„Fizika 1 - Villamosmérnöki alapszak” változatai közötti eltérés

A Fizipedia wikiből
(Tárgy adatok (2014. őszi félév) - változtatás alatt!!)
(A tantárgy részletes tematikája (heti bontásban)- változtatás alatt!)
27. sor: 27. sor:
 
A tantárgy keretében tárgyalt mechanika, speciális relativitás elmélet és hőtan csak az általános ismeretek közlésére szorítkozik. Itt elsősorban az axiomatikus felépítést és annak tapasztalati megalapozását van lehetőség megtanítani. A jelenségcentrikus képzést valamennyi előadásnál 10 perc, a tárgyhoz tartozó példafeladat bemutatása vagy demonstráció segíti.
 
A tantárgy keretében tárgyalt mechanika, speciális relativitás elmélet és hőtan csak az általános ismeretek közlésére szorítkozik. Itt elsősorban az axiomatikus felépítést és annak tapasztalati megalapozását van lehetőség megtanítani. A jelenségcentrikus képzést valamennyi előadásnál 10 perc, a tárgyhoz tartozó példafeladat bemutatása vagy demonstráció segíti.
  
==A tantárgy részletes tematikája (heti bontásban)- változtatás alatt! ==
+
==A Fizika 1 tantárgy részletes tematikája heti bontásban - változtatás alatt! ==
'''1. hét'''
+
  
 
:'''1. előadás'''  
 
:'''1. előadás'''  
  
:'''KÍSÉRLETEK:''' Kísérletek légpárnás sínen (egyenes vonalú mozgások). Mikola cső. Galilei lejtő, Galilei ejtőzsinór.
+
:'''Matematikai alapok'''  
  
:'''AZ ELŐADÁS ANYAGA '''
+
::Vektorszámítás, trigonometria, egyenletek, koordinátarendszerek, függvények. Skaláris és vektoriális szorzat. Példák vektorok, vektorműveletek szemléltetésére utalva a leendő kinematikai, dinamikai összefüggésekre. Függvények változási sebessége: meredekség, érintő. Egyszerű függvények érintőjének kiszámolása (deriválása).
  
::BEVEZETÉS:  A fizika tárgya és módszerei. Elmélet és megfigyelés. Tér, idő, mérés.
+
*[[Media:matematikai_osszefoglalo.pdf|Matematikai összefoglaló]]
 
+
::EGYENESVONALÚ MOZGÁSOK: A gyorsulás. Az egyenes vonalú egyenletesen gyorsuló mozgás kinematikai egyenletei. A kinematikai egyenletek levezetése diferenciálszámítással.
+
 
+
::SÍKBELI ÉS TÉRBELI MOZGÁS: Koordinátarendszerek és vonatkoztatási rendszerek. Hely, elmozdulás, sebesség és sebességvektor. Kétdimenziós koordinátarendszerek és a helyzetvektor. Az elmozdulás vektor. A sík- és térbeli mozgás sebessége és gyorsulása.
+
 
+
::KÖRMOZGÁS: Síkbeli polár koordináták. Egységvektorok deriválása. A körmozgás sebessége és gyorsulása. Általános görbe vonalú mozgás.
+
 
+
*[[Media:ellkérd1.1ea.pdf|Tankönyvi fejezetek és ellenőrző kérdések]]
+
 
+
'''2. hét'''
+
  
 
:'''2. előadás'''  
 
:'''2. előadás'''  
  
:'''KÍSÉRLETEK:''' A tehetetlenségi törvény szemléltetése (madzagtépés, diótörés fejen) Erők vektori összegezése.  
+
::A függvénygörbe alatti terület kiszámolása. Egyszerű példák a differenciál és integrálszámítás témaköréből rámutatva a leendő kinematikai összefüggésekre.
 
