„Mérések interferométerrel” változatai közötti eltérés

A Fizipedia wikiből
106. sor: 106. sor:
 
===1. Piros félvezető lézer koherencia hosszának mérése Fabry-Pérot interferométerrel===
 
===1. Piros félvezető lézer koherencia hosszának mérése Fabry-Pérot interferométerrel===
  
''''1.'''' Állítsunk össze a Faby-Pérot interferométer elrenedzést a leiratban ismertetett módon a piros félvezető lézer lézert használva!
+
'''a)''' Állítsunk össze a Faby-Pérot interferométer elrenedzést a leiratban ismertetett módon a piros félvezető lézer lézert használva!
  
'''2.''' Állítsuk a mikrométert középállásba (közelítőleg 500 µm)!  
+
'''b)''' Állítsuk a mikrométert középállásba (közelítőleg 500 µm)!  
  
 
* ''Ebben a helyzetben a leginkább lineáris az összefüggés a mikrométeren leolvasott érték és a tükör elmozdulása között.''
 
* ''Ebben a helyzetben a leginkább lineáris az összefüggés a mikrométeren leolvasott érték és a tükör elmozdulása között.''
  
'''3.''' Forgassuk el a mikrométer gombját egy teljes fordulattal az óra járásával ellenkező irányban addig, amíg a nulla helyzet egybe nem esik a jelzéssel! Jegyezzük fel a leolvasott mikrométer értéket!
+
'''c)''' Forgassuk el a mikrométer gombját egy teljes fordulattal az óra járásával ellenkező irányban addig, amíg a nulla helyzet egybe nem esik a jelzéssel! Jegyezzük fel a leolvasott mikrométer értéket!
  
 
* ''Ha a mikrométer gomb forgatásának irányát megváltoztatjuk, a tükör nem indul meg azonnal. Ezt nevezzük kotyogásnak, amely minden mechanikai rendszernél előfordul mozgásirány megváltoztatásakor. A fenti módon a kotyogásból eredő hiba kiküszöbölhető.''
 
* ''Ha a mikrométer gomb forgatásának irányát megváltoztatjuk, a tükör nem indul meg azonnal. Ezt nevezzük kotyogásnak, amely minden mechanikai rendszernél előfordul mozgásirány megváltoztatásakor. A fenti módon a kotyogásból eredő hiba kiküszöbölhető.''
  
'''4.''' A megfigyelő ernyőt állítsuk be úgy, hogy a milliméter skála egyik jele essék egybe az interferenciakép egyik gyűrűjével!  
+
'''d)''' A megfigyelő ernyőt állítsuk be úgy, hogy a milliméter skála egyik jele essék egybe az interferenciakép egyik gyűrűjével!  
 
* ''Könnyebb lesz a gyűrűk számlálása, ha a referencia jel a kép közepétől számított első vagy második gyűrűre esik.''
 
* ''Könnyebb lesz a gyűrűk számlálása, ha a referencia jel a kép közepétől számított első vagy második gyűrűre esik.''
  
'''5.''' Forgassuk tovább a mikrométer gombját az óramutató járásával ellenkező irányba és számoljuk meg a referencia jelen áthaladó gyűrűket! Legalább 20 gyűrűátmenetet számoljunk le, de a felbontás javítása érdekében érdemes lehet akár 50 átmenetig is elmenni! A gyűrűátmenetek leszámlálása után a gyűrűknek ugyanabban a helyzetben kell lenniük, mint a számlálás megkezdésekor. Jegyezzük fel a mikrométer tárcsán leolvasott értéket!
+
'''e)''' Forgassuk tovább a mikrométer gombját az óramutató járásával ellenkező irányba és számoljuk meg a referencia jelen áthaladó gyűrűket! Legalább 20 gyűrűátmenetet számoljunk le, de a felbontás javítása érdekében érdemes lehet akár 50 átmenetig is elmenni! A gyűrűátmenetek leszámlálása után a gyűrűknek ugyanabban a helyzetben kell lenniük, mint a számlálás megkezdésekor. Jegyezzük fel a mikrométer tárcsán leolvasott értéket!
  
'''6.''' Jegyezzük fel a leszámlált gyűrű átmenetek számát!
+
'''f)''' Jegyezzük fel a leszámlált gyűrű átmenetek számát!
  
'''7.''' Határozzuk meg a lézer fényforrás hullámhosszát, annak figyelembe vételével, hogy a mikrométeren egy kis osztás egy µm ($10^{-6}$ m) tükör elmozdulásnak felel meg!
+
'''g)''' Határozzuk meg a lézer fényforrás hullámhosszát, annak figyelembe vételével, hogy a mikrométeren egy kis osztás egy µm ($10^{-6}$ m) tükör elmozdulásnak felel meg!
  
'''8.''' Többször ismételjük meg a ''3 - 7. lépéseket''!
+
'''h)''' Többször ismételjük meg a ''3 - 7. lépéseket''!
  
===A levegő törésmutatójának meghatározása Michelson-féle interferométerrel===
+
===2. A levegő törésmutatójának meghatározása Michelson-féle interferométerrel===
  
'''1.''' Állítsunk össze Michelson-féle interferométert a piros félvezető lézer használatával!
+
'''a)''' Állítsunk össze Michelson-féle interferométert a piros félvezető lézer használatával!
  
'''2.''' Helyezzük az elemtartót a rögzített tükör és a sugárosztó közé, és helyezzük fel ennek mágneses hátoldalára a vákuum-kamrát és húzzuk a vákuumkamra levegőző csonkjára a kézi vákuumszivattyú csövét!  
+
'''b)''' Helyezzük az elemtartót a rögzített tükör és a sugárosztó közé, és helyezzük fel ennek mágneses hátoldalára a vákuum-kamrát és húzzuk a vákuumkamra levegőző csonkjára a kézi vákuumszivattyú csövét!  
  
 
* ''Szükség szerint állítsuk be a rögzített tükröt úgy, hogy az interferenciakép közepe jól látható legyen a megfigyelő ernyőn!''
 
