„Tehetetlenségi nyomaték vizsgálata” változatai közötti eltérés

A Fizipedia wikiből
(Új oldal, tartalma: „Szerkesztés alatt!”)
 
1. sor: 1. sor:
Szerkesztés alatt!
+
<wlatex>
 +
 
 +
[[Kategória:Fizika BSC alapképzés]]
 +
<!--[[Kategória:Fizika BSC alkalmazott fizika szakirány]]-->
 +
<!--[[Kategória:Fizika BSC fizikus szakirány]]-->
 +
<!--[[Kategória:Fizikus MSC alapképzés]]-->
 +
<!--[[Kategória:Fizikus MSC alkalmazott fizika szakirány]]-->
 +
<!--[[Kategória:Fizikus MSC kutatófizikus szakirány]]-->
 +
<!--[[Kategória:Fizikus MSC nukleáris technika szakirány]]-->
 +
<!--[[Kategória:Fizikus MSC orvosi fizika szakirány]]-->
 +
[[Kategória:Mechanika]]
 +
<!--[[Kategória:Elektromosságtan]]-->
 +
<!--[[Kategória:Hőtan]]-->
 +
<!--[[Kategória:Kvantummechanika]]-->
 +
<!--[[Kategória:Statisztikus fizika]]-->
 +
<!--[[Kategória:Nanofizika]]-->
 +
<!--[[Kategória:Optika]]-->
 +
<!--[[Kategória:Szilárdtestfizika]]-->
 +
<!--[[Kategória:Mag és részecskefizika]]-->     
 +
<!--[[Kategória:Informatika]]-->
 +
[[Kategória:Laborgyakorlat]]
 +
[[Kategória:Fizika Tanszék]]
 +
<!--[[Kategória:Elméleti Fizika Tanszék]]-->
 +
<!--[[Kategória:Atomfizika Tanszék]]-->
 +
<!--[[Kategória:Nukleáris Technikai Intézet]]-->
 +
<!--[[Kategória:Matematika Intézet]]-->   
 +
[[Kategória:Szerkesztő:Vankó]]
 +
 
 +
A mérés célja:
 +
* elmélyíteni a tehetetlenségi nyomatékkal kapcsolatos ismereteket,
 +
* megismertetni a hallgatókat egy a tehetetlenségi nyomaték mérésére alkalmas módszerrel.
 +
 
 +
Ennek érdekében:
 +
* összefoglaljuk a tehetetlenségi nyomatékkal kapcsolatos ismereteket, majd megvizsgáljuk egy olyan rendszer viselkedését, amelynek segítségével tehetetlenségi nyomatékot tudunk mérni,
 +
* a mérések során meghatározzuk a méréséhez használandó rendszer paramétereit, majd a megismert rendszer segítségével tehetetlenségi nyomatékot mérünk, és kísérletileg igazoljuk a Steiner-tételt.
 +
 
 +
__TOC__
 +
 
 +
==Elméleti ismeretek==
 +
 
 +
===A tehetetlenségi nyomaték===
 +
A tömegpontokból álló rendszer z-tengelyre vonatkozó tehetetlenségi nyomatékát az alábbi kifejezés adja meg:
 +
$$\theta=\sum_{i=1}^n m_i\cdot l_i^2=\sum_{i=1}^n m_i\cdot (x_i^2+y_i^2),$$
 +
ahol $l_i$ az $i$ sorszámú, $m_i$ tömegű pont $z$-tengelytől való távolsága, $x_i$ és $y_i$ ugyanennek a pontnak az $x$, illetve $y$ koordinátája.
 +
Folytonos tömegeloszlású testek esetén a tehetetlenségi nyomaték:
 +
{{eq|\theta{{=}}\int_V \rho\cdot l^2 \,\mathrm{d}V{{=}}\int_V \rho\cdot (x^2+y^2)\,\mathrm{d}V,|eq:1|(1)}}
 +
ahol $\rho$ a test sűrűsége. A tehetetlenségi nyomaték értéke egyszerűbb esetekben számítással határozható meg, egyébként mérésekkel állapítható meg.
 +
Ha ismerjük egy test tehetetlenségi nyomatékát a súlypontján átmenő tengelyre vonatkozóan ($\theta_\mathrm{s}$), akkor egy ezzel a tengellyel párhuzamos tengelyre vonatkozó tehetetlenségi nyomatéka ($\theta$) a Steiner-tétel segítségével adható meg:
 +
$$\theta=\theta_\mathrm{s}+m\cdot r^2.$$
 +
Itt $m$ a test tömege, $r$ a két tengely egymástól mért távolsága.
 +
 
 +
===Forgási rezgések===
 +
 
 +
{{fig|Tehetetlenségi_nyomaték_vizsgálata_1.jpg|fig:1|1. ábra}}
 +
A tehetetlenségi nyomatékkal kapcsolatos vizsgálatainkat egy forgási rezgéseket végző torziós asztal segítségével hajtjuk végre, ezért az alábbiakban egy ilyen rendszer viselkedését vizsgáljuk ([[#fig:1|1. ábra]]).
 +
A rendszer egyensúlyi helyzetét egyik végén a tengelyhez, a másik végén a kerethez rögzített spirálrugó biztosítja. A rendszer egyensúlyi helyzetéhez képest, a tengely körül $\varphi$ (rad) szöggel való elforgatásához szükséges forgatónyomaték, nem nagy szögek esetén:
 +
{{eq|M{{=}}-D^*\cdot\varphi,|eq:2|(2)}}
 +
ahol $D^*$ (Nm/rad) a rugó direkciós nyomatéka.
 +
 
 +
====Csillapítatlan forgási rezgések====
 +
Ha a torziós asztal tárcsájának a tengelyre vonatkozó tehetetlenségi nyomatéka $\theta$ és emellet a rendszer többi elemének tehetetlenségi nyomatéka, valamint a súrlódási veszteségek figyelmen kívül hagyhatók, akkor a rendszer mozgásegyenlete:
 +
$$\theta\cdot\frac{\mathrm{d}^2\varphi}{\mathrm{d}t^2}=-D^*\cdot\varphi.$$
 +
Ezen mozgásegyenlet megoldása a
 +
$$\varphi=\phi\cdot\sin(\omega\cdot t+\alpha)$$
 +
egyenlettel leírható harmonikus forgási rezgés, ahol $\phi$ és $\alpha$ értékét a kezdeti feltételek határozzák meg és a megoldás során adódik, hogy a körfrekvencia:
 +
$$\omega=\sqrt{\frac{D^*}{\theta} }$$
 +
amiből a rezgés periódusideje:
 +
{{eq|T{{=}}2\pi\sqrt{\frac{\theta}{D^*} }.|eq:3|(3)}}
 +
 
