„Lock-in programozás, kvarcszenzor vizsgálata” változatai közötti eltérés
68. sor: | 68. sor: | ||
| align="center"|4. ábra. ''A kvarcoszcillátor elektromos viselkedése egy soros RLC körrel, illetve egy azzal párhuzamosan kötött $C_0$ kapacitással modellezhető.'' | | align="center"|4. ábra. ''A kvarcoszcillátor elektromos viselkedése egy soros RLC körrel, illetve egy azzal párhuzamosan kötött $C_0$ kapacitással modellezhető.'' | ||
|} | |} | ||
− | + | </wlatex> | |
==Mérési feladatok== | ==Mérési feladatok== | ||
<wlatex> | <wlatex> | ||
106. sor: | 106. sor: | ||
*BNC T-elosztó | *BNC T-elosztó | ||
*Forrasztó páka | *Forrasztó páka | ||
− | |||
− | |||
</wlatex> | </wlatex> |
A lap 2013. szeptember 29., 06:08-kori változata
Tartalomjegyzék |
A mérés célja
A mérés célja a Stanford Research Systems SR830 típusú digitális lock-in erősítő használatának és programozásának megismerése, tesztmérés elvégzése egy párhuzamos LC körön, illetve egy atomerő-mikroszkópokban is használt kvarcszenzor vizsgálata.
Órákban használt kvarcoszcillátor nanofizikai alkalmazása
A hangvilla alakú kvarcoszcillátort (1. ábra, bal oldal) kvarcórákban, elektronikai áramkörökben használják órajel előállítására, olcsón beszerezhető - körülbelül 20 Ft/db. Az oszcillátor egy hangvilla alakú kvarc (Tuning Fork vagy röviden TF-nek is szokták nevezni), a legfontosabb jellemzője a rezonancia-frekvenciájának az értéke, névlegesen 32,768kHz (=215 Hz).
A kvarc piezoelektromos viselkedésének köszönhetően a hangvilla rezgése elektromos feszültség segítségével gerjeszthető. Az oszcillátor természetesen több rezgési módussal is rendelkezik, azonban az elektródák úgy vannak kialakítva, hogy alapvetően azt a módust gerjesztik, melyben az ágak a hangvilla síkjában, tükörszimmetrikusan rezegnek. Ezen módus sem erővel sem forgatónyomatékkal nem hat a rögzítési pontra, így gyengén csatolódik a külvilághoz. Ennek köszönhetően a hangvilla óriási jósági tényezővel rendelkezik.
A kontaktusokra váltakozó feszültséget kapcsolva, a kristály periodikusan deformálódik, rezgésbe jön. Amikor a rákapcsolt váltakozó feszültség frekvenciája megegyezik a kvarckristály anyaga és méretei által meghatározott rezonancia-frekvenciával, a rezgési amplitúdó sokszorosára nő. A rezgés detektálásához a kvarcoszcillátoron folyó áramot mérjük, ami a hangvilla ágainak sebességével arányos, a rezonancia-frekvenciánál maximuma van (1. ábra, jobb oldal). Ez az egyszerű kvarcszenzor atomerő mikroszkóp érzékelőjeként is kiválóan használható.
1. ábra. Kvarcórákban használt hangvilla alakú kvarcoszcillátor (bal oldal) és annak rezonancia-görbéje (jobb oldal), forrás: Magyarkuti András diplomamunka, BME Fizika Tanszék, 2013. |
Egy hagyományos atomerő mikroszkópban (atomic force microscope, AFM) egy laprugó végére helyeznek el egy hegyes tűt, amit közel visznek a felülethez. A laprugó mozgását egy lézer segítségével detektálják. Dinamikus üzemmódban a laprugót rezonancia-frekvenciájához közel rezgetik. A tű és a minta közötti erőhatás miatt elhangolódik a rezonancia-frekvencia. Mérés közben a tűvel x-y irányban (a minta síkjával párhuzamosan) pásztáznak, miközben z irányban úgy mozgatják a tűt, hogy a szabad rezgéshez képest mindig ugyanannyival legyen elhangolódva a rezonancia-frekvenciája, azaz pásztázás közben folyamatosan ugyanakkora erő hasson a tű és a minta között (2. ábra). Így a tűvel nagyjából konstans, nanométeres nagyságrendű távolságban pásztáznak a minta fölött, és a z irányú mozgatás x-y függéséből leolvasható a minta topográfiája akár atomi felbontással.
2. ábra. Atomerő mikroszkóp működése nem kontakt, dinamikus üzemmódban, forrás: Magyarkuti András diploma előadás, BME Fizika Tanszék, 2013. |
Alacsonyhőmérsékleti AFM méréseknél a laprugó mozgásának optikai detektálása nagyon nehéz, így célszerűbb olyan szenzort alkalmazni, melynek mozgása csupán elektromosan detektálható. Erre kiválóan alkalmas az órákban használt kvarcoszcillátor: a hangvilla egyik ágára ragasztott tű hat kölcsön a felülettel, és az óriási jósági tényező miatt egészen kicsi erőhatás is jelentős rezonancia-frekvencia változáshoz vezet, így a tű és minta közötti erőhatás viszonylag könnyen detektálható.
A 3. ábrán látható egy elektronsugaras litográfiával készült majd arannyal bevont felületű nanoszerkezeten történő mérés alagútmikroszkóp üzemmódban - az alagútáramra szabályozva, majd ezt követően ugyanazon a helyen atomerő mikroszkóp üzemmódban - a kvarcoszcillátor frekvencia-eltolódására, azaz a minta és a tű között fellépő erőre szabályozva. Mindkét esetben pár száz nm széles, párhuzamos csíkok láthatóak.