* ''Szükség szerint állítsuk be a rögzített tükröt úgy, hogy az interferenciakép közepe jól látható legyen a megfigyelő ernyőn!''
  
'''3.''' A kézi vákuumszivattyún lévő billenőkapcsoló segítségével engedjünk levegőt a vákuumkamrába, és győződjünk meg arról, hogy a vákuumkamrában atmoszférikus nyomás uralkodik! Ez lesz a $P_i$ kezdeti nyomás.
+
'''c)''' A kézi vákuumszivattyún lévő billenőkapcsoló segítségével engedjünk levegőt a vákuumkamrába, és győződjünk meg arról, hogy a vákuumkamrában atmoszférikus nyomás uralkodik! Ez lesz a $P_i$ kezdeti nyomás.
  
'''4.''' Lassan szivattyúzzuk ki a levegőt a vákuumkamrából, miközben számoljuk meg a bekövetkező gyűrű átmeneteket! Jegyezzük fel a manométerről leolvasott $P_f$ nyomás végértéket és a gyűrűátmenetek $N$ számát!
+
'''d)''' Lassan szivattyúzzuk ki a levegőt a vákuumkamrából, miközben számoljuk meg a bekövetkező gyűrű átmeneteket! Jegyezzük fel a manométerről leolvasott $P_f$ nyomás végértéket és a gyűrűátmenetek $N$ számát!
  
 
* ''A manométer a nyomást az atmoszférikus nyomáshoz képest méri (pl. a 34 Hgcm állás az atmoszférikusnál 34 Hgcm-rel kisebb nyomást jelent). Ebben az esetben az abszolút nyomást a következőképpen kell számítani:''
 
* ''A manométer a nyomást az atmoszférikus nyomáshoz képest méri (pl. a 34 Hgcm állás az atmoszférikusnál 34 Hgcm-rel kisebb nyomást jelent). Ebben az esetben az abszolút nyomást a következőképpen kell számítani:''
163. sor: 163. sor:
 
ahol $P_i$ a levegő kezdeti nyomása, $P_f$ a levegő végső nyomása, $n_i$ a levegő törésmutatója $P_i$ nyomáson, $n_f$ a levegő törésmutatója $P_f$  nyomáson, $N$ a leszívás során megfigyelt gyűrűátmenetek száma, $\lambda_0$ a lézerfény hullámhossza vákuumban és $d$ a vákuumkamra hossza (3 cm).
 
ahol $P_i$ a levegő kezdeti nyomása, $P_f$ a levegő végső nyomása, $n_i$ a levegő törésmutatója $P_i$ nyomáson, $n_f$ a levegő törésmutatója $P_f$  nyomáson, $N$ a leszívás során megfigyelt gyűrűátmenetek száma, $\lambda_0$ a lézerfény hullámhossza vákuumban és $d$ a vákuumkamra hossza (3 cm).
  
===Üveg törésmutatójának meghatározása Michelson-féle interferométerrel===
+
===3. Üveg törésmutatójának meghatározása Michelson-féle interferométerrel===
  
'''1.''' Továbbra is a Michelson-féle interferométer elrendezést használjuk, a mérés elején ellenőrizze, hogy megfelelően van-e beállítva a fényút.
+
'''a)''' Továbbra is a Michelson-féle interferométer elrendezést használjuk, a mérés elején ellenőrizze, hogy megfelelően van-e beállítva a fényút.
  
'''2.''' Helyezzük a forgatható mutatót az elemtartóval a sugárosztó és a mozgatható tükör közé, és rögzítsük az üveglemezt az elemtartó mágneses hátlapjára!
+
'''b)''' Helyezzük a forgatható mutatót az elemtartóval a sugárosztó és a mozgatható tükör közé, és rögzítsük az üveglemezt az elemtartó mágneses hátlapjára!
  
'''3.''' Úgy állítsuk be a mutatót, hogy finom skálájának "0"-ja az interferométer alapon lévő fokosztás nullpontjával essen egybe!
+
'''c)''' Úgy állítsuk be a mutatót, hogy finom skálájának "0"-ja az interferométer alapon lévő fokosztás nullpontjával essen egybe!
  
'''4.''' Vegyük el a lencsét a lézer elől! Tartsuk a megfigyelő ernyőt a sugárosztó és a mozgatható tükör között! Ha egy fényes pont és néhány másodlagos pont látható a megfigyelő ernyőn, addig állítsuk az elemtartó szögét a forgatható mutatóhoz képest, amíg egy fényes pont látható. Ezután ismét igazítsuk a forgatható mutatót a skálaosztás nullpontjához! Ekkor az üveglemez merőleges az optikai útra.
+
'''d)''' Vegyük el a lencsét a lézer elől! Tartsuk a megfigyelő ernyőt a sugárosztó és a mozgatható tükör között! Ha egy fényes pont és néhány másodlagos pont látható a megfigyelő ernyőn, addig állítsuk az elemtartó szögét a forgatható mutatóhoz képest, amíg egy fényes pont látható. Ezután ismét igazítsuk a forgatható mutatót a skálaosztás nullpontjához! Ekkor az üveglemez merőleges az optikai útra.
  
'''5.''' Helyezzük vissza a lencsét és a megfigyelő ernyőt, és végezzük el a szükséges tükör beállításokat, hogy tiszta gyűrűképet kapjunk!
+
'''e)''' Helyezzük vissza a lencsét és a megfigyelő ernyőt, és végezzük el a szükséges tükör beállításokat, hogy tiszta gyűrűképet kapjunk!
  
'''6.''' Lassan forgassuk el a forgatható mutatót 0°-tól $\theta$ szögig (legalább 10 fokot), és eközben számoljuk le a megfigyelt gyűrűátmenetek számát!
+
'''f)''' Lassan forgassuk el a forgatható mutatót 0°-tól $\theta$ szögig (legalább 10 fokot), és eközben számoljuk le a megfigyelt gyűrűátmenetek számát!
  