 +
====Csillapodó forgási rezgések====
 +
 
 +
{{fig|Tehetetlenségi_nyomaték_vizsgálata_2.jpg|fig:2|2. ábra}}
 +
 
 +
A fentiekben szereplő csillapítatlan forgási rezgés $\phi$ amplitúdója állandó. A gyakorlatban megvalósítható rezgéseknél a mindig jelen lévő súrlódás miatt az amplitúdó folyamatosan csökken. Az ilyen mozgásoknál a rugó által létrehozott nyomatékon kívül megjelenő súrlódási erő hatását a szögsebességgel arányosnak feltételezve, (az arányosságot a $k$ állandóval véve figyelembe) a rezgés mozgásegyenlete:
 +
{{eq|\theta\cdot\frac{\mathrm{d}^2\varphi}{\mathrm{d}t^2}{{=}}-D^*\cdot\varphi-k\cdot\frac{\mathrm{d}\varphi}{\mathrm{d}t}.|eq4|(4)}}
 +
A [[#eq:4|(4)]] egyenlet megoldása az $\omega_0^2=\frac{D^*}{\theta}$ és $\beta=\frac{k}{2\theta}$ jelölésekkel
 +
{{eq|\varphi{{=}}\phi_0\cdot e^{-\beta\cdot t}\cdot\sin(\omega\cdot t+\alpha),|eq:5|(5)}}
 +
ahol $\beta$ a csillapítási tényező, $\phi_0$ és $\alpha$ a kezdeti feltételektől függő állandók. A $\beta<\omega_0$ esetben:
 +
{{eq|\omega^2{{=}}\omega_0^2-\beta^2.|eq:6|(6)}}
 +
A [[#eq:5|(5)]] egyenlettel leírt mozgás $\varphi=f(t)$ függvénye a [[#fig:2|2. ábrán]] látható. A rezgés amplitúdója exponenciálisan csökken: $\varphi=\varphi_0\cdot e^{-\beta\cdot t}$. A rendszer az egyensúlyi helyzeten a $t=0,\, T/2,\, T$ időpontokban halad át, a szélső $\phi_0,\, \phi_2,\,\dots$ helyzeteket azonban nem a $T/4,\, 3T/4,\,\dots$ időpontokban éri el, de a szélső helyzetek között eltelt idő $T/2$.
 +
 
 +
===A torziós asztal és jellemzőinek meghatározása===
 +
 
 +
Ahhoz, hogy egy rezgőmozgást végző rendszert felhasználhassunk ismeretlen minta tehetetlenségi nyomatékának meghatározásához, vagy a Steiner-tétel igazolásához, ismernünk kell rendszerünket és annak fizikai jellemzőit. Az alábbiakban a további vizsgálatokhoz felhasználandó eszközt, a torziós asztalt mutatjuk be, és ismertetünk néhány módszert, amely alkalmas a rendszer jellemzőinek meghatározására.
 +
 
 +
====A torziós asztal====
 +
 
 +
{{fig|Tehetetlenségi_nyomaték_vizsgálata_3.jpg|fig:3|3. ábra}}
 +
 
 +
A további vizsgálatokhoz használt eszköz, a forgási rezgéseket végző torziós asztal fényképe és vázlata a [[#fig:3|3. ábrán]] látható.
 +
 
 +
====A torziós asztalban alkalmazott spirálrúgó direkciós nyomatékának ($D^*$) meghatározása====
 +
 
 +
A direkciós nyomaték meghatározásánál a [[#eq:2|(2)]] egyenletből indulhatunk ki. Megmérve a rugóra ható nyomatékot és a nyomaték által létrehozott szögelfordulást, a direkciós nyomaték:
 +
$$D^*=\frac{M}{\varphi}.$$
 +
A mérés pontosságának növelése érdekében célszerű meghatározni a $\varphi=f(M)$ függvényt. A mérési pontokra egyenest illesztve az meredekségéből megkapható a rugó jellemzője.
 +
 
 +
====A csillapítási tényező ($\beta$) meghatározása====
 +
 
 +
A csillapítási tényező meghatározása a [[#eq:5|(5)]] egyenlet felhasználásával lehetséges. A lengő torziós asztal kitérése egy tetszőleges $t_1$ időpontban, illetve ez után $n$ egészszámú periódusidővel később a $t_1+n\cdot T$ időpontban:
 +
$$\varphi_1=\phi_0\cdot e^{-\beta\cdot t_1}\cdot\sin(\omega\cdot t_1+\alpha),$$
 +
$$\varphi_n=\phi_0\cdot e^{-\beta(t_1+n\cdot )}\cdot\sin[\omega(t_1+n\cdot T)+\alpha].$$
 +
Mivel a két kifejezésben a szinuszos tagok értéke megegyezik, a szögkitérések hányadosának természetes alapú logaritmusa:
 +
$$\ln\frac{\varphi_1}{\varphi_n}=n\cdot T\cdot\beta,$$
 +
ahonnan
 +
{{eq|\beta{{=}}\frac{1}{n\cdot T}\cdot\ln\frac{\varphi_1}{\varphi_n}.|eq:7|(7)}}
 +
A csillapítási tényező gyakorlati meghatározásánál célszerű a szélső helyzetek figyelembevétele, a [[#fig:2|2. ábra]] jelöléseihez igazodva:
 +
$$\frac{\varphi_1}{\varphi_n}{{=}}\frac{\phi_i}{\phi_{i+2k} },$$
 +
ahol $i$ és $k$ pozitív egész szám.
 +
A csillapítási tényező ismeretében dönthető el, hogy a rendszer csillapítatlan vagy csillapított mozgást végzőnek tekinthető-e. Ha $\frac{2\pi}{T}\gg \beta$, akkor a [[#eq:6|(6)]] összefüggés alapján a torziós asztal mozgása csillapítatlan mozgásnak tekinthető. (A $T$ periódusidő mérhető.)
 +
 
 +
====A torziós asztal tehetetlenségi nyomatékának meghatározása====
 +
 
 +
=====Az asztal tehetetlenségi nyomatékának meghatározása tömegének és sugarának ismeretében=====
 +
 
 +
Az [[#eq:1|(1)]] egyenletből levezethetően $R$ sugarú és $m$ tömegű homogén korong tehetetlenségi nyomatéka forgástengelyére vonatkozóan:
 +
$$\theta=\frac{1}{2}mR^2.$$
 +
Így az asztal tömegének és sugarának megmérése után tehetetlenségi nyomatéka számolható.
 +
 
 +
=====Az asztal tehetetlenségi nyomatékának meghatározása a rugó direkciós nyomatékának, a lengésidőnek és a csillapítási tényezőnek az ismeretében=====
 +
 
 +
A [[#eq:6|(6)]] egyenletből kiindulva felírható, hogy:
 +
$$\omega^2=\left(\frac{2\pi}{T} \right )^2=\frac{D^*}{\theta}-\beta^2,$$
 +
ahonnan
 +
{{eq|\theta{{=}}\frac{D^*}{\left(\frac{2\pi}{T} \right )^2+\beta^2}.|eq:8|(8)}}
 +
Ha a mozgás csillapítatlannak tekinthető
 +
{{eq|\theta{{=}}\left(\frac{T}{2\pi} \right )^2\cdot D^*.|eq:9|(9)}}
 +
 
 +
=====Az asztal tehetetlenségi nyomatékának meghatározása ismert tehetetlenségi nyomatékú tárcsa felhasználásával=====
 +
 
