„Termoelektromos jelenségek” változatai közötti eltérés
11. sor: | 11. sor: | ||
|} | |} | ||
Az elektromos áramot hasonlóan számíthatjuk az elektródák kémiai potenciál és hőmérsékletfüggő Fermi-függvényei segítségével: | Az elektromos áramot hasonlóan számíthatjuk az elektródák kémiai potenciál és hőmérsékletfüggő Fermi-függvényei segítségével: | ||
− | $$I=\frac{2 e}{h} \cdot \int \mathcal{T(\varepsilon)}\cdot \left[f_1(\varepsilon,\mu_1,T_1)-f_2(\varepsilon,\mu_2,T_2)\right]\mathrm{d}\varepsilon$$ | + | $$I=\frac{2 e}{h} \cdot \int \mathcal{T(\varepsilon)}\cdot \left[f_1(\varepsilon,\mu_1,T_1)-f_2(\varepsilon,\mu_2,T_2)\right]\mathrm{d}\varepsilon.$$ |
A termodinamikából ismert $dQ=dE-\mu dN$ összefüggés alapján hasonlóan származtatható az elektródából a nanovezetékbe folyó $I_Q$ hőáram is: | A termodinamikából ismert $dQ=dE-\mu dN$ összefüggés alapján hasonlóan származtatható az elektródából a nanovezetékbe folyó $I_Q$ hőáram is: | ||
$$\frac{2}{L} \sum (\varepsilon_k-\mu) \cdot v_k \cdot f(\varepsilon_k) = \frac{2}{h}\int (\varepsilon-\mu) \cdot f(\varepsilon)\,\mathrm{d} \varepsilon \rightarrow I_Q,$$ | $$\frac{2}{L} \sum (\varepsilon_k-\mu) \cdot v_k \cdot f(\varepsilon_k) = \frac{2}{h}\int (\varepsilon-\mu) \cdot f(\varepsilon)\,\mathrm{d} \varepsilon \rightarrow I_Q,$$ |
A lap 2018. március 7., 20:42-kori változata
A Landauer-formula tárgyalásakor láttuk, hogy egy elektródából egy egycsatornás nanovezetékbe folyó áram az elektróda Fermi-függvényének energia szerinti integrálja szerint származtatható:
Ha egy transzmissziós valószínűségű szórócentrumot tartalmazó egycsatornás nanovezeték elektródái közé feszültséget kapcsolunk, a nanovezetékben
áram folyik, mely alapján vezetőképességet kapunk. A következőkben azt vizsgáljuk meg, hogy mi történik, ha elektródáknak nem csak a kémiai potenciálja tér el, hanem a hőmérsékletük is különböző lehet (1. ábra).1. ábra. Különböző kémiai potenciálú és hőmérsékletű elektródák közötti átmeneti valószínűségű szórócentrummal rendelkező egycsatornás nanovezeték elektromos és hőtranszport tulajdonságaira vagyunk kíváncsiak. |
Az elektromos áramot hasonlóan számíthatjuk az elektródák kémiai potenciál és hőmérsékletfüggő Fermi-függvényei segítségével:
A termodinamikából ismert összefüggés alapján hasonlóan származtatható az elektródából a nanovezetékbe folyó hőáram is:
illetve ennek megfelelően a két elektróda között folyó hőáram transzmissziós valószínűség esetén:
Itt fontos megjegyezni, hogy ha az első elektródából/elektródába folyó hőáramot számítjuk, akkor a fenti képletben szerepel. Ugyanígy számíthatnánk a 2. elektródából/elektródába folyó hőáramot, ekkor az energia szerinti integrálban szorzófaktor szerepelne. Mivel ez a két számolás ugyanakkora hőáramot kell hogy adjon, így a kétféle számolás szükségszerűen ugyanarra az eredményre vezet.
A fentiek alapján az elektromos vezetőképesség számolását (Landauer-formula) kiegészítve kiszámolhatjuk az 1. ábrán látható rendszer hővezetőképsségét, illettve Seebeck- és Peltier-együtthatóját is.
Termofeszültség számolása (Seebeck-effektus)
Számoljuk ki az 1. ábrán szereplő rendszerre az elektromos áramot a két elektróda eltérő hőmérséklete esetén! Ehhez hívjuk segítségül a szilárdtestfizika alapjai tárgyban már megismert Sommerfeld-sorfejtést, melynek segítségével egy tetszőleges energiafüggő mennyiség Fermi-fügvénnyel vett szorzatának integrálja közelíthető:
Ezen Sommerfeld-sorfejtés alapját az képezi, hogy az függvényt alakban közelítjük, ahol a függvényt a 2. ábra szemlélteti. A Sommerfeld-sorfejtés első tagja a zérus hőmérsékletű Fermi-függvénnyel, azaz -nél zérussá váló lépcsőfügvénnyel vett integrál. A második tag energiafüggetlen esetén értelemszerűen zérust ad (lásd 2. ábra), így ezen integrál első rendben -vel arányos. A 2. ábra alpján a függés is indokolható.
2. ábra. Sommerfeld-sorfejtés |
A Sommerfeld-sorfejtés alapján:
Ha energiafüggését csak lineáris rendben tekintjük, , így
ahol , , , pedig a transzmissziós valószínűség átlaga és között.
3. ábra. Seebeck-effektus |
Hővezetőképesség, Wiedemann-Franz törvény