„Gamma spektroszkópia” változatai közötti eltérés

A Fizipedia wikiből
25. sor: 25. sor:
 
Az atommagok alfa- és béta-bomlásai, a maghasadás valamint a magreakciók gyakran a leánymag gerjesztett állapotához vezetnek. A magfolyamat során keletkezett atommag a gerjesztett állapotból általában egy vagy több gamma foton kibocsátásával tér vissza az alapállapotába. A radioaktív atommag bomlása során emittált gamma fotonok energiája, intenzitása vagy szögeloszlása információt hordoz a sugárzó atommag belső felépítéséről, szerkezetéről. Egy atommag több legerjesztődési folyamata is lehet, amit az ún. bomlássémával szoktak ábrázolni (1. ábra). Az 1. ábrán egy A tömegű és Z rendszámú atommag energianívóit a függőleges tengelyen, míg a vízszintes tengelyen a rendszámot ábrázoltuk.
 
Az atommagok alfa- és béta-bomlásai, a maghasadás valamint a magreakciók gyakran a leánymag gerjesztett állapotához vezetnek. A magfolyamat során keletkezett atommag a gerjesztett állapotból általában egy vagy több gamma foton kibocsátásával tér vissza az alapállapotába. A radioaktív atommag bomlása során emittált gamma fotonok energiája, intenzitása vagy szögeloszlása információt hordoz a sugárzó atommag belső felépítéséről, szerkezetéről. Egy atommag több legerjesztődési folyamata is lehet, amit az ún. bomlássémával szoktak ábrázolni (1. ábra). Az 1. ábrán egy A tömegű és Z rendszámú atommag energianívóit a függőleges tengelyen, míg a vízszintes tengelyen a rendszámot ábrázoltuk.
  
 +
A különböző bomlási útvonalakhoz más-más átmeneti valószínűség tartozik, amit az adott béta  vagy gamma-emisszió gyakoriságának nevezünk. A gyakorisági értékek az adott atommagra jellemző olyan nukleáris állandók, amik azt adják meg, hogy ha az adott magból 100 db elbomlik, akkor nagy valószínűséggel hány esetben emittál a mag adott energiájú béta-részecskét vagy gamma-fotont. A gamma-sugárzás és az anyag kölcsönhatása három alapvető folyamattal jellemezhető: fotoeffektus, Compton-szórás és párkeltés. Ezt a három alapvető fizikai folyamatot más elméleti tárgyak már részletesen elemezték ezért a jelen leírásban csak egy rövid áttekintést adunk.
  
 +
A fotoeffektus során a gamma-foton átadja a teljes energiáját egy atom valamelyik kötött elektronjának, amely szabaddá válik, miközben az elektronburokban egy elektronhiányos állapot jön létre. A detektor anyagában lejátszódó fotoeffektus hatására a félvezető belsejében olyan elektronok lesznek jelen, amelyek elegendő energiával rendelkeznek, ahhoz, hogy részt vegyenek az elektromos vezetési folyamatban. A jelenség
 +
hatáskeresztmetszete az alábbi (1) formulával írható le, ahol Z az anyag rendszáma, N az anyag atomsűrűsége:
  
 
[[Fájl:NAA 1.JPG|thumb]]
 
[[Fájl:NAA 1.JPG|thumb]]

A lap 2013. március 12., 10:45-kori változata

Mérésleírás pdf formátumban

SZERKESZTÉS ALATT! Kérjük egyelőre mindenki a fenti pdf mérésleírást használja a felkészüléshez!

1. Bevezetés

A gamma-spektrometria az atommagból valamilyen magfolyamat következtében (radioaktív bomlás, mesterséges vagy természetes magreakció) kilépő gamma sugárzás energiájának, intenzitásának, szögeloszlásának mérésével foglalkozik. A jelen laborgyakorlat lehetővé teszi az elméleti előadásokon hallott nukleáris méréstechnikai ismeretek elmélyítését és azok gyakorlati alkalmazásainak készségszintű elsajátítását. A gyakorlaton részt vevők betekintést nyernek a félvezető detektorra alapozott gamma-spektrometria alapjaiba, megismerik annak fontosabb eszközeit és a gamma-spektrumok kiértékelésének elemi lépéseit.