 +
Ha a torziós asztal önmagában végez lengéseket [[#eq:6|(6)]] alapján
 +
{{eq|\omega^2{{=}}\left(\frac{2\pi}{T} \right )^2{{=}}\frac{D^*}{\theta}-\beta^2.|eq:10|(10)}}
 +
Ha a torziós asztal közepére ismert ($\theta_0$) tehetetlenségi nyomatékú korongot szerelünk (a korong tengelye egybeesik az asztal tengelyével) a rendszer tehetetlenségi nyomatéka: $\theta'(\theta+\theta_0$-ra módosul és a lengés körfrekvenciája:
 +
{{eq|\omega'^2{{=}}\left(\frac{2\pi}{T'} \right )^2{{=}}\frac{D^*}{\theta+\theta_0}-\beta^2.|eq:11|(11)}}
 +
Feltételeztük, hogy a csillapítás nem változott. [[#eq:10|(10)]] és [[#eq:11|(11)]] hányadosából az asztal tehetetlenségi nyomatéka kiszámítható:
 +
$$\left(\frac{4\pi^2}{T^2}+\beta^2\right )\left/\left(\frac{4\pi^2}{T'^2}+\beta^2\right )\right.=\frac{\theta+\theta_0}{\theta},$$
 +
ahonnan
 +
{{eq|\theta{{=}}\theta_0\frac{T^2\cdot T'^2}{T'^2-T^2}\cdot\left(\frac{1}{T'^2}+\frac{\beta^2}{4\pi^2}\right).|eq:12|(12)}}
 +
Ha a zárójelben lévő kifejezés második tagja nem éri el az első tag 0,01-ad részét, úgy az elhanyagolható és a lengés csillapítatlannak tekinthető. A $\theta$ értéke csillapítatlan lengés esetén
 +
{{eq|\theta{{=}}\theta_0\frac{T^2}{T'^2-T^2}.|eq:13|(13)}}
 +
 
 +
===Mintadarab súlypontján átmenő tengelyre vonatkozó tehetetlenségi nyomatékának meghatározása===
 +
 
 +
{{fig|Tehetetlenségi_nyomaték_vizsgálata_4.jpg|fig:4|4. ábra}}
 +
Ha a torziós asztal mozgása csillapítatlan rezgésnek tekinthető, a mozgás periódusidejét a [[#eq:3|(3)]] összefüggés adja meg.
 +
Helyezzünk a torziós asztalra a [[#fig:4|4. ábra]] szerint egy mintát, mely az asztal egy pontja körül ($P$) körbe forgatható. Az ábrán látható jelölésekkel a Steiner-tétel és a koszinusz tétel alkalmazásával a minta tehetetlenségi nyomatéka az $O$ ponton átmenő tengelyre vonatkozóan.
 +
$$\theta_x+mr^2=\theta_x+m(r_0^2+r_1^2+2r_1r_2\cos\gamma),$$
 +
ahol $\theta_x$ a minta súlypontján ($S_p$) átmenő, a rendszer forgástengelyével párhuzamos tengelyre vonatkozó tehetetlenségi nyomatéka, $m$ a tömege és $r_1$ a minta súlypontjának távolsága a $P$ ponttól. Ha a torziós asztal tehetetlenségi nyomatéka $\theta$, a rendszer periódusideje (8)-ból:
 +
{{eq|T'^2{{=}}\frac{4\pi^2}{D^*}\left[\theta+\theta_x+m(r_0^2+r_1^2)\right]+\frac{4\pi^2}{D^*}2mr_1r_2\cos\gamma,|eq:14|(14)}}
 +
vagyis a periódusidő négyzete $T^2=A+B\cos\gamma$ függvény szerint változik.
 +
Ha a mintát körbeforgatva mérjük a rezgésidőket [[#eq:14|(14)]] alakú függvényt kapunk. A mérési pontokra görbét illesztve $A$ és $B$ értéke meghatározható, melyek ismeretében a [[#eq:14|(14)]]-ben szereplő két ismeretlen ($\theta_x$ és $r_1$) is kiértékelhető. Belátható, hogy a minta forgatása közben a legnagyobb lengésidőt akkor kapjuk, amikor a súlypont a legmesszebb van az $O$ forgástengelytől és a lengésidő akkor a legkisebb mikor a minta súlypontja a legközelebb van $O$-hoz. Ebben a két esetben a lengésidőket a
 +
{{eq|{T'}^2_\mathrm{max}{{=}}\frac{4\pi^2}{D^*}\left[\theta+\theta_x+m(r_0+r_1)^2) \right ],|eq:15|(15)}}
 +
illetve
 +
{{eq|{T'}^2_\mathrm{min}{{=}}\frac{4\pi^2}{D^*}\left[\theta+\theta_x+m(r_0-r_1)^2) \right ],|eq:16|(16)}}
 +
összefüggések adják meg, melyekből $\theta_x$ és $r_1$ szintén meghatározhatóak. (A $T'^2_\mathrm{max}-T'^2_\mathrm{min}=\frac{4\pi^2}{D^*}\cdot4mr_0r_1$ egyenletből megkaphatjuk $r_1$-et, majd ezen eredmény felhasználásával [[#eq:15|(15)]]-ből vagy [[#eq:16|(16)]]-ból számítható $\theta_x$).
 +
A fenti eljárást a minta egy másik pontja körüli forgatásra megismételve, meghatározható a súlypont távolsága ettől a ponttól. A súlypont két ismert ponttól való
 +
távolsága egyértelműen megadja a súlypont helyét.
 +
 
 +
===A Steiner-tétel igazolása===
 +
 
 +
Ha az ismert $\theta_0$ tehetetlenségi nyomatékú tárcsát úgy helyezünk el torziós asztalon, hogy súlypontja az asztal forgástengelyétől ismert $r$ távolságra legyen, a rendszer tehetetlenségi nyomatéka a Steiner-tétel szerint
 +
$$\theta'=\theta+mr^2.$$
 +
Csillapítatlan rezgéseket feltételezve [[#eq:3|(3)]] szerint a mozgás periódusidejének négyzete
 +
$$T^2=\frac{4\pi^2}{D^*}(\theta_0+\theta)+\frac{4\pi^2}{D^*}m\cdot r^2,$$
 +
azaz a $T^2=f(r^2)$ függvény egyenest ad.
 +
Ha mérjük a rendszer lengésidejét ($T$) a tárcsa súlypontjának az asztal forgástengelyétől való távolságának $\theta$ függvényében és ábrázoljuk a periódusidő négyzetét az $r^2$ függvényében, a mérési pontokra egyenes illeszthető.
 +
Megjegyezzük, hogy a most kapott egyenes meredekségének és tengelymetszetének meghatározása az adott tehetetlenségi nyomatékú tárcsa tömegének ismeretében újabb lehetőséget ad a rendszer $D^*$ direkciós nyomatékának és $\theta$ tehetetlenségi nyomatékának meghatározására.
 +
 
 +
==Mérési feladatok==
 +
 
 +
*''A mérés elvégzéséhez és a mérési napló elkészítéséhez a dőlt betűs részekben adunk segítséget.''
 +
 