'''5.''' A mérési eredmények alapján határozzuk meg az üveglemez törésmutatóját az alábbi összefüggés szerint:
+
'''g)''' A mérési eredmények alapján határozzuk meg az üveglemez törésmutatóját az alábbi összefüggés szerint:
  
 
$$ n_g = \frac{(2t-N\lambda)(1-\cos\theta)}{2t(1-\cos\theta)-N\lambda} $$  
 
$$ n_g = \frac{(2t-N\lambda)(1-\cos\theta)}{2t(1-\cos\theta)-N\lambda} $$  
183. sor: 183. sor:
 
ahol $t$ az üveglemez vastagsága.
 
ahol $t$ az üveglemez vastagsága.
  
===He-Ne lézer hullámhosszának meghatározása Michelson-féle interferométerrel===
+
===4. He-Ne lézer hullámhosszának meghatározása Michelson-féle interferométerrel===
  
 
* ''Mivel csak egy He-Ne lézer van, ha a másik mérőpár már elkezdte ezt a mérést, akkor ugorjon a "Félvezető lézer koherencia hosszának mérésére" és utána térjen vissza erre a feladatra.''
 
* ''Mivel csak egy He-Ne lézer van, ha a másik mérőpár már elkezdte ezt a mérést, akkor ugorjon a "Félvezető lézer koherencia hosszának mérésére" és utána térjen vissza erre a feladatra.''
189. sor: 189. sor:
 
* ''Ha az első alkalom végén, vagy a második alkalom során marad ideje, akkor próbálja meg meghatározni a piros és akár a zöld lézer hullámhosszát is ezzel a módszerrel és így összevetheti a különböző módon mért hullámhosszakat''
 
* ''Ha az első alkalom végén, vagy a második alkalom során marad ideje, akkor próbálja meg meghatározni a piros és akár a zöld lézer hullámhosszát is ezzel a módszerrel és így összevetheti a különböző módon mért hullámhosszakat''
  
'''1.''' Állítsuk össze a Michelson-féle interferométert a He-N lézerrel!  
+
'''a)''' Állítsuk össze a Michelson-féle interferométert a He-N lézerrel!  
  
'''2.''' Határozzuk meg a He-Ne lézer hullámhosszát, a gyűrűátmenetek számából és a tükör elmozdulásából. A mérést ismételje meg legalább 3 alkalommal és számoljon le alkalmanként legalább 30 gyűrűátmenetet.!
+
'''b)''' Határozzuk meg a He-Ne lézer hullámhosszát, a gyűrűátmenetek számából és a tükör elmozdulásából. A mérést ismételje meg legalább 3 alkalommal és számoljon le alkalmanként legalább 30 gyűrűátmenetet.!
  
===Kis koherenciahosszú félvezető lézer koherencia hosszának mérése===
+
===5. Kis koherenciahosszú félvezető lézer koherencia hosszának mérése===
  
'''1.''' Állítsuk össze a Michelson-féle interferométert a kis koherenciahosszú (mutató) félvezető lézerrel!  
+
'''a)''' Állítsuk össze a Michelson-féle interferométert a kis koherenciahosszú (mutató) félvezető lézerrel!  
  
 
* ''Tolómérő segítségével úgy állítsuk be a tükröket, hogy a kettéválasztott fénynyalábok optikai úthossza minél pontosabban megegyezzen.''
 
* ''Tolómérő segítségével úgy állítsuk be a tükröket, hogy a kettéválasztott fénynyalábok optikai úthossza minél pontosabban megegyezzen.''
  
'''2.''' Állítsuk be a félvezető mutatólézert úgy, hogy a lézer nyaláb pontosan merőleges legyen a mozgatható tükörre.  
+
'''b)''' Állítsuk be a félvezető mutatólézert úgy, hogy a lézer nyaláb pontosan merőleges legyen a mozgatható tükörre.  
  
 
* ''Ennek pontos beállításához egy papírlapba fúrt kis lyukon eresszük át a lézernyalábot, és addig állítsuk a lézer szögét, amíg a lézernyaláb pontosan a kis lyukba érkezik vissza. ''
 
* ''Ennek pontos beállításához egy papírlapba fúrt kis lyukon eresszük át a lézernyalábot, és addig állítsuk a lézer szögét, amíg a lézernyaláb pontosan a kis lyukba érkezik vissza. ''
205. sor: 205. sor:
 
* ''A lézernyaláb beállítása közben a féligáteresztő tükröt fordítsuk oldalra, hogy ne legyen a lézer útjában.''
 
* ''A lézernyaláb beállítása közben a féligáteresztő tükröt fordítsuk oldalra, hogy ne legyen a lézer útjában.''
  
'''3.''' Helyezzük el a sugárosztót a lézernyalábbal $45^\circ$-os szöget bezárólag a jelzések közé úgy, hogy a nyaláb az álló tükörre verődjék!  
+
'''c)''' Helyezzük el a sugárosztót a lézernyalábbal $45^\circ$-os szöget bezárólag a jelzések közé úgy, hogy a nyaláb az álló tükörre verődjék!  
  
 
* ''A sugárosztó szögét úgy kell beállítani, hogy a visszavert nyaláb a rögzített tükör közepére essék!''
 
* ''A sugárosztó szögét úgy kell beállítani, hogy a visszavert nyaláb a rögzített tükör közepére essék!''
211. sor: 211. sor:
 
* ''Ekkor két fényes pontsorozatot kell látnunk a megfigyelő ernyőn. Az egyik pontsorozat a rögzített tükörről, a másik a mozgatható tükörről jön létre. Mindegyik pontsorozat egy fényes pontot és két vagy több kevésbé fényes pontot tartalmaz (a többszörös visszaverődés miatt).''
 
* ''Ekkor két fényes pontsorozatot kell látnunk a megfigyelő ernyőn. Az egyik pontsorozat a rögzített tükörről, a másik a mozgatható tükörről jön létre. Mindegyik pontsorozat egy fényes pontot és két vagy több kevésbé fényes pontot tartalmaz (a többszörös visszaverődés miatt).''
  