+
:'''AZ ELŐADÁS ANYAGA '''
+
 
+
::A NEWTON-FÉLE MOZGÁSTÖRVÉNYEK: Megfigyelések és kísérletek a pontszerű részecskék mozgására vonatkozóan. Az impulzus. Newton második törvénye. Tömeg és súly. Newton második törvényének alkalmazása. Súrlódás. Newton harmadik törvénye
+
::MUNKA: A mechanikai munka definíciója.
+
  
 
:'''3. előadás'''  
 
:'''3. előadás'''  
 
:'''AZ ELŐADÁS ANYAGA '''
 
  
 
::MUNKA, ENERGIA, TELJESÍTMÉNY: A kinetikus energia és a munkatétel. A helyzeti (potenciális) energia.. A teljesítmény
 
::MUNKA, ENERGIA, TELJESÍTMÉNY: A kinetikus energia és a munkatétel. A helyzeti (potenciális) energia.. A teljesítmény

A lap 2014. szeptember 2., 09:25-kori változata


Tartalomjegyzék

Tárgy adatok (2014. őszi félév) - változtatás alatt!!

  • Előadók: Márkus Ferenc (TTK Fizika Tanszék), Barócsi Attila, Péczeli Imre (TTK Atomfizika Tanszék)
  • Tantárgykód: TE11AX21
  • Követelmények: 3/1/0/v
  • Részletes követelmények
  • Kredit: 4
  • Nyelv: magyar
  • Félévközi számonkérések:
0. zh: 2014.09.15. 18:15 - 20:00
Pót0. zh: 2014.09.22. 18:15 - 20:00
6 kis zh a számolási gyakorlatokon
Nagy zh: 2014.12.04. 08:15 - 10:00
PótNagy zh: 2014.12.15. 10:15 - 12:00

A tantárgy célkitűzése

A tárgy célja a középiskolában is már valamilyen szinten megismert fizikai jelenségek mögött megbújó törvényszerűségek rendszerezése, felépítése, egységes gondolati keretbe illesztése, végső soron a természettudományos szemlélet kialakítása és a modellalkotási készség fejlesztése. A fizika alaptörvényeiről elsajátított egyetemi szintű ismeretek nyitják meg az utat ahhoz, hogy később a képzésben részt vevő hallgató a modern korbeli tudományos és műszaki eredményekhez, eszközökhöz értő módon tudjon viszonyulni és alkotni.

A tantárgy keretében tárgyalt mechanika, speciális relativitás elmélet és hőtan csak az általános ismeretek közlésére szorítkozik. Itt elsősorban az axiomatikus felépítést és annak tapasztalati megalapozását van lehetőség megtanítani. A jelenségcentrikus képzést valamennyi előadásnál 10 perc, a tárgyhoz tartozó példafeladat bemutatása vagy demonstráció segíti.

A Fizika 1 tantárgy részletes tematikája heti bontásban - változtatás alatt!

1. előadás
Matematikai alapok
Vektorszámítás, trigonometria, egyenletek, koordinátarendszerek, függvények. Skaláris és vektoriális szorzat. Példák vektorok, vektorműveletek szemléltetésére utalva a leendő kinematikai, dinamikai összefüggésekre. Függvények változási sebessége: meredekség, érintő. Egyszerű függvények érintőjének kiszámolása (deriválása).
2. előadás
A függvénygörbe alatti terület kiszámolása. Egyszerű példák a differenciál és integrálszámítás témaköréből rámutatva a leendő kinematikai összefüggésekre.
3. előadás
MUNKA, ENERGIA, TELJESÍTMÉNY: A kinetikus energia és a munkatétel. A helyzeti (potenciális) energia.. A teljesítmény

3. hét

4. előadás
KÍSÉRLETEK:Ütközések légpárnás sínen. Rakétamozgás (cseppfolyós nitrogénnal).
AZ ELŐADÁS ANYAGA
KONZERVATÍV ERŐK ÉS A MECHANIKAI ENERGIA MEGMARADÁS :Konzervatív erők és nem-konzervatív erők. A potenciális energia. A gravitációs erő és potenciál. A centrális erőtér. A mechanikai energia megmaradása. Energia diagramok. A mesterséges holdak mozgásának energiaviszonyai. A mozgás pályája, a Kepler törvények (csak röviden!) A szökési sebesség és a kötési energia. Az energia megmaradás súrlódásos rendszerekben, (a mechanikai) energia fogalom általánosítása. A mikroszkopikus és makroszkopikus szemlélet (174.oldal!).