 +
A mérések megkezdése előtt a torziós asztal talpán található csavarok és a mérőhelyen található libella segítségével az asztal síkját állítsa vízszintesre!
 +
 
 +
'''1.''' Határozza meg a spirálrugó D* direkciós nyomatékát!
 +
 
 +
A feladatot a [[#eq:2|(2)]] összefüggés felhasználásával oldja meg! Az elfordulást létrehozó forgatónyomatékot csigán átvetett fonál végén lévő edénykébe helyezett csapágygolyók segítségével hozza létre! Az edényke tömegét feltüntettük az oldalán, a csapágygolyók tömegét megadjuk. A tárcsa sugarát mérje meg. A szögelfordulás az asztalon található fokbeosztás segítségével határozható meg. A mérés közben fellépő súrlódás hatásának csökkentése érdekében minden egyes nyomaték alkalmazásánál mérje meg a nyomatékhoz tartozó maximális és minimális szögkitérés értékét és a kettő számtani közepét vegye figyelembe. 10-12 mérési pontot vegyen fel, ábrázolja a $\varphi=f(M)$ függvényt, mérési pontjaira illesszen egyenest, majd a kapott egyenes meredekségéből határozza meg a direkciós nyomatékot! Adja meg az illesztett egyenes korrelációs tényezőjét!
 +
 
 +
'''2.''' Határozza meg a rendszer csillapítási tényezőjét!
 +
 
 +
'''a)''' Határozza meg a csillapítási tényező értékét először a [[#eq:7|(7)]] összefüggés segítségével! A lengésidőt – itt, és a továbbiakban is – 5-5 lengés idejét mérve maximum 180°-os amplitúdóval indulva legalább ötször mérje meg! Az így kapott lengésidők átlagát használja a továbbiakban! A lengési amplitúdó csökkenésének vizsgálatánál 90°-os kitérésből induljon és 20 lengés után mérje meg a lecsökkent $\varphi_{20}$ amplitúdót! A kapott eredmények ismeretében hasonlítsa össze a körfrekvencia és a csillapítási állandó értékét! Csillapítatlan rezgésnek tekintheti-e a torziós asztal mozgását?
 +
 
 +
'''b)''' Vizsgálja a rendszer csillapodását V-scope-pal! A V-scope előkészítése után helyezzen az asztalra egy gombocskát, térítse ki az asztalt kb. 90°-kal, indítsa el a V-scope-ot és engedje el az asztalt! A mérés elvégzéséhez, ha szükséges, kérje a mérésvezető segítségét! A mérési adatok alapján határozza meg a csillapítási tényezőt! Vizsgálja meg a csillapodás jellegét! Valóban exponenciálisan csökken az amplitúdó? Mi lehet a különbség oka?
 +
 
 +
''Figyelem! A V-scope-os mérés '''nem''' alkalmas a periódusidő – és így az asztal tehetetlenségi nyomatékának – pontos mérésére, mert a gombocska megváltoztatja a rendszer tehetetlenségi nyomatékát!''
 +
 
 +
 
 +
'''3.''' Határozza meg a torziós asztal tehetetlenségi nyomatékát!
 +
 
 +
'''a)''' A $\theta=\frac{1}{2}mR^2$ összefüggés alapján. Számítsa ki a tárcsa tehetetlenségi nyomatékát! A tárcsa anyaga alumínium ($\rho=2700\,\frac{\mathrm{kg}}{\mathrm{m}^3}$). Méreteit méréssel határozza meg!
 +
 
 +
'''b)''' A rúgó direkciós nyomatékának, a rendszer lengésidejének és csillapítási tényezőjének ismeretében. A korábbi mérési eredményei felhasználásával a [[#eq:8|(8)]] vagy [[#eq:9|(9)]] összefüggés alapján számítsa ki a torziós asztal tehetetlenségi nyomatékát!
 +
 
 +
'''c)''' Ismert tehetetlenségi nyomatékú minta felhasználásával. Az ismert tehetetlenségi nyomatékú minta egy középen kis furattal ellátott korong. A korong tömege ismert, sugarát mérje meg és számítsa ki $\theta_0$ tehetetlenségi nyomatékát! Az ismert tehetetlenségi nyomatékú mintát a közepén lévő furat és egy csavar segítségével rögzítse az asztal közepére! A torziós asztal lengésidejét és csillapítási tényezőjét korábbról ismeri. Most mérje meg a megnövelt tehetetlenségi nyomatékú rendszer lengésidejét ($T'$) és a [[#eq:12|(12)]] vagy [[#eq:13|(13)]] összefüggés alkalmazásával határozza meg a torziós asztal tehetetlenségi nyomatékát!
 +
 
 +
'''4.''' Határozza meg egy inhomogén tömegeloszlású lemezből készült minta tehetetlenségi nyomatékát a súlypontján átmenő és a lemez síkjára merőleges tengelyre vonatkozóan!
 +
 
 +
A mérőhelyen található mintát - amelynek tömegét ismeri - rögzítse a torziós asztalra a mintán található furat és egy csavar segítségével! Az asztalon található rögzítési pontok közül ismeretei alapján válassza ki az optimálisnak tűnő rögzítési pontot! Indokolja választását! Mérje meg a rendszer lengésidejét a mintának a rögzítési pont körüli elforgatása és 30°-onkénti rögzítése mellett. (Ilyen módon 12 különböző lengésidőt mérhet. Minden lehetséges rögzítési pont körül 30°-os szögbeosztás található.) Ábrázolja a mért lengési idők négyzetét az elforgatási szög függvényében! Megfelelő függvényillesztéssel határozza meg $T'_\mathrm{max}$ és $T'_\mathrm{min}$ (vagy $B$) értékét, majd határozza meg a minta $\theta_x$ tehetetlenségi nyomatékát és a minta súlypontjának $r_1$ távolságát a mintán található furattól! ($D^*$-ot, $\theta$-t és $m$-et ismeri.)
 +
 
 +
Ismételje meg a feladat első részét a mintán található másik furat felhasználásával! Ennek a mérésnek az elvégzése után megadhatja a súlypont helyét a mintán található furatoktól mérhető távolsága segítségével.
 +
 
 +
'''5.''' Igazolja a Steiner-tételt!
 +
 
 +
Az ismert tehetetlenségi nyomatékú kis korongot rögzítse a torziós asztal tengelyétől különböző távolságban lévő rögzítési pontokhoz, és mérje meg a rögzítési pontokhoz tartozó lengési időket! Mérési eredményei alapján ábrázolja a $T^2=f(r^2)$ függvényt! Mérési pontjaira illesszen egyenest! Az egyenes paramétereiből határozza meg a rendszer  $D^*$ direkciós nyomatékát és $\theta$ tehetetlenségi nyomatékát!
 +
 
 +
</wlatex>

A lap 2012. február 13., 14:36-kori változata


A mérés célja:

  • elmélyíteni a tehetetlenségi nyomatékkal kapcsolatos ismereteket,
  • megismertetni a hallgatókat egy a tehetetlenségi nyomaték mérésére alkalmas módszerrel.