'''4.''' Állítsuk a sugárosztó szögét addig, amíg a két pontsorozat a lehető legközelebb kerül egymáshoz, majd rögzítsük a sugárosztó helyzetét!
+
'''d)''' Állítsuk a sugárosztó szögét addig, amíg a két pontsorozat a lehető legközelebb kerül egymáshoz, majd rögzítsük a sugárosztó helyzetét!
  
'''5.''' A rögzített tükör hátoldalán lévő csavarokkal állítsuk be annak hajlásszögét úgy, hogy a két pontsorozat a megfigyelő ernyőn egybeessék!
+
'''e)''' A rögzített tükör hátoldalán lévő csavarokkal állítsuk be annak hajlásszögét úgy, hogy a két pontsorozat a megfigyelő ernyőn egybeessék!
  
'''6.''' Helyezzünk egy 18 mm fókusztávolságú lencsét a lézer előtti elemtartó mágneses oldalára, és állítsuk be úgy, hogy a széttartó nyaláb a sugárosztóra koncentrálódjék!
+
'''f)''' Helyezzünk egy 18 mm fókusztávolságú lencsét a lézer előtti elemtartó mágneses oldalára, és állítsuk be úgy, hogy a széttartó nyaláb a sugárosztóra koncentrálódjék!
  
'''7.''' A mikrométercsavar segítségével mozgassuk az egyik tükröt addig, míg a koncentrikus gyűrűk megjelennek a képen. Állapítsuk meg, hogy milyen elmozdulás-tartományban láthatók a gyűrűk. Ez alapján becsüljük meg a mutatólézer koherenciahosszát.  
+
'''g)''' A mikrométercsavar segítségével mozgassuk az egyik tükröt addig, míg a koncentrikus gyűrűk megjelennek a képen. Állapítsuk meg, hogy milyen elmozdulás-tartományban láthatók a gyűrűk. Ez alapján becsüljük meg a mutatólézer koherenciahosszát.  
  
 
* ''Ha nem sikerül interferenciagyűrűket észlelni, akkor rossz a beállításunk, pl. nem eléggé kiegyenlítettek az optikai úthosszak.''
 
* ''Ha nem sikerül interferenciagyűrűket észlelni, akkor rossz a beállításunk, pl. nem eléggé kiegyenlítettek az optikai úthosszak.''

A lap 2021. október 13., 21:58-kori változata


A mérés célja:

  • koherens optikai jelenségek tanulmányozása.

Ennek érdekében:

  • áttekintjük az interferencia elméletét,
  • megmérjük a lézerfény koherenciahosszát,
  • méréseket végzünk interferométerrel,



Tartalomjegyzék


Elméleti összefoglaló

Koherencia fogalma

A koherencia fogalmát a következő egyszerű képen keresztül definiálhatjuk. Tételezzük fel, hogy egy hullám egy \setbox0\hbox{$A$}% \message{//depth:\the\dp0//}% \box0% kiindulási pontból két úton keresztül juthat el a \setbox0\hbox{$B$}% \message{//depth:\the\dp0//}% \box0% pontba. Az 1. és 2. úton a \setbox0\hbox{$B$}% \message{//depth:\the\dp0//}% \box0% pontba érkező nyalábokat \setbox0\hbox{$A_1e^{i\phi_1}$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$A_2e^{i\phi_2}$}% \message{//depth:\the\dp0//}% \box0% komplex számokkal jellemezhetjük, ahol \setbox0\hbox{$A_1$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$A_2$}% \message{//depth:\the\dp0//}% \box0% a nyalábok amplitúdóit, \setbox0\hbox{$\phi_1$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\phi_2$}% \message{//depth:\the\dp0//}% \box0% pedig a fázisukat adják meg. B pontban a két nyaláb a szuperpozíció elve alapján összeadódik, így az eredő komplex amplitúdó \setbox0\hbox{$A_1e^{i\phi_1}+A_2e^{i\phi_2}$}% \message{//depth:\the\dp0//}% \box0% lesz. Detektoraink viszont nem a komplex amplitúdót, hanem annak az abszolút érték négyzetét, az intenzitást érzékelik, mely egyszerű számolás alapján:

\[ I_B = A_1^2 + A_2^2 + 2A_1A_2\cos(\phi_1- \phi_2). \]

Látszik, hogy a két nyaláb intenzitásának összege mellett megjelenik az úgynevezett interferencia tag is: ha a két nyaláb azonos fázisban érkezik a \setbox0\hbox{$B$}% \message{//depth:\the\dp0//}% \box0% pontba, akkor erősítést, ha ellentétes fázisban érkeznek, akkor kioltást kapunk. Persze interferenciát csak akkor tapasztalunk, ha a két nyaláb fáziskülönbsége időben állandó, ekkor beszélünk koherens nyalábokról. Ellenkező esetben az interferenciatag időben kiátlagolódik, így nem látunk erősítéseket, ill. kioltásokat.

Fény esetében az interferencia tag eltűnésének a leggyakoribb oka, hogy maga az \setbox0\hbox{$A$}% \message{//depth:\the\dp0//}% \box0% pontban elhelyezett fényforrás sem koherens. Ha az 1. és 2. nyaláb által megtett optikai úthossz különbözik, akkor a \setbox0\hbox{$B$}% \message{//depth:\the\dp0//}% \box0% pontban találkozó nyalábok különböző időpontban indultak el az \setbox0\hbox{$A$}% \message{//depth:\the\dp0//}% \box0% pontból. Koherencia időnek hívjuk azt a maximális \setbox0\hbox{$\tau_c$}% \message{//depth:\the\dp0//}% \box0% időkülönbséget, melyre a fényforrásból a \setbox0\hbox{$T_0$}% \message{//depth:\the\dp0//}% \box0% ill. \setbox0\hbox{$T_0+\tau_c$}% \message{//depth:\the\dp0//}% \box0% időpontban kibocsátott fotonok fázisai között korreláció tapasztalható. Ha az 1. és 2. nyaláb optikai úthosszainak különbsége nagyobb a fény által \setbox0\hbox{$\tau_c$}% \message{//depth:\the\dp0//}% \box0% idő alatt megtett útnál, \setbox0\hbox{$|l_1-l_2|>l_c=c\tau_c$}% \message{//depth:\the\dp0//}% \box0%, akkor az interferencia tag eltűnik. Az ennek megfelelő \setbox0\hbox{$l_c$}% \message{//depth:\the\dp0//}% \box0% úthosszat koherenciahossznak nevezzük.