4. hét

5. előadás
AZ ELŐADÁS ANYAGA
A TÖMEGPOT PERDÜLETE. Centrális erők és a perdület megmaradása.
AZ IMPULZUS MEGMARADÁS : Az impulzus megmaradás. Az erőimpulzus. Az m(t) tömegű testek dinamikája. A rakétamozgás.
ÜTKÖZÉSEK (csak röviden!): Rugalmas és rugalmatlan ütközések. A tömegközéppont és a tömegközéppont tétel kétrészecske ütközések során.
6. előadás
AZ ELŐADÁS ANYAGA
PONTRENDSZEREK DINAMIKÁJA: A tömegközéppont tétel. Pontrendszerek impulzusa, perdülete, energiája. Pontrendszerek dinamikája: Impulzus, perdület, energia megváltoz(tat)ása.

5. hét

7. előadás
KÍSÉRLETEK: Kísérletek fogó széken. Pörgettyűmozgás.
AZ ELŐADÁS ANYAGA
Megjegyzés: A merev testek dinamikáját a KIEGÉSZÍTÉS-ben elmondottak már jól előkészítették. Itt már csak hivatkozni kell rá: 10.4, 12.2, 12.8, 13.2, 13.5
PONTRENDSZEREK(folyt.) Pontrendszerek perdülete. Pontrendszerek energiája. Megmaradási tételek.
A MEREV TEST FORGÓ MOZGÁSÁNAK KINEMATIKÁJA (csak röviden)Testek általános síkmozgása. A síkbeli forgás kinematikai leírása, a szögsebesség (skalár) és a szöggyorsulás. Gördülés (csúszás nélkül).
A FORGÓ MOZGÁS DINAMIKÁJA (csak röviden) Rögzített (szimmetria) tengely körül forgó merev test mozgása. A szögsebesség vektor.

6. hét

8. előadás
AZ ELŐADÁS ANYAGA
MEREV TEST FORGÓ MOZGÁSÁNAK DINAMATIKÁJA (folyt.) A tehetetlenségi nyomaték. Az impulzusmomentum (perdület) A forgatónyomaték.
9. előadás
AZ ELŐADÁS ANYAGA
MEREV TESTEK (folyt.)A tehetetlenségi nyomaték és párhuzamos tengelyek tétele (Steiner tétel). Az impulzusmomentum (perdület) megmaradása. A forgó testen végzett munka és a forgási energia. Felületen való gördülés dinamikája. A pörgettyű.

7. hét

10. előadás
KÍSÉRLETEK:Centrifugál regulátor és szeparátor. Forgó rugalmas gyűrű torzulása. Forgó széken lengő inga. Coriolis erőhatás kimutatása kormozott forgó lappal.
AZ ELŐADÁS ANYAGA
A MOZGÁS LEÍRÁSA GYORSULÓ KOORDINÁTARENDSZERBEN (csak röviden) : Egyenes vonalú gyorsuló koordinátarendszerek. Forgó koordinátarendszerek. A centrifugális erő és a Coriolis erő. A Föld forgásából származó effektusok: a Foucault inga, lövedékek mozgása, a ciklonok kialakulása.

8. hét

11. előadás
AZ ELŐADÁS ANYAGA
A SPECIÁLIS RELATIVITÁSELMÉLET (Alapfogalmak). A Galilei-transzformáció. A speciális relativitáselmélet posztulátumai. Az órák szinkronizálása. A Lorentz-transzformáció.
12. előadás
AZ ELŐADÁS ANYAGA
A SPECIÁLIS RELATIVITÁSELMÉLET (Kinematika) . A nyugalmi hossz. A mozgó órák aszinkronitása. A sajátidő. Az ikerparadoxon. A kauzalitás abszolút volta.