Ennek érdekében:

  • összefoglaljuk a tehetetlenségi nyomatékkal kapcsolatos ismereteket, majd megvizsgáljuk egy olyan rendszer viselkedését, amelynek segítségével tehetetlenségi nyomatékot tudunk mérni,
  • a mérések során meghatározzuk a méréséhez használandó rendszer paramétereit, majd a megismert rendszer segítségével tehetetlenségi nyomatékot mérünk, és kísérletileg igazoljuk a Steiner-tételt.

Tartalomjegyzék


Elméleti ismeretek

A tehetetlenségi nyomaték

A tömegpontokból álló rendszer z-tengelyre vonatkozó tehetetlenségi nyomatékát az alábbi kifejezés adja meg:

\[\theta=\sum_{i=1}^n m_i\cdot l_i^2=\sum_{i=1}^n m_i\cdot (x_i^2+y_i^2),\]

ahol \setbox0\hbox{$l_i$}% \message{//depth:\the\dp0//}% \box0% az \setbox0\hbox{$i$}% \message{//depth:\the\dp0//}% \box0% sorszámú, \setbox0\hbox{$m_i$}% \message{//depth:\the\dp0//}% \box0% tömegű pont \setbox0\hbox{$z$}% \message{//depth:\the\dp0//}% \box0%-tengelytől való távolsága, \setbox0\hbox{$x_i$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$y_i$}% \message{//depth:\the\dp0//}% \box0% ugyanennek a pontnak az \setbox0\hbox{$x$}% \message{//depth:\the\dp0//}% \box0%, illetve \setbox0\hbox{$y$}% \message{//depth:\the\dp0//}% \box0% koordinátája. Folytonos tömegeloszlású testek esetén a tehetetlenségi nyomaték:

 
\[\theta=\int_V \rho\cdot l^2 \,\mathrm{d}V=\int_V \rho\cdot (x^2+y^2)\,\mathrm{d}V,\]
(1)

ahol \setbox0\hbox{$\rho$}% \message{//depth:\the\dp0//}% \box0% a test sűrűsége. A tehetetlenségi nyomaték értéke egyszerűbb esetekben számítással határozható meg, egyébként mérésekkel állapítható meg. Ha ismerjük egy test tehetetlenségi nyomatékát a súlypontján átmenő tengelyre vonatkozóan (\setbox0\hbox{$\theta_\mathrm{s}$}% \message{//depth:\the\dp0//}% \box0%), akkor egy ezzel a tengellyel párhuzamos tengelyre vonatkozó tehetetlenségi nyomatéka (\setbox0\hbox{$\theta$}% \message{//depth:\the\dp0//}% \box0%) a Steiner-tétel segítségével adható meg:

\[\theta=\theta_\mathrm{s}+m\cdot r^2.\]

Itt \setbox0\hbox{$m$}% \message{//depth:\the\dp0//}% \box0% a test tömege, \setbox0\hbox{$r$}% \message{//depth:\the\dp0//}% \box0% a két tengely egymástól mért távolsága.

Forgási rezgések

A tehetetlenségi nyomatékkal kapcsolatos vizsgálatainkat egy forgási rezgéseket végző torziós asztal segítségével hajtjuk végre, ezért az alábbiakban egy ilyen rendszer viselkedését vizsgáljuk (1. ábra). A rendszer egyensúlyi helyzetét egyik végén a tengelyhez, a másik végén a kerethez rögzített spirálrugó biztosítja. A rendszer egyensúlyi helyzetéhez képest, a tengely körül \setbox0\hbox{$\varphi$}% \message{//depth:\the\dp0//}% \box0% (rad) szöggel való elforgatásához szükséges forgatónyomaték, nem nagy szögek esetén:

 
\[M=-D^*\cdot\varphi,\]
(2)

ahol \setbox0\hbox{$D^*$}% \message{//depth:\the\dp0//}% \box0% (Nm/rad) a rugó direkciós nyomatéka.

Csillapítatlan forgási rezgések

Ha a torziós asztal tárcsájának a tengelyre vonatkozó tehetetlenségi nyomatéka \setbox0\hbox{$\theta$}% \message{//depth:\the\dp0//}% \box0% és emellet a rendszer többi elemének tehetetlenségi nyomatéka, valamint a súrlódási veszteségek figyelmen kívül hagyhatók, akkor a rendszer mozgásegyenlete:

\[\theta\cdot\frac{\mathrm{d}^2\varphi}{\mathrm{d}t^2}=-D^*\cdot\varphi.\]

Ezen mozgásegyenlet megoldása a

\[\varphi=\phi\cdot\sin(\omega\cdot t+\alpha)\]

egyenlettel leírható harmonikus forgási rezgés, ahol \setbox0\hbox{$\phi$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\alpha$}% \message{//depth:\the\dp0//}% \box0% értékét a kezdeti feltételek határozzák meg és a megoldás során adódik, hogy a körfrekvencia:

\[\omega=\sqrt{\frac{D^*}{\theta} }\]

amiből a rezgés periódusideje:

 
\[T=2\pi\sqrt{\frac{\theta}{D^*} }.\]
(3)

Csillapodó forgási rezgések

2. ábra

A fentiekben szereplő csillapítatlan forgási rezgés \setbox0\hbox{$\phi$}% \message{//depth:\the\dp0//}% \box0% amplitúdója állandó. A gyakorlatban megvalósítható rezgéseknél a mindig jelen lévő súrlódás miatt az amplitúdó folyamatosan csökken. Az ilyen mozgásoknál a rugó által létrehozott nyomatékon kívül megjelenő súrlódási erő hatását a szögsebességgel arányosnak feltételezve, (az arányosságot a \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0% állandóval véve figyelembe) a rezgés mozgásegyenlete:

 
\[\theta\cdot\frac{\mathrm{d}^2\varphi}{\mathrm{d}t^2}=-D^*\cdot\varphi-k\cdot\frac{\mathrm{d}\varphi}{\mathrm{d}t}.\]
(4)

A (4) egyenlet megoldása az \setbox0\hbox{$\omega_0^2=\frac{D^*}{\theta}$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\beta=\frac{k}{2\theta}$}% \message{//depth:\the\dp0//}% \box0% jelölésekkel

 
\[\varphi=\phi_0\cdot e^{-\beta\cdot t}\cdot\sin(\omega\cdot t+\alpha),\]
(5)

ahol \setbox0\hbox{$\beta$}% \message{//depth:\the\dp0//}% \box0% a csillapítási tényező, \setbox0\hbox{$\phi_0$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\alpha$}% \message{//depth:\the\dp0//}% \box0% a kezdeti feltételektől függő állandók. A \setbox0\hbox{$\beta<\omega_0$}% \message{//depth:\the\dp0//}% \box0% esetben:

 
\[\omega^2=\omega_0^2-\beta^2.\]
(6)

A (5) egyenlettel leírt mozgás \setbox0\hbox{$\varphi=f(t)$}% \message{//depth:\the\dp0//}% \box0% függvénye a 2. ábrán látható. A rezgés amplitúdója exponenciálisan csökken: \setbox0\hbox{$\varphi=\varphi_0\cdot e^{-\beta\cdot t}$}% \message{//depth:\the\dp0//}% \box0%. A rendszer az egyensúlyi helyzeten a \setbox0\hbox{$t=0,\, T/2,\, T$}% \message{//depth:\the\dp0//}% \box0% időpontokban halad át, a szélső \setbox0\hbox{$\phi_0,\, \phi_2,\,\dots$}% \message{//depth:\the\dp0//}% \box0% helyzeteket azonban nem a \setbox0\hbox{$T/4,\, 3T/4,\,\dots$}% \message{//depth:\the\dp0//}% \box0% időpontokban éri el, de a szélső helyzetek között eltelt idő \setbox0\hbox{$T/2$}% \message{//depth:\the\dp0//}% \box0%.