Az első koherens optikai kísérletet Thomas Young végezte úgy, hogy keskeny fénynyalábot irányított két szorosan egymás mellett elrendezett résre. A résekkel szemben elhelyezett ernyőn a réseken keresztül ráeső fényből szabályos, sötét és világos sávokból álló interferenciakép jött létre. Young kísérlete fontos bizonyítéka volt a fény hullámtermészetének. 1881-ben, 78 évvel Young után, A. A. Michelson hasonló elven működő interferométert épített. Michelson kísérletében a fényhullámot egy félig áteresztő tükör segítségével választotta két részre, melyek különböző utak megtétele után (lásd később) egy detektáló ernyőn újra találkozva alkotnak interferenciaképet. Michelson eredetileg az éternek, az elektromágneses sugárzások – így a fénynek is – terjedését biztosító feltételezett közegnek a kimutatására szerkesztette meg interferométerét. Részben az ő erőfeszítéseinek is köszönhetően az éter feltételezését ma nem tekintjük életképes hipotézisnek. Ezen túlmenően azonban a Michelson-féle interferométer széleskörűen elterjedt a fény hullámhosszának mérésére illetve ismert hullámhosszúságú fényforrás alkalmazásával rendkívül kis távolságok mérésére és optikai közegek vizsgálatára.

A fenti kísérletek elvégzése hagyományos fényforrásokkal rendkívül nehéz feladat a rövid koherenciaidő, illetve a különböző frekvenciájú fénykomponensek keveredése miatt. A lézerek feltalálása óta lényegesen könnyebb interferencia-jelenségeket vizsgálni, egy vékony résen történő diffrakciót akár otthon is kipróbálhatjuk egy mutatólézer segítségével.

A lézer működési elvénél fogva egy nagy koherencia-hosszal rendelkező, jól meghatározott irányban terjedő monokromatikus fénynyalábot biztosít. A lézerben egy aktív közeg jól meghatározott frekvenciájú fotonokat emittál, melyek egy rezonátorban „oda-vissza pattognak”. A stimulált emisszió jelenségének köszönhetően az emittált fotonok a rezonátorban már jelenlévő fotonokkal azonos állapotúak lesznek, azaz a már jelenlévő fotonokkal azonos fázisú és terjedési irányú fotonok emittálódnak. A rezonátor egyik oldalán a fény egy részét kicsatolva egy irányított, koherens nyalábot kapunk. A mérésen is használt He-Ne lézerben a fényemissziót a gázkeverék bizonyos atomi átmenetei biztosítják, míg a rezonátort két szembeállított tükör alkotja, melyek egyike a fény kb. 1 %-át kiengedi. Mivel a rezonátor szélessége 10-20 cm is lehet, illetve a fotonok a kilépés előtt sokszor körbejárják a rezonátort, így a He-Ne lézer koherenciahossza több méter is lehet.

A napjainkban tömegesen alkalmazott félvezető lézerekben a fény elektronok és lyukak rekombinációjának köszönhetően emittálódik. A rezonátort maga a félvezető nanoszerkezet biztosítja, így kisebb koherenciahosszat várunk.

Michelson-féle interferométer felépítése

1. ábra
2. ábra


A 2. ábrán a Michelson-féle interferométer vázlata látható. A lézer sugárnyalábja sugárosztóra esik, amely a beeső fény 50 %-át visszaveri, és másik 50 %-át átengedi. A beeső fény így két nyalábra oszlik. Az egyik a mozgatható tükörre (\setbox0\hbox{$M_1$}% \message{//depth:\the\dp0//}% \box0%) esik, a másik a rögzített tükörre (\setbox0\hbox{$M_2$}% \message{//depth:\the\dp0//}% \box0%) verődik. Mindkét tükör a sugárosztóra veri vissza a fényt.

A mozgatható tükörről visszavert fény egyik fele most a megfigyelő ernyőre esik be, és a rögzített tükörről visszaverődő fény fele a sugárosztón áthaladva szintén a megfigyelő ernyőre esik.

3. ábra

Ily módon az eredeti sugárnyaláb először kettéosztódik, majd a keletkezett nyalábok egy része visszafelé egyesül egymással. Mivel a nyalábok ugyanabból a fényforrásból származnak, fázisuk erősen korrelált. Így, amikor lencsét helyezünk a lézer fényforrás és a sugárosztó közé, a fénynyaláb kitágul és a megfigyelő ernyőn sötét és világos gyűrűkből álló kép jelenik meg (3. ábra).

Mivel a két interferáló nyaláb ugyanabból a forrásból származik, fázisuk eredetileg azonos volt. Relatív fázisuk, amikor a megfigyelő ernyő bármely pontjában találkoznak, attól az optikai úthossztól függ, amelyet ezen pont eléréséig megtettek.

\setbox0\hbox{$M_1$}% \message{//depth:\the\dp0//}% \box0% mozgatásával az egyik nyaláb úthossza változtatható. Mivel a nyaláb az \setbox0\hbox{$M_1$}% \message{//depth:\the\dp0//}% \box0% és a sugárosztó közötti utat kétszer teszi meg, \setbox0\hbox{$M_1$}% \message{//depth:\the\dp0//}% \box0%-et 1/4 hullámhossznyival közelítve a sugárosztóhoz, a nyaláb úthossza 1/2 hullámhossznyival csökken. Eközben megváltozik az interferenciakép. A maximumok sugara oly módon csökken, hogy a korábbi minimumok helyét foglalják el. Ha \setbox0\hbox{$M_1$}% \message{//depth:\the\dp0//}% \box0%-et tovább mozgatjuk 1/4 hullámhossznyival a sugárosztó felé, a maximumok sugara tovább csökken úgy, hogy a maximumok és a minimumok ismét helyet cserélnek, és az új elrendezés megkülönböztethetetlen lesz az eredeti képtől.