9. hét

13. előadás
AZ ELŐADÁS ANYAGA
A SPECIÁLIS RELATIVITÁSELMÉLET (Dinamika): A relativisztikus impulzus. Nyugalmi tömeg. A relativisztikus sebesség összeadás. A relativisztikus energia. Az általános relativitás elmélet alapgondolata

10. hét

14. előadás
KÍSÉRLETEK:Szabad és gerjesztett csillapított rezgések bemutatása rugós rendszeren. Pohl- féle torziós inga.
AZ ELŐADÁS ANYAGA
REZGÉSEK: Egyszerű harmonikus rezgő mozgás. A harmonikus rezgő mozgás energiaviszonyai. Példák (fonálinga, torziós inga, fizikai inga). Csillapított és gerjesztett rezgések, rezonancia. Rezgések összeadása, Fourier spektrum.
15. előadás
KÍSÉRLETEK: Torziós hullámok bemutatása. Hullámkádas kísérletek.. Állóhullámok kimutatása gázokban, Reubens-féle cső. Hullámok visszaverődése hullámkádban. Lebegés jelenségének a bemutatása hangvillával. Ultrahang lebegés (hallható). Chladni ábrák. Hangspektrum megjelelnítése (Fourier analízis).
AZ ELŐADÁS ANYAGA
HULLÁMMOZGÁS: (1 dimenziós) Hullám leírása rugalmas szálon. A hullámegyenlet megalkotása. A hullámegyenlet általános megoldása. Harmonikus hullámok. Síkbeli és térbeli hullámok. Hullámok visszaverődése. A szuperpozíció elve, állóhullámok. A Doppler jelenség. A lökéshullámok. A lebegés. dB skála.

11. hét

16. előadás
KÍSÉRLETEK:Gázhőmérő. Hővezetés. Hőtágulás (gyűrű-tengely rendszer).
AZ ELŐADÁS ANYAGA
AZ IDEÁLIS GÁZ ÉS A KINETIKUS GÁZELMÉLET: Az ideális gáz. Az ideális gázmodell.
HŐMENNYISÉG ÉS HŐMÉRSÉKLET: A hőmérséklet. Az állandó térfogatú gázhőmérő.A hőmennyiség, a hővezetés, a. hőterjedés áramlással, hőterjedés sugárzással (rövid összefoglalás).Hőfelvétel és fázisátalakulás.

12. hét

17. előadás
AZ ELŐADÁS ANYAGA
A TERMODINAMIKA ELSŐ FŐTÉTELE: Alapfogalmak. A hő, az energia, a munka és az első főtétel. Reverzibilis és irreverzibilis folyamatok. Speciális folyamatok és mólhőik.
18. előadás
AZ ELŐADÁS ANYAGA
A TERMODINAMIKA ELSŐ FŐTÉTELE (Folytatás):Szabadsági fokok és az ekvipartíció tétele. Szilárd testek fajlagos hőkapacitása.A hökapacitások hőmérsékletfüggése és a kvantált energiaskála.

13. hét

19. előadás
KÍSÉRLETEK: Kísérletek Stirling motorral (hőerőgép szemléltetése).
AZ ELŐADÁS ANYAGA
A TERMODINAMIKA MÁSODIK FŐTÉTELE :A második főtétel. A Carnot körfolyamat. Hőerőgépek hatásfoka. Néhány hőerőgép típus. Az elérhető legnagyobb hatásfok, a Carnot körfolyamat hatásfoka. A Kelvin-féle abszolút hőmérsékleti skála. A termodinamika harmadik főtétele.

14. hét

20. előadás
AZ ELŐADÁS ANYAGA
AZ ENTRÓPIA : Entrópia makroszkópikus szempontból. Entrópia vizsgálata mikroszkópikus szempontból. Az entrópia és a nem felhasználható energia. Entrópia és információ. Örökmozgók.
21. előadás
KONZULTÁCIÓS GYAKORLAT

Számítási gyakorlatok - változtatás alatt!!

Elméleti gyakorló

Irodalom

"Hudson-Nelson: Útban a modern fizikához"