A torziós asztal és jellemzőinek meghatározása

Ahhoz, hogy egy rezgőmozgást végző rendszert felhasználhassunk ismeretlen minta tehetetlenségi nyomatékának meghatározásához, vagy a Steiner-tétel igazolásához, ismernünk kell rendszerünket és annak fizikai jellemzőit. Az alábbiakban a további vizsgálatokhoz felhasználandó eszközt, a torziós asztalt mutatjuk be, és ismertetünk néhány módszert, amely alkalmas a rendszer jellemzőinek meghatározására.

A torziós asztal

A további vizsgálatokhoz használt eszköz, a forgási rezgéseket végző torziós asztal fényképe és vázlata a 3. ábrán látható.

A torziós asztalban alkalmazott spirálrúgó direkciós nyomatékának (\setbox0\hbox{$D^*$}% \message{//depth:\the\dp0//}% \box0%) meghatározása

A direkciós nyomaték meghatározásánál a (2) egyenletből indulhatunk ki. Megmérve a rugóra ható nyomatékot és a nyomaték által létrehozott szögelfordulást, a direkciós nyomaték:

\[D^*=\frac{M}{\varphi}.\]

A mérés pontosságának növelése érdekében célszerű meghatározni a \setbox0\hbox{$\varphi=f(M)$}% \message{//depth:\the\dp0//}% \box0% függvényt. A mérési pontokra egyenest illesztve az meredekségéből megkapható a rugó jellemzője.

A csillapítási tényező (\setbox0\hbox{$\beta$}% \message{//depth:\the\dp0//}% \box0%) meghatározása

A csillapítási tényező meghatározása a (5) egyenlet felhasználásával lehetséges. A lengő torziós asztal kitérése egy tetszőleges \setbox0\hbox{$t_1$}% \message{//depth:\the\dp0//}% \box0% időpontban, illetve ez után \setbox0\hbox{$n$}% \message{//depth:\the\dp0//}% \box0% egészszámú periódusidővel később a \setbox0\hbox{$t_1+n\cdot T$}% \message{//depth:\the\dp0//}% \box0% időpontban:

\[\varphi_1=\phi_0\cdot e^{-\beta\cdot t_1}\cdot\sin(\omega\cdot t_1+\alpha),\]
\[\varphi_n=\phi_0\cdot e^{-\beta(t_1+n\cdot )}\cdot\sin[\omega(t_1+n\cdot T)+\alpha].\]

Mivel a két kifejezésben a szinuszos tagok értéke megegyezik, a szögkitérések hányadosának természetes alapú logaritmusa:

\[\ln\frac{\varphi_1}{\varphi_n}=n\cdot T\cdot\beta,\]

ahonnan

 
\[\beta=\frac{1}{n\cdot T}\cdot\ln\frac{\varphi_1}{\varphi_n}.\]
(7)

A csillapítási tényező gyakorlati meghatározásánál célszerű a szélső helyzetek figyelembevétele, a 2. ábra jelöléseihez igazodva:

\[\frac{\varphi_1}{\varphi_n}{{=}}\frac{\phi_i}{\phi_{i+2k} },\]

ahol \setbox0\hbox{$i$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0% pozitív egész szám. A csillapítási tényező ismeretében dönthető el, hogy a rendszer csillapítatlan vagy csillapított mozgást végzőnek tekinthető-e. Ha \setbox0\hbox{$\frac{2\pi}{T}\gg \beta$}% \message{//depth:\the\dp0//}% \box0%, akkor a (6) összefüggés alapján a torziós asztal mozgása csillapítatlan mozgásnak tekinthető. (A \setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0% periódusidő mérhető.)

A torziós asztal tehetetlenségi nyomatékának meghatározása

Az asztal tehetetlenségi nyomatékának meghatározása tömegének és sugarának ismeretében

Az (1) egyenletből levezethetően \setbox0\hbox{$R$}% \message{//depth:\the\dp0//}% \box0% sugarú és \setbox0\hbox{$m$}% \message{//depth:\the\dp0//}% \box0% tömegű homogén korong tehetetlenségi nyomatéka forgástengelyére vonatkozóan:

\[\theta=\frac{1}{2}mR^2.\]

Így az asztal tömegének és sugarának megmérése után tehetetlenségi nyomatéka számolható.

Az asztal tehetetlenségi nyomatékának meghatározása a rugó direkciós nyomatékának, a lengésidőnek és a csillapítási tényezőnek az ismeretében

A (6) egyenletből kiindulva felírható, hogy:

\[\omega^2=\left(\frac{2\pi}{T} \right )^2=\frac{D^*}{\theta}-\beta^2,\]

ahonnan

 
\[\theta=\frac{D^*}{\left(\frac{2\pi}{T} \right )^2+\beta^2}.\]
(8)

Ha a mozgás csillapítatlannak tekinthető

 
\[\theta=\left(\frac{T}{2\pi} \right )^2\cdot D^*.\]
(9)
Az asztal tehetetlenségi nyomatékának meghatározása ismert tehetetlenségi nyomatékú tárcsa felhasználásával

Ha a torziós asztal önmagában végez lengéseket (6) alapján

 
\[\omega^2=\left(\frac{2\pi}{T} \right )^2=\frac{D^*}{\theta}-\beta^2.\]
(10)

Ha a torziós asztal közepére ismert (\setbox0\hbox{$\theta_0$}% \message{//depth:\the\dp0//}% \box0%) tehetetlenségi nyomatékú korongot szerelünk (a korong tengelye egybeesik az asztal tengelyével) a rendszer tehetetlenségi nyomatéka: \setbox0\hbox{$\theta'(\theta+\theta_0$}% \message{//depth:\the\dp0//}% \box0%-ra módosul és a lengés körfrekvenciája:

 
\[\omega'^2=\left(\frac{2\pi}{T'} \right )^2=\frac{D^*}{\theta+\theta_0}-\beta^2.\]
(11)

Feltételeztük, hogy a csillapítás nem változott. (10) és (11) hányadosából az asztal tehetetlenségi nyomatéka kiszámítható:

\[\left(\frac{4\pi^2}{T^2}+\beta^2\right )\left/\left(\frac{4\pi^2}{T'^2}+\beta^2\right )\right.=\frac{\theta+\theta_0}{\theta},\]

ahonnan

 
\[\theta=\theta_0\frac{T^2\cdot T'^2}{T'^2-T^2}\cdot\left(\frac{1}{T'^2}+\frac{\beta^2}{4\pi^2}\right).\]
(12)