Lassan mozgatva a tükröt egy meghatározott \setbox0\hbox{$d_N$}% \message{//depth:\the\dp0//}% \box0% távolságon, és közben leszámolva \setbox0\hbox{$N$}% \message{//depth:\the\dp0//}% \box0%-et, annak számát, hányszor jutott a gyűrűkép az eredeti állapotába, meghatározható a fény hullámhossza:

\[ \lambda = \frac{2d_N}{N}. \]

Ha a fény hullámhossza ismert, ugyanígy mérhető a \setbox0\hbox{$d_N$}% \message{//depth:\the\dp0//}% \box0% távolság.

Fabry-Pérot interferométer felépítése

A 4. ábrán a Faby-Pérot interferométer vázlata látható. Itt a lézerből bejövő nyaláb a lencse után széttartóvá válik és így éri el a rögzített, féligáteresztő tükröt (M1). A széttartó nyalábok ezután a szintén féligáteresztő tükörre (M2) jutnak, ahol részben visszaverődnek és részben továbbhaladnak. A visszaverődött nyalábok a rögzített tükörről újra visszaverődnek, így a két tükör között többszörös visszaverődés révén egy optikai üregrezonátor alakul ki. Mivel a rezonátorból kilépő transzmittált nyalábok egy közös bejövő nyalábból származnak, a fázisuk eredetileg azonos volt, az üregből kilépés után pedig a relatív fázisuk a széttartás szögétől és a két tükör távolságától függ. Ha a lencse rögzített, akkor a fáziskülönbség a mozgatható tükör mozgatásával változtatható. A Michelson-féle interferométernél leírtakhoz hasonlóan, ha a tükröt 1/2 hullámhossznyival mozdítjuk el, az új és a kiindulási gyűrűkép egyformának adódik. Így a Fabry-Pérot interferométer is hasonlóan a gyűrűátmenetek számolásával használható a távolság mérésére, ha ismert hullámhosszú fényt használunk, vagy a hullámhossz meghatározására, ha ismerjük az elmozdulást.

A Fabry-Pérot elrenedzés elviekben a Michelson-féle interferométernél látott gyűrűképhez képest fényesebb, vékonyabb és egymástól távolabb elhelyezkedő gyűrűkből álló képet ad.

4. ábra

Mérési feladatok

A méréshez rendelkezésre álló eszközök

  • A mérés elvégzéséhez és a mérési napló elkészítéséhez a dőlt betűs részekben adunk segítséget.

FELADATOK ELSŐ ALKALOMMAL

1. Piros félvezető lézer koherencia hosszának mérése Fabry-Pérot interferométerrel

a) Állítsunk össze a Faby-Pérot interferométer elrenedzést a leiratban ismertetett módon a piros félvezető lézer lézert használva!

b) Állítsuk a mikrométert középállásba (közelítőleg 500 µm)!

  • Ebben a helyzetben a leginkább lineáris az összefüggés a mikrométeren leolvasott érték és a tükör elmozdulása között.

c) Forgassuk el a mikrométer gombját egy teljes fordulattal az óra járásával ellenkező irányban addig, amíg a nulla helyzet egybe nem esik a jelzéssel! Jegyezzük fel a leolvasott mikrométer értéket!

  • Ha a mikrométer gomb forgatásának irányát megváltoztatjuk, a tükör nem indul meg azonnal. Ezt nevezzük kotyogásnak, amely minden mechanikai rendszernél előfordul mozgásirány megváltoztatásakor. A fenti módon a kotyogásból eredő hiba kiküszöbölhető.

d) A megfigyelő ernyőt állítsuk be úgy, hogy a milliméter skála egyik jele essék egybe az interferenciakép egyik gyűrűjével!

  • Könnyebb lesz a gyűrűk számlálása, ha a referencia jel a kép közepétől számított első vagy második gyűrűre esik.

e) Forgassuk tovább a mikrométer gombját az óramutató járásával ellenkező irányba és számoljuk meg a referencia jelen áthaladó gyűrűket! Legalább 20 gyűrűátmenetet számoljunk le, de a felbontás javítása érdekében érdemes lehet akár 50 átmenetig is elmenni! A gyűrűátmenetek leszámlálása után a gyűrűknek ugyanabban a helyzetben kell lenniük, mint a számlálás megkezdésekor. Jegyezzük fel a mikrométer tárcsán leolvasott értéket!

f) Jegyezzük fel a leszámlált gyűrű átmenetek számát!

g) Határozzuk meg a lézer fényforrás hullámhosszát, annak figyelembe vételével, hogy a mikrométeren egy kis osztás egy µm (\setbox0\hbox{$10^{-6}$}% \message{//depth:\the\dp0//}% \box0% m) tükör elmozdulásnak felel meg!

h) Többször ismételjük meg a 3 - 7. lépéseket!

2. A levegő törésmutatójának meghatározása Michelson-féle interferométerrel

a) Állítsunk össze Michelson-féle interferométert a piros félvezető lézer használatával!

b) Helyezzük az elemtartót a rögzített tükör és a sugárosztó közé, és helyezzük fel ennek mágneses hátoldalára a vákuum-kamrát és húzzuk a vákuumkamra levegőző csonkjára a kézi vákuumszivattyú csövét!

  • Szükség szerint állítsuk be a rögzített tükröt úgy, hogy az interferenciakép közepe jól látható legyen a megfigyelő ernyőn!

c) A kézi vákuumszivattyún lévő billenőkapcsoló segítségével engedjünk levegőt a vákuumkamrába, és győződjünk meg arról, hogy a vákuumkamrában atmoszférikus nyomás uralkodik! Ez lesz a \setbox0\hbox{$P_i$}% \message{//depth:\the\dp0//}% \box0% kezdeti nyomás.

d) Lassan szivattyúzzuk ki a levegőt a vákuumkamrából, miközben számoljuk meg a bekövetkező gyűrű átmeneteket! Jegyezzük fel a manométerről leolvasott \setbox0\hbox{$P_f$}% \message{//depth:\the\dp0//}% \box0% nyomás végértéket és a gyűrűátmenetek \setbox0\hbox{$N$}% \message{//depth:\the\dp0//}% \box0% számát!