3. ábra. Elektronsugaras litográfiával készült nanoszerkezeten történő mérés STM majd AFM üzemmódban, forrás: Magyarkuti András diplomamunka, BME Fizika Tanszék, 2013. |
Pásztázó szondás mikroszkópokról részletesebb információ a nanofizika tudásbázis Nanoszerkezetek előállítási és vizsgálati technikái fejezetében található.
A kvarcoszcillátor leírása egy egyszerű modellel
A kvarcoszcillátor mozgását írjuk le az elképzelhető legegyszerűbb modellel, melyben egy effektív rugóállandójú rugóra akasztott effektív tömegű test mozog egy dimenzióban, z irányban. Természetesen a kvarc piezoelektromos tulajdonságait is figyelembe kell venni, amit a
mátrix-egyenlettel tehetünk meg, ahol az elmozdulás, az elektródákon megjelenő töltés, a kifejtett erő, az elektródák közötti feszültség, az elmozdulás egységnyi feszültség hatására terhelés nélkül (), a rugóállandó zérus feszültségnél, pedig a kapacitás (egységnyi feszültségre eső töltésfelhalmozódás) mellett. Energiamegmaradási megfontolásból a fenti mátrix determinánsa , azaz . Ez alapján általánosan elmondható, hogy:
ahol .
Dinamikus működés leírásához a tehetetlenséget és a súrlódásból, közegellenállásból származó, sebességgel arányos csillapítást is figyelembe kell venni, így az oszcillátor elmozdulására a
differenciál-egyenlet írható fel, ahol a csillapítási tényező.
A összefüggés alapján a szenzor árama az oszcillátor sebességével arányos:
Ezt a fenti differenciálegyenletbe hellyettesítve egy feszültséggel gerjesztett soros elektromos rezgőkör (RLC kör) differenciálegyenletét kapjuk, ahol az , és elektromos paraméterek a piezoelektromos együtthatón keresztül megfeleltethetőek a , és mechanikai paramétereknek.
Fontos azonban megjegyezni, hogy a kvarcosszcillátor elektródái között akkor is tapasztalnánk kapacitást, ha a kvarc nem lenne piezoelektromos, így az oszcillátor elektromos viselkedésének leírásához az RLC körrel párhuzamos kapacitást is figyelembe kell venni. Ezzel a kiegészítéssel, azaz a 4. ábrán látható helyettesítő képpel egészen pontosan leírható a kvarc-oszcillátor elektromos viselkedése.
4. ábra. A kvarcoszcillátor elektromos viselkedése egy soros RLC körrel, illetve egy azzal párhuzamosan kötött kapacitással modellezhető. |
Mérési feladatok
1. Áramgenerátoros meghajtással vegyük fel a mellékelt párhuzamos LC kör impedanciáját a frekvencia függvényében, határozzuk meg a rezonancia-frekvenciát, a kapacitás az induktivitás ill. az induktivitás soros ellenállásának az értékét. A mért görbét hasonlítsuk össze az elméleti várakozásokkal. A méréshez írjunk számítógépes programot, mely GPIB porton kommunikál a műszerrel. A program adott számú lépésben logaritmikus skálán változtassa a frekvenciát egy megadott kezdő és végfrekvencia között, és vegye fel a bemeneten mért jel X és Y komponensét a frekvencia függvényében. Figyeljünk az időállandó helyes beállítására!
2. Az 1. feladatban készült mérőprogramból kiindulva vegyük fel a mellékelt kvarc oszcillátor rezonancia-görbéjét feszültséggenerátoros meghajtást használva (a rezonancia-frekvencia környékén nagyobb pontossággal!). Ennél a mérésnél a pontosabb frekvenciabeállítás érdekében jelforrásként egy Agilent 33220A függvénygenerátort használjunk. A Lock-In generátorát az Agilent függvénygenerátorhoz szinkronizáljuk, a kvarc oszcillátorra a Lock-In kimenetéről adjuk ki a jelet. Az oszcillátor meghajtásához 1:100 osztót használjunk a Lock-In 5V-os kimeneti jelszintje mellett. Ügyeljünk arra, hogy a rezonancia környékén gerjesztett oszcillátor rezgése nagyon lassan cseng le, így a frekvencia változtatásakor sokat kell várni arra, hogy az új frekvenciához tartozó állandósult állapot kialakuljon.
3. Mérjük meg a mellékelt -os, -os, -os és -os ellenállások zaját (X noise, Y noise) rögzített, 1kHz és 2kHz közötti frekvenciánál. A mérést hosszú ideig végezzük, és számoljunk időátlagot. Ügyeljünk arra, hogy a kezdeti tranziens szakaszt ne számoljuk bele az időátlagba. Lehetőség szerint a mérést két különböző frekvencián végezzük el. A mért eredmények alapján határozzuk meg a hőmérsékletet és annak hibáját. Az összes mérést ugyan olyan Lock-In beállítás mellett végezzünk, különösen figyeljünk a megfelelő időállandó és méréshatár megválasztására. Használjunk 12dB/Oct ill. Low Noise beállításokat.
3. ábra |
4. ábra |
Függelék: a méréshez használt eszközök
- SR830 Lock-In + használati utasítás + tápkábel
- Agilent 33220A függvénygenerátor + használati utasítás (elektronikusan) + tápkábel
- GPIB kártya USB csatlakozóval + 1 GPIB kábel
- LC kör fém dobozban
- Kvarc oszcillátor fém dobozban
- Fém doboz ellenállások befogásához termikus zaj méréséhez + , , , -os ellenállások
- Ellenállásdekád
- -os lezáró
- Kézi multiméter
- Csavarhúzó
- 6db. közepes BNC-BNC kábel
- BNC T-elosztó
- Forrasztó páka