Ha a zárójelben lévő kifejezés második tagja nem éri el az első tag 0,01-ad részét, úgy az elhanyagolható és a lengés csillapítatlannak tekinthető. A \setbox0\hbox{$\theta$}% \message{//depth:\the\dp0//}% \box0% értéke csillapítatlan lengés esetén

 
\[\theta=\theta_0\frac{T^2}{T'^2-T^2}.\]
(13)

Mintadarab súlypontján átmenő tengelyre vonatkozó tehetetlenségi nyomatékának meghatározása

Ha a torziós asztal mozgása csillapítatlan rezgésnek tekinthető, a mozgás periódusidejét a (3) összefüggés adja meg. Helyezzünk a torziós asztalra a 4. ábra szerint egy mintát, mely az asztal egy pontja körül (\setbox0\hbox{$P$}% \message{//depth:\the\dp0//}% \box0%) körbe forgatható. Az ábrán látható jelölésekkel a Steiner-tétel és a koszinusz tétel alkalmazásával a minta tehetetlenségi nyomatéka az \setbox0\hbox{$O$}% \message{//depth:\the\dp0//}% \box0% ponton átmenő tengelyre vonatkozóan.

\[\theta_x+mr^2=\theta_x+m(r_0^2+r_1^2+2r_1r_2\cos\gamma),\]

ahol \setbox0\hbox{$\theta_x$}% \message{//depth:\the\dp0//}% \box0% a minta súlypontján (\setbox0\hbox{$S_p$}% \message{//depth:\the\dp0//}% \box0%) átmenő, a rendszer forgástengelyével párhuzamos tengelyre vonatkozó tehetetlenségi nyomatéka, \setbox0\hbox{$m$}% \message{//depth:\the\dp0//}% \box0% a tömege és \setbox0\hbox{$r_1$}% \message{//depth:\the\dp0//}% \box0% a minta súlypontjának távolsága a \setbox0\hbox{$P$}% \message{//depth:\the\dp0//}% \box0% ponttól. Ha a torziós asztal tehetetlenségi nyomatéka \setbox0\hbox{$\theta$}% \message{//depth:\the\dp0//}% \box0%, a rendszer periódusideje (8)-ból:

 
\[T'^2=\frac{4\pi^2}{D^*}\left[\theta+\theta_x+m(r_0^2+r_1^2)\right]+\frac{4\pi^2}{D^*}2mr_1r_2\cos\gamma,\]
(14)

vagyis a periódusidő négyzete \setbox0\hbox{$T^2=A+B\cos\gamma$}% \message{//depth:\the\dp0//}% \box0% függvény szerint változik. Ha a mintát körbeforgatva mérjük a rezgésidőket (14) alakú függvényt kapunk. A mérési pontokra görbét illesztve \setbox0\hbox{$A$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$B$}% \message{//depth:\the\dp0//}% \box0% értéke meghatározható, melyek ismeretében a (14)-ben szereplő két ismeretlen (\setbox0\hbox{$\theta_x$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$r_1$}% \message{//depth:\the\dp0//}% \box0%) is kiértékelhető. Belátható, hogy a minta forgatása közben a legnagyobb lengésidőt akkor kapjuk, amikor a súlypont a legmesszebb van az \setbox0\hbox{$O$}% \message{//depth:\the\dp0//}% \box0% forgástengelytől és a lengésidő akkor a legkisebb mikor a minta súlypontja a legközelebb van \setbox0\hbox{$O$}% \message{//depth:\the\dp0//}% \box0%-hoz. Ebben a két esetben a lengésidőket a

 
\[{T'}^2_\mathrm{max}=\frac{4\pi^2}{D^*}\left[\theta+\theta_x+m(r_0+r_1)^2) \right ],\]
(15)

illetve

 
\[{T'}^2_\mathrm{min}=\frac{4\pi^2}{D^*}\left[\theta+\theta_x+m(r_0-r_1)^2) \right ],\]
(16)

összefüggések adják meg, melyekből \setbox0\hbox{$\theta_x$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$r_1$}% \message{//depth:\the\dp0//}% \box0% szintén meghatározhatóak. (A \setbox0\hbox{$T'^2_\mathrm{max}-T'^2_\mathrm{min}=\frac{4\pi^2}{D^*}\cdot4mr_0r_1$}% \message{//depth:\the\dp0//}% \box0% egyenletből megkaphatjuk \setbox0\hbox{$r_1$}% \message{//depth:\the\dp0//}% \box0%-et, majd ezen eredmény felhasználásával (15)-ből vagy (16)-ból számítható \setbox0\hbox{$\theta_x$}% \message{//depth:\the\dp0//}% \box0%). A fenti eljárást a minta egy másik pontja körüli forgatásra megismételve, meghatározható a súlypont távolsága ettől a ponttól. A súlypont két ismert ponttól való távolsága egyértelműen megadja a súlypont helyét.

A Steiner-tétel igazolása

Ha az ismert \setbox0\hbox{$\theta_0$}% \message{//depth:\the\dp0//}% \box0% tehetetlenségi nyomatékú tárcsát úgy helyezünk el torziós asztalon, hogy súlypontja az asztal forgástengelyétől ismert \setbox0\hbox{$r$}% \message{//depth:\the\dp0//}% \box0% távolságra legyen, a rendszer tehetetlenségi nyomatéka a Steiner-tétel szerint

\[\theta'=\theta+mr^2.\]

Csillapítatlan rezgéseket feltételezve (3) szerint a mozgás periódusidejének négyzete

\[T^2=\frac{4\pi^2}{D^*}(\theta_0+\theta)+\frac{4\pi^2}{D^*}m\cdot r^2,\]

azaz a \setbox0\hbox{$T^2=f(r^2)$}% \message{//depth:\the\dp0//}% \box0% függvény egyenest ad. Ha mérjük a rendszer lengésidejét (\setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0%) a tárcsa súlypontjának az asztal forgástengelyétől való távolságának \setbox0\hbox{$\theta$}% \message{//depth:\the\dp0//}% \box0% függvényében és ábrázoljuk a periódusidő négyzetét az \setbox0\hbox{$r^2$}% \message{//depth:\the\dp0//}% \box0% függvényében, a mérési pontokra egyenes illeszthető. Megjegyezzük, hogy a most kapott egyenes meredekségének és tengelymetszetének meghatározása az adott tehetetlenségi nyomatékú tárcsa tömegének ismeretében újabb lehetőséget ad a rendszer \setbox0\hbox{$D^*$}% \message{//depth:\the\dp0//}% \box0% direkciós nyomatékának és \setbox0\hbox{$\theta$}% \message{//depth:\the\dp0//}% \box0% tehetetlenségi nyomatékának meghatározására.

Mérési feladatok

  • A mérés elvégzéséhez és a mérési napló elkészítéséhez a dőlt betűs részekben adunk segítséget.

A mérések megkezdése előtt a torziós asztal talpán található csavarok és a mérőhelyen található libella segítségével az asztal síkját állítsa vízszintesre!