  • A manométer a nyomást az atmoszférikus nyomáshoz képest méri (pl. a 34 Hgcm állás az atmoszférikusnál 34 Hgcm-rel kisebb nyomást jelent). Ebben az esetben az abszolút nyomást a következőképpen kell számítani:
\[ P_{abs} = P_{atm} - P_{mert} \]

5. A mérési eredmények alapján határozzuk meg a törésmutató (\setbox0\hbox{$n$}% \message{//depth:\the\dp0//}% \box0%) - nyomás (\setbox0\hbox{$P$}% \message{//depth:\the\dp0//}% \box0%) grafikon meredekségét levegőre és a levegő törésmutatóját atmoszférikus nyomáson.

A Michelson-féle interferométernél a gyűrűkép jellemzőit a két interferáló nyaláb fázisviszonyai határozzák meg. A fázisviszonyok kétféle módon változhatnak meg. Az egyik az egyes nyalábok által megtett utak változása (például, a mozgatható tükör mozgatása révén). A másik a közeg megváltozása, amelyben az egyik vagy mindkét nyaláb áthalad.

Adott frekvenciájú fény esetén a hullámhossz a következő formula szerint változik:

\[ \lambda = \lambda_0/n \]

ahol \setbox0\hbox{$\lambda_0$}% \message{//depth:\the\dp0//}% \box0% a fény hullámhossza vákuumban, és \setbox0\hbox{$n$}% \message{//depth:\the\dp0//}% \box0% a közeg törésmutatója, amelyben a fény halad. Megfelelően alacsony nyomásokon egy gáz törésmutatója lineárisan változik a gáz nyomásával. Vákuum esetén, ahol a nyomás zérus, a törésmutató pontosan 1. Ennek alapján kísérletileg meghatározva a törésmutató – nyomás grafikon meredekségét, kiszámíthatjuk a gáz törésmutatóját különböző nyomásokon.

A lézer nyaláb oda és vissza megtéve az utat a sugárosztó és a mozgatható tükör között, kétszer halad át a vákuumkamrán. A kamrán kívül a két nyaláb optikai úthossza nem változik a kísérlet során. A kamrán belül azonban a fény hullámhossza megnövekszik a nyomás csökkenésével.

Feltételezve, hogy a kamra \setbox0\hbox{$d$}% \message{//depth:\the\dp0//}% \box0% hossza eredetileg 10 hullámhossznyi volt (a valóságban természetesen sokkal hosszabb) és a kamra leszívása közben, a hullámhossz növekedése folytán 9 1/2 hullámhossznyi lesz, a kétszeri áthaladás miatt a kamrán, a fény eggyel kevesebb rezgést végez a kamrán belül. Ennek hatása az interferenciaképre ugyanolyan, mint amikor a mozgatható tükröt 1/2 hullámhossznyival közelebb hozzuk a sugárosztóhoz. Ezért egyetlen gyűrű átmenetet fogunk megfigyelni.

Fentieknek megfelelően (a kétszeri fényáthaladást figyelembe véve) a kamra belseje eredetileg \setbox0\hbox{$N_i=2d/\lambda_i$}% \message{//depth:\the\dp0//}% \box0% fényhullámhossznyi hosszúságú volt. A végnyomáson pedig \setbox0\hbox{$N_f=2d/\lambda_f$}% \message{//depth:\the\dp0//}% \box0% hullámhossznyi fért el a kamrában. Ezen két érték közötti különbség, \setbox0\hbox{$N=N_i-N_f$}% \message{//depth:\the\dp0//}% \box0% , éppen a kamra leszívása közben leszámlált gyűrűátmenetek száma. Ezért \setbox0\hbox{$N=2d/\lambda_i-2d/\lambda_f$}% \message{//depth:\the\dp0//}% \box0%. Azonban \setbox0\hbox{$\lambda_i=\lambda_0/n_i$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\lambda_f=\lambda_0/n_f$}% \message{//depth:\the\dp0//}% \box0%, ahol \setbox0\hbox{$n_i$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$n_f$}% \message{//depth:\the\dp0//}% \box0% a kamrában lévő levegő törésmutatójának kezdeti és végértéke. Ezért \setbox0\hbox{$N=2d(n_i-n_f)/\lambda_0$}% \message{//depth:\the\dp0//}% \box0%, úgyhogy \setbox0\hbox{$n_i-n_f=N\lambda_0/2d$}% \message{//depth:\the\dp0//}% \box0%. A törésmutató-nyomás grafikon meredeksége pedig:

\[ \frac{n_i-n_f}{P_i-P_f} = \frac{N\lambda_0}{2d(P_i-P_f)},\]

ahol \setbox0\hbox{$P_i$}% \message{//depth:\the\dp0//}% \box0% a levegő kezdeti nyomása, \setbox0\hbox{$P_f$}% \message{//depth:\the\dp0//}% \box0% a levegő végső nyomása, \setbox0\hbox{$n_i$}% \message{//depth:\the\dp0//}% \box0% a levegő törésmutatója \setbox0\hbox{$P_i$}% \message{//depth:\the\dp0//}% \box0% nyomáson, \setbox0\hbox{$n_f$}% \message{//depth:\the\dp0//}% \box0% a levegő törésmutatója \setbox0\hbox{$P_f$}% \message{//depth:\the\dp0//}% \box0% nyomáson, \setbox0\hbox{$N$}% \message{//depth:\the\dp0//}% \box0% a leszívás során megfigyelt gyűrűátmenetek száma, \setbox0\hbox{$\lambda_0$}% \message{//depth:\the\dp0//}% \box0% a lézerfény hullámhossza vákuumban és \setbox0\hbox{$d$}% \message{//depth:\the\dp0//}% \box0% a vákuumkamra hossza (3 cm).