A gyakorlat alapvető mérőeszköze egy HPGe (High Purity Germanium) félvezető detektor, amely különböző mintákban lévő gamma-sugárzó izotópok azonosítására, azok abszolút és fajlagos aktivitásának meghatározására használható. A gamma spektrometria gyakorlati jelentőségét az adja, hogy számos területen alkalmazható a gamma-sugárzó izotópokkal kapcsolatos valamilyen analitikai vagy magfizikai probléma megoldásában. A magfizikai vonatkozású tudományos kutatásban a leggyakrabban az atommag energianívói energiájának és élettartamának meghatározására, izotópok bomlási sémáinak felderítésére, a belső konverziós együttható értékének mérésére, gamma-gamma szögkorreláció vizsgálatára stb. szokták alkalmazni.

A közvetlen gyakorlati célú hasznosítási területek a neutronaktivációs analízis, orvosi-, ipari-, mezőgazdasági nukleáris vonatkozású vizsgálatok a természetes és mesterséges radioizotópok analízisére, a környezet- és sugárvédelem gamma spektroszkópiai mérésekkel vizsgálható problémáinak megoldásában.

A gamma-spektrometriai gyakorlat során az alábbiakkal lehet megismerkedni:

  • gamma-sugárzás és az anyag közötti kölcsönhatások megfigyelése
  • gamma-spektrométer felépítése, az egyes részegységek spektroszkópiai jellemzői
  • HPGe detektorok jelfeldolgozó elektronika alkalmazása a gamma-spektrometriában
  • gamma-spektrumok kvantitatív kiértékelése
  • mérési adatok feldolgozása, azok bizonytalanságának becslése

2. Elméleti összefoglaló

Fotoeffektus, szórás, párkeltés, emisszió és abszorpció:

Az atommagok alfa- és béta-bomlásai, a maghasadás valamint a magreakciók gyakran a leánymag gerjesztett állapotához vezetnek. A magfolyamat során keletkezett atommag a gerjesztett állapotból általában egy vagy több gamma foton kibocsátásával tér vissza az alapállapotába. A radioaktív atommag bomlása során emittált gamma fotonok energiája, intenzitása vagy szögeloszlása információt hordoz a sugárzó atommag belső felépítéséről, szerkezetéről. Egy atommag több legerjesztődési folyamata is lehet, amit az ún. bomlássémával szoktak ábrázolni (1. ábra). Az 1. ábrán egy A tömegű és Z rendszámú atommag energianívóit a függőleges tengelyen, míg a vízszintes tengelyen a rendszámot ábrázoltuk.

A különböző bomlási útvonalakhoz más-más átmeneti valószínűség tartozik, amit az adott béta vagy gamma-emisszió gyakoriságának nevezünk. A gyakorisági értékek az adott atommagra jellemző olyan nukleáris állandók, amik azt adják meg, hogy ha az adott magból 100 db elbomlik, akkor nagy valószínűséggel hány esetben emittál a mag adott energiájú béta-részecskét vagy gamma-fotont. A gamma-sugárzás és az anyag kölcsönhatása három alapvető folyamattal jellemezhető: fotoeffektus, Compton-szórás és párkeltés. Ezt a három alapvető fizikai folyamatot más elméleti tárgyak már részletesen elemezték ezért a jelen leírásban csak egy rövid áttekintést adunk.

A fotoeffektus során a gamma-foton átadja a teljes energiáját egy atom valamelyik kötött elektronjának, amely szabaddá válik, miközben az elektronburokban egy elektronhiányos állapot jön létre. A detektor anyagában lejátszódó fotoeffektus hatására a félvezető belsejében olyan elektronok lesznek jelen, amelyek elegendő energiával rendelkeznek, ahhoz, hogy részt vegyenek az elektromos vezetési folyamatban. A jelenség hatáskeresztmetszete az alábbi (1) formulával írható le, ahol Z az anyag rendszáma, N az anyag atomsűrűsége:

NAA 1.JPG