1. Határozza meg a spirálrugó D* direkciós nyomatékát!

A feladatot a (2) összefüggés felhasználásával oldja meg! Az elfordulást létrehozó forgatónyomatékot csigán átvetett fonál végén lévő edénykébe helyezett csapágygolyók segítségével hozza létre! Az edényke tömegét feltüntettük az oldalán, a csapágygolyók tömegét megadjuk. A tárcsa sugarát mérje meg. A szögelfordulás az asztalon található fokbeosztás segítségével határozható meg. A mérés közben fellépő súrlódás hatásának csökkentése érdekében minden egyes nyomaték alkalmazásánál mérje meg a nyomatékhoz tartozó maximális és minimális szögkitérés értékét és a kettő számtani közepét vegye figyelembe. 10-12 mérési pontot vegyen fel, ábrázolja a \setbox0\hbox{$\varphi=f(M)$}% \message{//depth:\the\dp0//}% \box0% függvényt, mérési pontjaira illesszen egyenest, majd a kapott egyenes meredekségéből határozza meg a direkciós nyomatékot! Adja meg az illesztett egyenes korrelációs tényezőjét!

2. Határozza meg a rendszer csillapítási tényezőjét!

a) Határozza meg a csillapítási tényező értékét először a (7) összefüggés segítségével! A lengésidőt – itt, és a továbbiakban is – 5-5 lengés idejét mérve maximum 180°-os amplitúdóval indulva legalább ötször mérje meg! Az így kapott lengésidők átlagát használja a továbbiakban! A lengési amplitúdó csökkenésének vizsgálatánál 90°-os kitérésből induljon és 20 lengés után mérje meg a lecsökkent \setbox0\hbox{$\varphi_{20}$}% \message{//depth:\the\dp0//}% \box0% amplitúdót! A kapott eredmények ismeretében hasonlítsa össze a körfrekvencia és a csillapítási állandó értékét! Csillapítatlan rezgésnek tekintheti-e a torziós asztal mozgását?

b) Vizsgálja a rendszer csillapodását V-scope-pal! A V-scope előkészítése után helyezzen az asztalra egy gombocskát, térítse ki az asztalt kb. 90°-kal, indítsa el a V-scope-ot és engedje el az asztalt! A mérés elvégzéséhez, ha szükséges, kérje a mérésvezető segítségét! A mérési adatok alapján határozza meg a csillapítási tényezőt! Vizsgálja meg a csillapodás jellegét! Valóban exponenciálisan csökken az amplitúdó? Mi lehet a különbség oka?

Figyelem! A V-scope-os mérés nem alkalmas a periódusidő – és így az asztal tehetetlenségi nyomatékának – pontos mérésére, mert a gombocska megváltoztatja a rendszer tehetetlenségi nyomatékát!


3. Határozza meg a torziós asztal tehetetlenségi nyomatékát!

a) A \setbox0\hbox{$\theta=\frac{1}{2}mR^2$}% \message{//depth:\the\dp0//}% \box0% összefüggés alapján. Számítsa ki a tárcsa tehetetlenségi nyomatékát! A tárcsa anyaga alumínium (\setbox0\hbox{$\rho=2700\,\frac{\mathrm{kg}}{\mathrm{m}^3}$}% \message{//depth:\the\dp0//}% \box0%). Méreteit méréssel határozza meg!

b) A rúgó direkciós nyomatékának, a rendszer lengésidejének és csillapítási tényezőjének ismeretében. A korábbi mérési eredményei felhasználásával a (8) vagy (9) összefüggés alapján számítsa ki a torziós asztal tehetetlenségi nyomatékát!

c) Ismert tehetetlenségi nyomatékú minta felhasználásával. Az ismert tehetetlenségi nyomatékú minta egy középen kis furattal ellátott korong. A korong tömege ismert, sugarát mérje meg és számítsa ki \setbox0\hbox{$\theta_0$}% \message{//depth:\the\dp0//}% \box0% tehetetlenségi nyomatékát! Az ismert tehetetlenségi nyomatékú mintát a közepén lévő furat és egy csavar segítségével rögzítse az asztal közepére! A torziós asztal lengésidejét és csillapítási tényezőjét korábbról ismeri. Most mérje meg a megnövelt tehetetlenségi nyomatékú rendszer lengésidejét (\setbox0\hbox{$T'$}% \message{//depth:\the\dp0//}% \box0%) és a (12) vagy (13) összefüggés alkalmazásával határozza meg a torziós asztal tehetetlenségi nyomatékát!

4. Határozza meg egy inhomogén tömegeloszlású lemezből készült minta tehetetlenségi nyomatékát a súlypontján átmenő és a lemez síkjára merőleges tengelyre vonatkozóan!

A mérőhelyen található mintát - amelynek tömegét ismeri - rögzítse a torziós asztalra a mintán található furat és egy csavar segítségével! Az asztalon található rögzítési pontok közül ismeretei alapján válassza ki az optimálisnak tűnő rögzítési pontot! Indokolja választását! Mérje meg a rendszer lengésidejét a mintának a rögzítési pont körüli elforgatása és 30°-onkénti rögzítése mellett. (Ilyen módon 12 különböző lengésidőt mérhet. Minden lehetséges rögzítési pont körül 30°-os szögbeosztás található.) Ábrázolja a mért lengési idők négyzetét az elforgatási szög függvényében! Megfelelő függvényillesztéssel határozza meg \setbox0\hbox{$T'_\mathrm{max}$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$T'_\mathrm{min}$}% \message{//depth:\the\dp0//}% \box0% (vagy \setbox0\hbox{$B$}% \message{//depth:\the\dp0//}% \box0%) értékét, majd határozza meg a minta \setbox0\hbox{$\theta_x$}% \message{//depth:\the\dp0//}% \box0% tehetetlenségi nyomatékát és a minta súlypontjának \setbox0\hbox{$r_1$}% \message{//depth:\the\dp0//}% \box0% távolságát a mintán található furattól! (\setbox0\hbox{$D^*$}% \message{//depth:\the\dp0//}% \box0%-ot, \setbox0\hbox{$\theta$}% \message{//depth:\the\dp0//}% \box0%-t és \setbox0\hbox{$m$}% \message{//depth:\the\dp0//}% \box0%-et ismeri.)

Ismételje meg a feladat első részét a mintán található másik furat felhasználásával! Ennek a mérésnek az elvégzése után megadhatja a súlypont helyét a mintán található furatoktól mérhető távolsága segítségével.

5. Igazolja a Steiner-tételt!

Az ismert tehetetlenségi nyomatékú kis korongot rögzítse a torziós asztal tengelyétől különböző távolságban lévő rögzítési pontokhoz, és mérje meg a rögzítési pontokhoz tartozó lengési időket! Mérési eredményei alapján ábrázolja a \setbox0\hbox{$T^2=f(r^2)$}% \message{//depth:\the\dp0//}% \box0% függvényt! Mérési pontjaira illesszen egyenest! Az egyenes paramétereiből határozza meg a rendszer \setbox0\hbox{$D^*$}% \message{//depth:\the\dp0//}% \box0% direkciós nyomatékát és \setbox0\hbox{$\theta$}% \message{//depth:\the\dp0//}% \box0% tehetetlenségi nyomatékát!