3. Üveg törésmutatójának meghatározása Michelson-féle interferométerrel

a) Továbbra is a Michelson-féle interferométer elrendezést használjuk, a mérés elején ellenőrizze, hogy megfelelően van-e beállítva a fényút.

b) Helyezzük a forgatható mutatót az elemtartóval a sugárosztó és a mozgatható tükör közé, és rögzítsük az üveglemezt az elemtartó mágneses hátlapjára!

c) Úgy állítsuk be a mutatót, hogy finom skálájának "0"-ja az interferométer alapon lévő fokosztás nullpontjával essen egybe!

d) Vegyük el a lencsét a lézer elől! Tartsuk a megfigyelő ernyőt a sugárosztó és a mozgatható tükör között! Ha egy fényes pont és néhány másodlagos pont látható a megfigyelő ernyőn, addig állítsuk az elemtartó szögét a forgatható mutatóhoz képest, amíg egy fényes pont látható. Ezután ismét igazítsuk a forgatható mutatót a skálaosztás nullpontjához! Ekkor az üveglemez merőleges az optikai útra.

e) Helyezzük vissza a lencsét és a megfigyelő ernyőt, és végezzük el a szükséges tükör beállításokat, hogy tiszta gyűrűképet kapjunk!

f) Lassan forgassuk el a forgatható mutatót 0°-tól \setbox0\hbox{$\theta$}% \message{//depth:\the\dp0//}% \box0% szögig (legalább 10 fokot), és eközben számoljuk le a megfigyelt gyűrűátmenetek számát!

g) A mérési eredmények alapján határozzuk meg az üveglemez törésmutatóját az alábbi összefüggés szerint:

\[ n_g = \frac{(2t-N\lambda)(1-\cos\theta)}{2t(1-\cos\theta)-N\lambda} \]

ahol \setbox0\hbox{$t$}% \message{//depth:\the\dp0//}% \box0% az üveglemez vastagsága.

4. He-Ne lézer hullámhosszának meghatározása Michelson-féle interferométerrel

  • Mivel csak egy He-Ne lézer van, ha a másik mérőpár már elkezdte ezt a mérést, akkor ugorjon a "Félvezető lézer koherencia hosszának mérésére" és utána térjen vissza erre a feladatra.
  • Ha az első alkalom végén, vagy a második alkalom során marad ideje, akkor próbálja meg meghatározni a piros és akár a zöld lézer hullámhosszát is ezzel a módszerrel és így összevetheti a különböző módon mért hullámhosszakat

a) Állítsuk össze a Michelson-féle interferométert a He-N lézerrel!

b) Határozzuk meg a He-Ne lézer hullámhosszát, a gyűrűátmenetek számából és a tükör elmozdulásából. A mérést ismételje meg legalább 3 alkalommal és számoljon le alkalmanként legalább 30 gyűrűátmenetet.!

5. Kis koherenciahosszú félvezető lézer koherencia hosszának mérése

a) Állítsuk össze a Michelson-féle interferométert a kis koherenciahosszú (mutató) félvezető lézerrel!

  • Tolómérő segítségével úgy állítsuk be a tükröket, hogy a kettéválasztott fénynyalábok optikai úthossza minél pontosabban megegyezzen.

b) Állítsuk be a félvezető mutatólézert úgy, hogy a lézer nyaláb pontosan merőleges legyen a mozgatható tükörre.

  • Ennek pontos beállításához egy papírlapba fúrt kis lyukon eresszük át a lézernyalábot, és addig állítsuk a lézer szögét, amíg a lézernyaláb pontosan a kis lyukba érkezik vissza.
  • A lézernyaláb beállítása közben a féligáteresztő tükröt fordítsuk oldalra, hogy ne legyen a lézer útjában.

c) Helyezzük el a sugárosztót a lézernyalábbal \setbox0\hbox{$45^\circ$}% \message{//depth:\the\dp0//}% \box0%-os szöget bezárólag a jelzések közé úgy, hogy a nyaláb az álló tükörre verődjék!

  • A sugárosztó szögét úgy kell beállítani, hogy a visszavert nyaláb a rögzített tükör közepére essék!
  • Ekkor két fényes pontsorozatot kell látnunk a megfigyelő ernyőn. Az egyik pontsorozat a rögzített tükörről, a másik a mozgatható tükörről jön létre. Mindegyik pontsorozat egy fényes pontot és két vagy több kevésbé fényes pontot tartalmaz (a többszörös visszaverődés miatt).

d) Állítsuk a sugárosztó szögét addig, amíg a két pontsorozat a lehető legközelebb kerül egymáshoz, majd rögzítsük a sugárosztó helyzetét!

e) A rögzített tükör hátoldalán lévő csavarokkal állítsuk be annak hajlásszögét úgy, hogy a két pontsorozat a megfigyelő ernyőn egybeessék!

f) Helyezzünk egy 18 mm fókusztávolságú lencsét a lézer előtti elemtartó mágneses oldalára, és állítsuk be úgy, hogy a széttartó nyaláb a sugárosztóra koncentrálódjék!

g) A mikrométercsavar segítségével mozgassuk az egyik tükröt addig, míg a koncentrikus gyűrűk megjelennek a képen. Állapítsuk meg, hogy milyen elmozdulás-tartományban láthatók a gyűrűk. Ez alapján becsüljük meg a mutatólézer koherenciahosszát.

  • Ha nem sikerül interferenciagyűrűket észlelni, akkor rossz a beállításunk, pl. nem eléggé kiegyenlítettek az optikai úthosszak.

FIGYELEM! A második alkalomra az eddigi feladatok előzetes kiértékelését el kell végezni és meg kell mutatni a mérésvezetőnek.

FELADATOK MÁSODIK ALKALOMMAL

Ha az első mérési alkalommal elvégzett feladatok kiértékelése során probléma adódott a mért adatok helytelensége miatt, akkor elsőként ezeket a mérési feladatokat végezze el újra.