 50 %-át átengedi. A beeső fény így két nyalábra oszlik. Az egyik a mozgatható tükörre (\setbox0\hbox{$M_1$}% \message{//depth:\the\dp0//}% \box0%) esik, a másik a rögzített tükörre (\setbox0\hbox{$M_2$}% \message{//depth:\the\dp0//}% \box0%) verődik. Mindkét tükör a sugárosztóra veri vissza a fényt.

A mozgatható tükörről visszavert fény egyik fele most a megfigyelő ernyőre esik be, és a rögzített tükörről visszaverődő fény fele a sugárosztón áthaladva szintén a megfigyelő ernyőre esik.

Ily módon az eredeti sugárnyaláb először kettéosztódik, majd a keletkezett nyalábok egy része visszafelé egyesül egymással. Mivel a nyalábok ugyanabból a fényforrásból származnak, fázisuk erősen korrelált. Így, amikor lencsét helyezünk a lézer fényforrás és a sugárosztó közé, a fénynyaláb kitágul és a megfigyelő ernyőn sötét és világos gyűrűkből álló kép jelenik meg (2. ábra).

Mivel a két interferáló nyaláb ugyanabból a forrásból származik, fázisuk eredetileg azonos volt. Relatív fázisuk, amikor a megfigyelő ernyő bármely pontjában találkoznak, attól az optikai úthossztól függ, amelyet ezen pont eléréséig megtettek.

\setbox0\hbox{$M_1$}% \message{//depth:\the\dp0//}% \box0% mozgatásával az egyik nyaláb úthossza változtatható. Mivel a nyaláb az \setbox0\hbox{$M_1$}% \message{//depth:\the\dp0//}% \box0% és a sugárosztó közötti utat kétszer teszi meg, \setbox0\hbox{$M_1$}% \message{//depth:\the\dp0//}% \box0%-et 1/4 hullámhossznyival közelítve a sugárosztóhoz, a nyaláb úthossza 1/2 hullámhossznyival csökken. Eközben megváltozik az interferenciakép. A maximumok sugara oly módon csökken, hogy a korábbi minimumok helyét foglalják el. Ha \setbox0\hbox{$M_1$}% \message{//depth:\the\dp0//}% \box0%-et tovább mozgatjuk 1/4 hullámhossznyival a sugárosztó felé, a maximumok sugara tovább csökken úgy, hogy a maximumok és a minimumok ismét helyet cserélnek, és az új elrendezés megkülönböztethetetlen lesz az eredeti képtől.

Lassan mozgatva a tükröt egy meghatározott \setbox0\hbox{$d_N$}% \message{//depth:\the\dp0//}% \box0% távolságon, és közben leszámolva \setbox0\hbox{$N$}% \message{//depth:\the\dp0//}% \box0%-et, annak számát, hányszor jutott a gyűrűkép az eredeti állapotába, meghatározható a fény hullámhossza:

\[ \lambda = \frac{2d_N}{N}. \]

Ha a fény hullámhossza ismert, ugyanígy mérhető a \setbox0\hbox{$d_N$}% \message{//depth:\the\dp0//}% \box0% távolság.

Diffrakciós kép vizsgálata

A tapasztalat szerint egy akadály mellett elhaladó fénysugár az akadályoknál részben elhajlik, behatol az árnyéktérbe is. Ez a diffrakció (fényelhajlás) jelensége. A jelenséget a "Huygens-Fresnel-elv" segítségével lehet meg-magyarázni: a Huygens-Fresnel-elv alapján a hullámfelület minden pontja elemi hullámforrásnak tekintendő, és ezeknek az egymással koherens elemi gömbhullámoknak az interferenciája szabja meg a tér egy pontjában a fényhatást.

Példaképp vizsgáljuk meg az optikai rés esetét. A rés egy átlátszatlan felületen kialakított keskeny, a fény hullámhosszával összemérhető szélességű, hosszú nyílás. Világítsuk meg a rést egy koherens, párhuzamos fénynyalábbal (legegyszerűbben egy lézer fényével). A fény a résen áthaladva elhajlik. A réstől távol elhelyezett ernyőn a résből kiinduló elemi hullámok interferenciája alakítja ki a diffrakciós képet. A diffrakciós képet – az intenzitást a hely függvényében - egy fotodióda mozgatásával könnyen meg lehet mérni (3. ábra).

A k hullámszámvektor irányában a relatív intenzitást a Fourier-integrál segítségével lehet kiszámítani. Az intenzitás arányos az integrál abszolút értékének négyzetével:

\[ I(\pmb{k}) = \left \lvert \int_{-\infty}^{\infty} e^{\pmb{kx}i}f(\pmb{x})d\pmb{x} \right \rvert^2. \]

A kifejezésben

\[|\pmb{k}| = k = \frac{2\pi}{\lambda},\]
\[\pmb{kx} = kx sin \theta \approx kx\theta  \;  (\theta\ll1), \]
\[ f(x) = \begin{cases} \frac{1}{d} \; \mathsf{ha} \; x \in \left[-\frac{d}{2};\frac{d}{2}\right] \\ 0\; x \notin \left[-\frac{d}{2};\frac{d}{2}\right]. \end{cases} \]

Felhasználva, hogy