„Introduction to Solid State Physics” változatai közötti eltérés
(→Általános adatok) |
(→Topics) |
||
31. sor: | 31. sor: | ||
8. X-ray diffraction: Miller indices, Laue and Bragg conditions | 8. X-ray diffraction: Miller indices, Laue and Bragg conditions | ||
− | 9. | + | 9. X-ray diffraction II.: systematic absences, powder diffraction |
10. Electrons in solids: nearly free electron model, Bloch's theorem, electronic bands | 10. Electrons in solids: nearly free electron model, Bloch's theorem, electronic bands |
A lap 2018. szeptember 23., 15:02-kori változata
Általános adatok
- Course code: BMETE11AF05;
- Requirements: 2/0/0/V/2;
- Semester: Fall;
- Language: English;
- Responsible teacher: György Mihály, full professor
- Lecturer: Máté Vigh, assistant professor
- Department: Department of Physics
- Programme: BSc Physics
- Exam: Oral exam at the end of semester
Topics
1. Quantum distributions: Bose-Einstein and Fermi-Dirac statistics
2. Heat capacity of solids: Einstein's model and Debye's model
3. Electrons in metals: Drude theory
4. More electrons in metals: Sommerfeld (free electron) theory
5. One-dimensional model of compressibility, sound and thermal expansion
6. Vibrations of a one-dimensional atomic chain
7. Geometry of solids: crystal structure, lattice, reciprocal lattice, Brillouin-zone
8. X-ray diffraction: Miller indices, Laue and Bragg conditions
9. X-ray diffraction II.: systematic absences, powder diffraction
10. Electrons in solids: nearly free electron model, Bloch's theorem, electronic bands
11. Electrons in solids II.: tight binding model
12. Semiconductor physics: electrons and holes, doping, impurity states, p-n junction
Literature
Steven H. Simon: The Oxford Solid State Basics
N. W. Ashcroft and N. D. Mermin: Solid State Physics
C. Kittel: Introduction to Solid State Physics